新型氟化物激光晶体Ce~(3+):LiCaAlF_6的生长与光谱性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二三十年来,LiCaAlF_6晶体作为优良的可调谐激光晶体基质材料,受到国内外学者的广泛关注。至今, Ce~(3+):LiCaAlF_6晶体作为紫外可调谐晶体的晶体生长和光谱性质已被大量文献报道,证实Ce~(3+):LiCaAlF_6晶体在可调谐激光领域有着重要用途。与此同时LiCaAlF_6掺杂其它过渡或稀土离子的发光特性及闪烁、激光性能正在被越来越多研究机构探索和报道。另外一方面,优质大尺寸的LiCaAlF_6单晶具有深紫外可见高透过率、双折射效应较小,且物化性质稳定,不易潮解,在紫外窗口材料领域有着重要应用前景。但LiCaAlF_6晶体及Ce~(3+):LiCaAlF_6晶体生长技术固有难点,限制该类晶体产业实用化。该类晶体生长主要难点在于:(1)获取严格无水无氧的单一相LiCaAlF_6及Ce~(3+):LiCaAlF_6多晶料十分困难;(2)如何控制LiCaAlF_6及Ce~(3+):LiCaAlF_6晶体生长气氛,防止晶体氧化及组分挥发;(3)晶体各向热膨胀系数相差较大,生长过程中易形成缺陷甚至开裂。本论文采取非真空密闭坩埚下降法进行LiCaAlF_6及Ce~(3+):LiCaAlF_6晶体生长,通过设计和改进实验条件,探索出适合该单晶生长条件,获得了透明单晶,就该晶体材料的光学性能进行了测试表征。
     本论文主要获得了以下结果:
     (1)成功探索出合成严格无水无氧单一相的LiCaAlF_6及Ce~(3+):LiCaAlF_6多晶料的工艺。该工艺以高纯氟化物为初始原料,严格按照化学式的计量比配料,并充分混合原料。在高纯HF气氛保护下,对原料在程序控温条件下进行氟化烧结处理,合成出晶体生长所必需的无水无氧LiCaAlF_6及Ce~(3+):LiCaAlF_6多晶料。
     (2)优质LiCaAlF_6及Ce~(3+):LiCaAlF_6晶体的非真空密封坩埚下降法生长工艺。采用无水无氧LiCaAlF_6及Ce~(3+):LiCaAlF_6多晶料,致密填充在特制坩埚中,而后加入少量聚四氟乙稀粉末,进行晶体坩埚下降法生长。生长参数为:炉体温度调节于910~930oC,固液界面温度梯度30oC/cm左右,坩埚下降速率控制于0.5~1.0 mm/h,晶体生长完成后以20~50℃/h的速率缓慢降低炉体温度。成功生长无宏观缺陷的LiCaAlF_6及Ce~(3+):LiCaAlF_6晶体样品。
     (3)LiCaAlF_6及Ce~(3+):LiCaAlF_6单晶的表征。应用XRD、紫外—可见透射光谱、红外光谱分别对生长加工后的LiCaAlF_6及Ce~(3+):LiCaAlF_6单晶光谱性质进行表征。测试表明,LiCaAlF_6单晶吸收截止线位于深紫外区,在紫外可见光区透过率达85%以上,同时红外光谱显示,该单晶无OH-吸收带,从而证实坩埚下降法生长LiCaAlF_6单晶性能良好。Ce~(3+):LiCaAlF_6单晶表征表明266nm左右,有宽带特征吸收峰Ce~(3+)宽带特征吸收峰,其红外光谱出OH-微弱吸收峰,在257,267nm波长光激发下,均可获得在290nm和310nm存在两个宽带发射峰。
     (4)LiCaAlF_6及Ce~(3+):LiCaAlF_6单晶的生长及加工工艺的改进。为降低晶体生长成品率及提高晶体生长效率,通过一炉多管或一管多坩埚进行垂直坩埚下降法生长,获得较好的晶体生长结果,为产业化批量LiCaAlF_6及Ce~(3+):LiCaAlF_6单晶生长提供实验基础。通过对晶体性能研究和晶体加工实践总结,得出适合该类单晶加工工艺。
LiCAF as a tunable laser host has been aroused much attention from scholars in the past decades. Up to the presest, UV spectrum properties and gowth method of Ce:LiCAF has been widely reported by literatures, which prove Ce:LiCAF has potential use in all-solid LD pumped UV laser. At the same time, luminescence and scintilla property of LiCAF doped transition or rare earth ion is investigating by more and rmore institutions. So far, doped LiCAFcrystals have attracted a lot of attentions as potential material for optical components in VUV, fast scintillators, thermoluminescent dosimeters and laser hosts. On the other hand, pure LiCAF crystal has many advantages as primary candidates UV window materials, because of its’unique properties, such as a large band gap, small birefringence, stabilization and high UV/VI transparency. However, many difficulties exist in crystal growth of pure and doped LiCAF, limiting the utility of these crystals. First, it lacks effective technologic method to obtain the rigorous anhydrous LiCAF and Ce:LiCAF polycrystalline material. Second, diffculty of safe gas handling is used to Controlling the growth atmosphere to avoid the melt oxygenation and volatilization in the process. Last, There is a notable di?erence in the linear thermal expansion coe?cient along the a-axis and along the c-axis of LiCAF and Ce:LiCAF crystals. It suggests that large diameter LiCAF and Ce:LiCAF crystals are dicult to grow from the melt because of thermal stress inside the grown crystals. The growth of LiCAF and Ce:LiCAF single crystals by modified Bridgman process in nonvacuum atmosphere is described in the present work. According to exploring the optimal growth conditions, High optical performances characterized by transmission spectrum and fluorescence spectrum.are achieved using crystals grown in this way. The primary outcomes are as follows:
     (1) The successful method synthesizing the rigorous anhydrous LiCAF and Ce:LiCAF polycrystalline material is described by the work. Using high purity fluoride as initial agents, the raw material is mixed according to stoichiometric ratio. Under the HF atmospheresafe as safe gas, the anhydrous material is obtained by sintering according to the unique fluoration technology.
     (2) Describing the method of growth of high performances LiCAF and Ce:LiCAF single crystals by the modified Bridgman growth under nonvacuum atmosphere. Filling the double shells platinum crucibles with the polycrystalline material, a little of polyterafluoroethylene power is added to the crucibles to exhaust the oxygen sealed in the crucibles. Growth parameters as follow: The furnace temperature is controlled at 910~930oC, the temperature gradient across solid-liquid interface is adjusted at about 30oC/cm with the lowering rate in the range of 0.5~1.0 mm/h and the furnace temperature lowering rate keeping at 20~50℃/ h. The transparent crystals are obtained from the crucibles.
     (3) As-grown LiCAF and Ce:LiCAF crystals are characterized by XRD, UV/VI transmission spectrum and fluorescence spectrum. The results suggest that LiCAF and Ce:LiCAF single crystals have high transparent optical properties during the UV/VI range, with Ce:LiCAF crystals have unique absorption band around the 260nm . No evident OH- absorption is observed in IRspectrum. Under the excitateding by 257 or 267nm radiation, the fluoscence spectrum of Ce:LiCAF crystals have two emission broad bands at 290nm and 310nm.
     (4) Descibeing the modified technology of as-grown crystals growth and processing. To improving the efficiency and reducing the cost of crystal growth, the method increasing the number of refractory tubes in the furnace or the crucibles in the refratory tube is adopted in the work. The outcomes suggest the probability of industrialization of high performances LiCAF and Ce:LiCAF single crystals. According to the analysis of characters of LiCAF and Ce:LiCAF crystals, a modified crystal processing which is same with LiCAF and Ce:LiCAF crystals is summarized.
引文
[1] Sato H, Bensalah A, Yoshikawa A, et al. Improvement in the quality of LiCaAlF6 single crystal as window material [J]. Optical Materials, 2003, 24(1-2): 123-127.
    [2] Kirm M, True M, Vielhauer S, et al. VUV spectroscopy of pure LiCaAlF6 crystals[J]. Nuclear Instruments and Methods in Physics Research A, 2005, 537(1-2): 291-294.
    [3] Gektin A, Shiran N, Neicheva S, et al. LiCaAlF6:Ce crystal: a new scintillator[J]. Nuclear Instruments and Methods in Physics Research A, 2002, 486(1-2): 274-277.
    [4] Shiran N V, Gektin A V, Neicheva S V, et al. Optical and scintillation properties of LiCaAlF6:Eu crystal[J]. Journal of Luminescence, 2003, 102-103: 815-818.
    [5] Stanciu M, Grattan K T V. LiCAF crystal-based optical fiber thermometry [J]. Journal of Crystal Growth, 2002, 99(3): 277-283.
    [6]张尚安,陶德节,王爱华, et al. Cr3+:LiCaAlF6晶体生长和激光特性[J].人工晶体学报, 1998, 27(01): 39-42.
    [7] Shimamura K, Sato H, Bensalah A, et al. Growth of Ce-doped Colquiriite- and Scheelite-type single crystals for UV laser applications[J]. Optical Materials, 2002, 19(1): 109-116.
    [8] M.a. Dubinskii V V S A. Spectroscopy of a New Active Medium of a solid state UV laser with Broadband Single-Pass Gain[J]. Laser Physics , 1993, 3(1): 215-217.
    [9] Einstein A. Strahlungs Emission Absorption nach der Quantenteorie [J]. Verhandl. Dstsch. Phys. Ges., 1916, (16): 318-323.
    [10] A. L. Schawlow C H T. Infrared and optical lasers [J]. Physics Review, 1958, 6(112): 1940-1949.
    [11] Maiman T H. Stimulated optical radiation in ruby [J]. Nature, 1960, 187: 493.
    [12]陆宝生.激光晶体研究和发展动向[J].压电与声光, 1993, 15(5): 38-41.
    [13]毕向军,李港,陈檬, et al.半导体泵浦全固态紫外激光器[J].激光杂志, 2007, (01): 10-11.
    [14]王国富. LD泵浦激光晶体材料的新发展[J].人工晶体学报, 1998, 27(4): 390-395.
    [15]《固体激光导论》编写组.激光晶体[M].上海:上海人民出版社, 1976.
    [16]卡明斯基A A.激光晶体[M].北京:科学出版社, 1981.
    [17]汤洪高.激光晶体研究进展[J].物理, 1983, 12(06): 342-347.
    [18] Lacovara P, Esterowitz L, Allen R. Flash-lamp-pumped Ti:Al2O3 laser using fluorescent conversion[J]. Optics Letters, 1985, 10(6): 273-275.
    [19]沈鸿元.激光晶体的研究动向[J].人工晶体学报, 1995, 24(1): 72-81.
    [20]张思远.稀土激光晶体及其发展[J].人工晶体学报, 1997, 26(3-4): 212.
    [21]刘文清,曹念文.固体激光器的发展趋势[J].光电子技术与信息, 1997, 10(4): 25-27.
    [22]徐军.激光晶体材料的发展和思考[J].激光与光电子学进展, 2006, 43(09): 17-24.
    [23]徐学珍,桂尤喜,王永国.优质大尺寸激光晶体研究进展[J].激光与红外, 2007, 37(04): 295-299.
    [24]张英侠.我国激光晶体的研究进展[J].中国激光, 1984, 11(8): 460-463.
    [25]陈秀娥.国外固体激光器的新进展及其激光晶体的新发展[J].激光与光电子学进展, 1994, (12): 1-7.
    [26]邬承就,汤洪高.可调谐激光晶体:成果和机会[J].人工晶体学报, 1991, (Z1): 202.
    [27]苗海.激光军事应用近况[J].激光与红外, 1972, (03): 25-33.
    [28]姬寒珊.固体激光器的发展及军事应用[J].现代军事, 2005, (11): 59-60.
    [29]张炯法,李杰,郭新柱.激光技术的工业应用与发展前景[J].煤矿机械, 2004, (8): 1-2.
    [30]万周政.激光加工技术在机械加工业中的应用[J].科技资讯, 2008, (06): 8-10.
    [31]邓树森.我国激光加工产业现状及市场展望[J].光机电信息, 2007, (02): 19-22.
    [32]朱延彬.医用激光器及激光医疗仪器的新进展[J].中国激光医学杂志, 1997, 11(02): 15-17.
    [33]高晓萍.激光医疗的现状和发展[J].光机电信息, 1994, (03): 15-17.
    [34]侯印春,钟鹤裕.激光晶体的应用和国内外发展动态[J].激光与红外, 1990, (6): 26-29.
    [35]张怀金,蒋民华.新型激光晶体材料研究进展[J].无机材料学报, 2008, 23(03): 417-424.
    [36]吕百达.固体激光器件[M].北京:北京邮电大学出版社, 2002.
    [37] Boyd G D, Collins R J, Proto S P S, et al. Excitation, relaxation and continuous maser action in the 2,613-micron transition of CaF2:U3+[J]. Physical Review Letters, 1962, (8): 269-272.
    [38] Lawson J K, Lee H W H, Hyne S A, et al. Excited-State Absorption Measurements of Sm2+in CaF2, SrF2, and SrCl2[J]. Advanced Solid-State Lasers, 1991, 10: 387-389.
    [39] Johnson L F, Dietz R E, Guggenheim H J. Optical Maser Oscillation from Ni2+ in MgF2 Involving Simultaneous Emission of Phonons[J]. Physical Review Letters, 1963, 11(7): 318.
    [40]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社, 2004.
    [41]藏竞存.新型晶体材料[M].北京:化学工业出版社, 2007.
    [42]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社, 1982.
    [43] Pamplin B R.晶体生长[M].中国建筑工业出版社, 1981.
    [44]范世骥,王文,李金龙, et al.新型压电晶体材料四硼酸锂坩埚下降法新生长技术[J].中国新技术新产品精选, 1997, (01).
    [45]陈伟,江爱栋,王国富.影响生长大尺寸和高质量β-BBO晶体的因素[J].人工晶体学报, 2004, 33(02): 227-230.
    [46]霍尔顿.晶体与晶体生长[M].徐氏基金会, 1979.
    [47]机械工业部仪器仪表工业局编.晶体生长技术[M].机械工业出版社, 1987.
    [48]洪广言,李金贵,尤洪鹏. LiMAlF6(M=Ca,Sr)基质中Ce3+、Eu3+、Tb3+的光谱研究[J].发光学报, 1998, 19(02): 117-122.
    [49] Nikl M, Bensalah A, Mihokova E, et al. Luminescence and decay kinetics of Yb2+ in LiCaAlF6 single crystal host [J]. Optical Materials, 2003, 24(1-2): 191-195.
    [50] Bensalah A, Nikl M, Mihokova E, et al. Excited-state dynamics of Yb2+ in LiCaAlF6 single crystal[J]. Radiation Measurements, 2004, 38(4-6): 545-548.
    [51] Amaral J B, Valerio M E G, Couto Dos Santos M A, et al. Defect simulation and crystal field studies of Ln3+:LiCaAlF6 and LiSrAlF6[J]. Nuclear Instruments and Methods in Physics Research B, 2004, 218: 232-235.
    [52] Kuze S, Du Boulay D, Ishizawa N, et al. Structures of LiCaAlF6 and LiSrAlF6 at 120 and 300K by synchrotron X-ray single-crystal diffraction[J]. Journal of Solid State Chemistry, 2004, 177(10): 3505-3513.
    [53] Ono Y, Nakano K, Shimamura K, et al. Structural study of colquiriite-type fluorides[J]. Journal of Crystal Growth, 2001, 229(1-4): 505-509.
    [54]思源.适合ArF准分子激光光刻的紫外光学材料[J].激光与光电子学进展, 2000, (03): 49.
    [55]邱元武.紫外光学:老光学材料寻求新用途[J].激光与光电子学进展, 2000, (07): 45-47.
    [56]李蓉芳.用于大尺寸光学元件的透射和反射膜层[J].光机电信息, 1999, (07): 23-26.
    [57]齐亚范.紫外光学材料的研究与发展[J].材料导报, 1995, (01): 39-44.
    [58]张海斌,李培俊,任国浩, et al. Bridgman法晶体生长的热物性各向同性坩埚的选择[J].人工晶体学报, 2004, 33(04): 571-574.
    [59] Fratello V J, Brandle C D. Thermophysical properties of a LiCaAlF6 melt [J]. Journal of Crystal Growth, 1991, 109(1-4): 329-333.
    [60]陈红兵,范世骥.赝二元系LiF-CaAlF5相图[J].无机材料学报, 2000, 15(03): 397-402.
    [61]陈红兵,范世骥,费一汀.赝二元系CaF2-LiAlF4相图[J].硅酸盐学报, 2000, 28(02): 156-159.
    [62]邬承就.可调谐激光晶体的成分、结构与激光性质[J].激光与红外, 1993, 23(4): 16-22.
    [63]侯印春,周哲仪.光功能晶体[M].中国计量出版社, 1991.
    [64]蒋民华.我国人工晶体发展与展望[J].硅酸盐学报, 1993, 21(6): 548-553.
    [65] Kozeki T, Suzuki Y, Sakai M, et al. Observation of new excitation channel of cerium ion through highly vacuum ultraviolet transparent LiCAF host crystal [J]. Journal of Crystal Growth, 2001, 229(1-4): 501-504.
    [66] Mitsuo Y, Nobuhiro K. Fluorescence of Ce3+ in fluorides and long-lasting phosphorescence of Ce3+ in oxides[J]. Journal of Alloys and Compounds, 2006, (408–412): 706-710.
    [67] Kalisky Y. New trends in lasers and laser crystals[J]. Optical Materials , 1999, 13(1): 135-139.
    [68] Burkhalter R, Dohnke I, Hulliger J. Growing of bulk crystals and structuring waveguides of fluoride materials for laser applications[J]. Progress in Crystal Growth and Characterization of Materials, 2001, 42(1-2): 1-64.
    [69]武安华,徐军,陈红兵, et al.氟化物激光晶体及其在固体激光器中的应用[J].激光与红外, 2009, 39(1): 8-13.
    [70] Castillo V K, Quarles G J, Chang R S F. Material and laser characterizations of intermediate compositions of Ce:LiSrxCa1-xAlF6[J]. 2001, 225(2-4): 445-448.
    [71] Liu Z, Shimamura K, Fukuda T, et al. High-energy pulse generation from solid-state ultraviolet lasers using large Ce:fluoride crystals[J]. Optical Materials, 2002, 19(1):123-128.
    [72] Klimm D, Lacayo G, Reiche P. Growth of Cr:LiCaAlF6 and Cr:LiSrAlF6 by the Czochralski method[J]. Journal of Crystal Growth, 2000, 210(4): 683-693.
    [73] Payne S A, Chase L L, Wilke G D. Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+ and LiCaAlF6:Cr3+[J]. Journal of Luminescence, 1989, 44(3): 167-176.
    [74] Bensalah A, Shimamura K, Nakano K, et al. Growth and characterization of LiSrGaF6 single crystal[J]. Journal of Crystal Growth, 2001, 231(1-2): 143-147.
    [75]陶德节,杭寅,魏世道, et al.大尺寸Cr3+:LiSrAlF6晶体生长[J].硅酸盐学报, 2000, 28(4): 392-394.
    [76]陶德节,杭寅,王爱华, et al. Cr3+:LiSr0.8Ca0.2AlF6晶体生长及其激光特性[J].人工晶体学报, 2000, 29(4): 346-349.
    [77]方珍意,黄朝恩,徐川, et al. Bridgman法生长Cr:LiCAF晶体及其闪光灯泵浦性能[J].人工晶体学报, 1998, 27(02): 114-117.
    [78]张尚安,魏世道,韩奇阳, et al. Cr3+:LiCaAlF6晶体提拉法生长的研究[J].硅酸盐学报, 1998, 27(02).
    [79] Castillo V K, Quarles G J, Chang R S F. Material and laser characterizations of intermediate compositions of Ce:LiSrxCa1-xAlF6[J]. Journal of Crystal Growth, 2001, 225(2-4): 445-448.
    [80] Shimamura K, Mujilatu N, Nakano K, et al. Growth and characterization of Ce-doped LiCaAlF6 single crystals [J]. Journal of Crystal Growth, 1999, 197(4): 896-900.
    [81]刘振林,猿仓信彦,濑川勇三郎. Ce:LiCAF对激光器紫外短脉冲序列的产生[J].激光与红外, 1996, 26(01): 13-15.
    [82] Kozeki T, Suzuki Y, Sakai M, et al. Electron-beam excitation of a Ce3+:LiCaAlF6 crystal for future high-peak-power UV lasers [J]. Applied Physics B, 2002, 74(0): s185-s187.
    [83] Spence D J, Liu H, Coutts D W. Low-threshold miniature Ce:LiCAF lasers[J]. Optics Communications, 2006, 262(2): 238-240.
    [84] Ehrlich D J, Moulton P F, Jr R. M. Osgood. Optically pumped Ce:LaF3 laser at 286 nm[J]. Optics Letters, 1980, 5(8): 339-341.
    [85]朱国贤,叶泽人,庄国雄, et al. LaF3:Ce3+荧光特性的研究[J].化工生产与技术, 2003, 10(4): 1-3.
    [86]那木吉拉图,苏小平,杨海, et al. Ce3+:LiYF4和Ce3+:LiLuF4晶体生长与其紫外光谱特征[J].硅酸盐学报, 2009, 37(5): 823-826.
    [87]赵广军,曾雄辉,徐军, et al.温梯法生长76mm Ce:YAG闪烁晶体的研究[J].人工晶体学报, 2003, 32(4): 320-323.
    [88]杨新波,云石,李红军, et al. Ce:YAG晶体和透明陶瓷的光学和闪烁性能[J].物理学报, 2009, 58(11): 8050-8054.
    [89] Bos A J J, Dorenbos P, Bessière A, et al. Lanthanide energy levels in YPO4[J]. Radiation Measurements, 2008, 43(2-6): 222-226.
    [90] Meltzer R S, Feofilov S P. Spectral hole burning in the 4f-5d transition of Ce3+ in LuPO4 and YPO4[J]. Journal of Luminescence, 2003, 102-103: 151-155.
    [91] Marshall C D, Speth J A, Payne S A, et al. Ultraviolet laser emission properties of Ce3+ doped LiSrAlF6 and LiCaAlF6[J]. Journal of the Optical Society of America B, 1994, 11(10): 2054-2065.
    [92]张尚安,陶德节,魏世道, et al.新型紫外可调谐激光晶体Ce:LiCAF和Ce:LiSAF[J].人工晶体学报, 1997, 26(3-4): 224.
    [93] Gektin A V, Shiran N V, Neicheva S V, et al. Energy transfer in LiCaAlF6:Ce3+[J]. Journal of Luminescence, 2003, 102-103: 460-463.
    [94] Shimamura K, Baldochi S L, Mujilatu N, et al. Growth of Ce-doped LiCaAlF6 and LiSrAlF6 single crystals by the Czochralski technique under CF4 atmosphere[J]. Journal of Crystal Growth, 2000, 211(1-4): 302-307.
    [95] Shimamura K, Baldochi S L, Ranieri I M, et al. Crystal growth of Ce-doped and undoped LiCaAlF6 by the Czochralski technique under CF4 atmosphere [J]. Journal of Crystal Growth, 2001, 223(3): 383-388.
    [96] Shimamura K, Sato H, Bensalah A, et al. Growth of LiCaAlF6 single crystals with an extended diameter and their optical characterizations [J]. Journal of Alloys and Compounds, 2002, 343(1-2): 204-210.
    [97]李艳红,纪慎功.氟化物晶体加工工艺的研究[J].人工晶体学报, 2000, 29(5): 223.
    [98]段安锋,范翊,刘景和, et al. CaF2晶体及加工技术研究[J].长春理工大学学报, 2007, 30(2): 97-99.
    [99]张玉兰.光学晶体加工中的定向方法[J].长春光学精密机械学院学报, 1991, 14(2): 29-33.
    [100]赵建林,李育林.软质脆性且低熔点的有机晶体加工[J].航空工艺技术, 1999, (1): 49-50.
    [101]徐宏祥,陈刚,周仁明, et al.异型氟化铅( PbF2)晶体加工工艺研究[J].人工晶体学报, 1997, 26(3-4): 395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700