鼻咽癌细胞酸激活性氯电流的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:酸激活性氯电流存在于多种正常的细胞中,并参与细胞生理功能的调控。肿瘤细胞外pH值低于正常细胞,但其胞外酸化对其自身氯通道有何影响?肿瘤细胞酸激活性氯电流有何特性?介导此电流的通道蛋白分子本质是什么?目前仍未明了。本研究主要观察细胞外酸化对低分化鼻咽癌CNE-2Z细胞氯电流的影响,分析酸激活性氯电流的多种特性、探讨介导肿瘤细胞酸激活性氯电流的通道蛋白分子本质。
     方法:用全细胞膜片钳技术记录鼻咽癌CNE-2Z细胞的氯电流;改变细胞外灌流液的pH值,观察其对CNE-2Z细胞氯通道活动的影响;利用离子置换技术和改变细胞外灌流液的渗透压来分析酸激活性氯电流的生理学特性;应用多种氯通道阻断剂来分析该电流的药理学特性;用RT-PCR技术和Western blot技术检测氯通道(ClC家族的不同亚型)在CNE-2Z细胞的表达;用siRNA技术干扰不同亚型的氯通道的表达,分析和探讨介导CNE-2Z细胞酸激活性氯电流的通道蛋白分子本质。
     结果:
     1、在正常的pH值(胞外7.4)和渗透压条件下,可在CNE-2Z细胞记录到一个微弱而稳定的背景氯电流,当将灌流液的pH值由7.4降到6.6时,可迅速激活氯通道,产生一个具有较弱外向整流特性的氯电流,该电流可被高渗灌流液诱导的细胞缩小和NPPB(5-nitro-2-3-phenylpropylamino benzoic acid)、 tamoxifen、 DIDS (4,4'-diisothiocyanatostilbe-ne-2,2'-disulfonic acid disodium salt hydrate)等多种氯通道阻断剂抑制,其对多种阴离子的选择性为I-> Br-> Cl-> gluconate-;
     2、将灌流液的pH值由7.4直接降到5.8,不能诱导出酸激活性氯电流;将灌流液的pH值由6.6进一步降低至5.8可抑制酸(pH6.6)激活的氯电流;
     3、ClC氯通道家族中,在CNE-2Z细胞上表达的亚型有ClC-3、ClC-5和ClC-7,但ClC-5的表达量很少;
     4、采用siRNA技术干扰ClC-3的表达后,pH6.6诱导的酸激活性氯电流被明显抑制,但干扰ClC-7的表达,则不影响该电流的激活。
     结论:CNE-2Z细胞存在酸激活性氯通道的表达,该通道介导的氯电流有容积敏感性,并与容积敏感性氯电流有许多相似的特征。ClC-3氯通道介导或调节CNE-2Z细胞酸激活性氯电流。
Objective: Acid-activated chloride currents have been reported in several normal cells and mayplay important roles in regulation of cell function. The extracellular pH of tumor cells is lowerthan normal cells, but the effects of extracellular acidification on chloride channels, thecharacteristics of the acid-sensitive current and the molecular identity of the channel that mediatethe current are still unclear in tumor cells. In this study, the activation and properties of theacid-induced chloride current and the possible candidates of the acid-activated chloride channelwere investigated in human nasopharyngeal carcinoma cells (CNE-2Z).
     Methods: Whole-cell patch clamp technique was used to record the chloride current innasopharyngeal carcinoma cells (CNE-2Z). The effects of extracellular acidification wereobserved by changing the pH in bath solutions. Hypertonic bath solutions, anionic substitutionand Cl-channel blockers were used to observe the physiological and pharmacologicalcharacteristics of the acid induced chloride current. RT-PCR and Western blot techniques wereused to analyze the expression of the ClC chloride channel families in nasopharyngeal carcinomacells. Specific siRNAs were employed to knock down the expression of various chloridechannels, and were used to identify the candidate protein of the acid-induced chloride channeltogether with the patch clamp technique.
     Results:
     1. A chloride current was activated when extracellular pH was reduced to6.6from7.4.The current was weakly outward–rectified and was suppressed by hypertonicity-induced cellshrinkages and by the chloride channel blockers5-nitro-2-3-phenylpropylamino benzoic acid(NPPB), tamoxifen and4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate(DIDS). The permeability sequence of the channel to anions was I-> Br-> Cl-> gluconate.
     2. The isotonic bath solution with pH5.8could not activate a chloride current. A furtherdecrease of extracellular pH to5.8from6.6inhibited the acid (pH6.6)-induced chloride current.
     3. Among the ClC families, ClC-3ClC-5and ClC-7mRNA were expressed in CNE-2Zcells, but ClC-5presented a weak expression.
     4. Knock-down of ClC-3expression with ClC-3siRNA prevented the activation of theacid-induced current. While knock-down of ClC-7expresion with ClC-7siRNA showed noobvious effect on this current.
     Conclusion: The acid-induced chloride current is expressed in CNE-2Z cells. The chloridechannel mediating the current is volume-sensitive and shares various properties with thevolume-sensitive chloride channel. ClC-3is a candidate of the channel protein that mediates orregulates the acid-activated chloride current in nasopharyngeal carcinoma cells.
引文
[1] Tian L and Bae Y H. Cancer nanomedicines targeting tumor extracellular pH[J]. ColloidsSurf B Biointerfaces,2011.
    [2] Folkman J. Fundamental concepts of the angiogenic process[J]. Curr Mol Med,2003,3(7):643-651.
    [3] Hsu P P and Sabatini D M. Cancer cell metabolism: Warburg and beyond[J]. Cell,2008,134(5):703-707.
    [4] Ferreira L M. Cancer metabolism: the Warburg effect today[J]. Exp Mol Pathol,2010,89(3):372-380.
    [5] Schmaltz C, Hardenbergh P H, Wells A and Fisher D E. Regulation of proliferation-survivaldecisions during tumor cell hypoxia[J]. Mol Cell Biol,1998,18(5):2845-2854.
    [6] Gatenby R A, Gawlinski E T, Gmitro A F, Kaylor B and Gillies R J. Acid-mediated tumorinvasion: a multidisciplinary study[J]. Cancer Res,2006,66(10):5216-5223.
    [7] Gatenby RA G R. Why do cancers have high aerobic glycolysis[J]. Nat Rev Cancer,20044(11):891-899.
    [8] Brahimi-Horn M C and Pouyssegur J. Hypoxia in cancer cell metabolism and pHregulation[J]. Essays Biochem,2007,43(165-178.
    [9] Bongaerts G P, van Halteren H K, Verhagen C A and Wagener D J. Cancer cachexiademonstrates the energetic impact of gluconeogenesis in human metabolism[J]. MedHypotheses,2006,67(5):1213-1222.
    [10] Erecinska M, Deas J and Silver I A. The effect of pH on glycolysis andphosphofructokinase activity in cultured cells and synaptosomes[J]. J Neurochem,1995,65(6):2765-2772.
    [11] Semenza G L. Regulation of cancer cell metabolism by hypoxia-inducible factor1[J].Semin Cancer Biol,2009,19(1):12-16.
    [12] Ivanovic Z. Hypoxia or in situ normoxia: The stem cell paradigm[J]. J Cell Physiol,2009,219(2):271-275.
    [13] Semenza G L. Targeting HIF-1for cancer therapy[J]. Nat Rev Cancer,2003,3(10):721-732.
    [14] Fantin VR S-P J, Leder P. Attenuation of LDH-A expression uncovers a link betweenglycolysis, mitochondrial physiology, and tumor maintenance[J]. Cancer Cell,2006,9(6):425-434
    [15] Ullah M S, Davies A J and Halestrap A P. The plasma membrane lactate transporter MCT4,but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism[J].J Biol Chem,2006,281(14):9030-9037.
    [16] Brahimi-Horn M C, Bellot G and Pouyssegur J. Hypoxia and energetic tumourmetabolism[J]. Curr Opin Genet Dev,2011,21(1):67-72.
    [17] Svastova E, Hulikova A, Rafajova M, Zat'ovicova M, Gibadulinova A, Casini A, Cecchi A,Scozzafava A, Supuran C T, Pastorek J and Pastorekova S. Hypoxia activates the capacityof tumor-associated carbonic anhydrase IX to acidify extracellular pH[J]. FEBS Lett,2004,577(3):439-445.
    [18] Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure N M, Brahimi-Horn M C andPouyssegur J. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cellgrowth by counteracting acidosis through the regulation of the intracellular pH[J]. CancerRes,2009,69(1):358-368.
    [19] Bobulescu I A, Di Sole F and Moe O W. Na+/H+exchangers: physiology and link tohypertension and organ ischemia[J]. Curr Opin Nephrol Hypertens,2005,14(5):485-494.
    [20] Shimoda L A, Fallon M, Pisarcik S, Wang J and Semenza G L. HIF-1regulates hypoxicinduction of NHE1expression and alkalinization of intracellular pH in pulmonary arterialmyocytes[J]. Am J Physiol Lung Cell Mol Physiol,2006,291(5): L941-949.
    [21] Vishvakarma N K and Singh S M. Mechanisms of tumor growth retardation by modulationof pH regulation in the tumor-microenvironment of a murine T cell lymphoma[J]. BiomedPharmacother,2010,65(1):27-39.
    [22] Sennoune S R and Martinez-Zaguilan R. Plasmalemmal vacuolar H+-ATPases inangiogenesis, diabetes and cancer[J]. J Bioenerg Biomembr,2007,39(5-6):427-433.
    [23] Chen M, Zou X, Luo H, Cao J, Zhang X, Zhang B and Liu W. Effects and mechanisms ofproton pump inhibitors as a novel chemosensitizer on human gastric adenocarcinoma(SGC7901) cells[J]. Cell Biol Int,2009,33(9):1008-1019.
    [24] Robey I F, Baggett B K, Kirkpatrick N D, Roe D J, Dosescu J, Sloane B F, Hashim A I,Morse D L, Raghunand N, Gatenby R A and Gillies R J. Bicarbonate increases tumor pHand inhibits spontaneous metastases[J]. Cancer Res,2009,69(6):2260-2268.
    [25] Stern R, Shuster S, Neudecker B A and Formby B. Lactate stimulates fibroblast expressionof hyaluronan and CD44: the Warburg effect revisited[J]. Exp Cell Res,2002,276(1):24-31.
    [26] Rofstad E K, Mathiesen B, Kindem K and Galappathi K. Acidic extracellular pH promotesexperimental metastasis of human melanoma cells in athymic nude mice[J]. Cancer Res,2006,66(13):6699-6707.
    [27] Glunde K, Guggino S E, Solaiyappan M, Pathak A P, Ichikawa Y and Bhujwalla Z M.Extracellular acidification alters lysosomal trafficking in human breast cancer cells[J].Neoplasia,2003,5(6):533-545.
    [28] Tredan O, Galmarini C M, Patel K and Tannock I F. Drug resistance and the solid tumormicroenvironment[J]. J Natl Cancer Inst,2007,99(19):1441-1454.
    [29] Greijer A E, de Jong M C, Scheffer G L, Shvarts A, van Diest P J and van der Wall E.Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drugtransporters in human breast cancer cells[J]. Cell Oncol,2005,27(1):43-49.
    [30] Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor C W, Paine-Murrieta G,Roe D, Bhujwalla Z M and Gillies R J. Enhancement of chemotherapy by manipulation oftumour pH[J]. Br J Cancer,1999,80(7):1005-1011.
    [31] Sauvant C, Nowak M, Wirth C, Schneider B, Riemann A, Gekle M and Thews O. Acidosisinduces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo byincreasing the activity of the p-glycoprotein via activation of p38[J]. Int J Cancer,2008,123(11):2532-2542.
    [32] McSheehy P M, Troy H, Kelland L R, Judson I R, Leach M O and Griffiths J R. Increasedtumour extracellular pH induced by Bafilomycin A1inhibits tumour growth and mitosis invivo and alters5-fluorouracil pharmacokinetics[J]. Eur J Cancer,2003,39(4):532-540.
    [33] Li G R and Deng X L. Functional ion channels in stem cells[J]. World J Stem Cells,2011,3(3):19-24.
    [34] Yasuda T and Adams D J. Physiological roles of ion channels in adult neural stem cells andtheir progeny[J]. J Neurochem,2010,114(4):946-959.
    [35] Bezanilla F. Ion channels: from conductance to structure[J]. Neuron,2008,60(3):456-468.
    [36] Wray D. Structure and function of ion channels[J]. Eur Biophys J,2009,38(3):271-272.
    [37] Anderson P A and Greenberg R M. Phylogeny of ion channels: clues to structure andfunction[J]. Comp Biochem Physiol B Biochem Mol Biol,2001,129(1):17-28.
    [38] Lawrence J H, Tomaselli G F and Marban E. Ion channels: structure and function[J]. HeartDis Stroke,1993,2(1):75-80.
    [39] Lehen'kyi V, Raphael M and Prevarskaya N. The role of the TRPV6channel in cancer[J]. JPhysiol,2012,590(Pt6):1369-1376.
    [40] Gurgel-Giannetti J, Senkevics A S, Zilbersztajn-Gotlieb D, Yamamoto L U, Muniz V P,Pavanello R C, Oliveira A B, Zatz M and Vainzof M. Thomsen or Becker myotonia? Anovel autosomal recessive nonsense mutation in the CLCN1gene associated with a mildphenotype[J]. Muscle Nerve,2012,45(2):279-283.
    [41] Ohgi K, Okamoto F, Kajiya H, Sakagami R and Okabe K. Antibodies against ClC7inhibitextracellular acidification-induced Cl currents and bone resorption activity in mouseosteoclasts[J]. Naunyn Schmiedebergs Arch Pharmacol,2011,383(1):79-90.
    [42] Zhao Q, Wei Q, He A, Jia R and Xiao Y. CLC-7: a potential therapeutic target for thetreatment of osteoporosis and neurodegeneration[J]. Biochem Biophys Res Commun,2009,384(3):277-279.
    [43] Strauss U, Herbrik M, Mix E, Schubert R and Rolfs A. Whole-cell patch-clamp: trueperforated or spontaneous conventional recordings?[J]. Pflugers Arch,2001,442(4):634-638.
    [44] Doyle D A, Morais Cabral J, Pfuetzner R A, Kuo A, Gulbis J M, Cohen S L, Chait B T andMacKinnon R. The structure of the potassium channel: molecular basis of K+conductionand selectivity[J]. Science,1998,280(5360):69-77.
    [45] Jiang Y, Lee A, Chen J, Cadene M, Chait B T and MacKinnon R. Crystal structure andmechanism of a calcium-gated potassium channel[J]. Nature,2002,417(6888):515-522.
    [46] Moore P. Cell biology: ion channels and stem cells[J]. Nature,2005,438(7068):699-704.
    [47] Valiyaveetil F I, Leonetti M, Muir T W and Mackinnon R. Ion selectivity in a semisyntheticK+channel locked in the conductive conformation[J]. Science,2006,314(5801):1004-1007.
    [48] Jentsch T J, Stein V, Weinreich F and Zdebik A A. Molecular structure and physiologicalfunction of chloride channels[J]. Physiol Rev,2002,82(2):503-568.
    [49] Mao J W, Wang L W, Sun X R, Zhu L Y, Li P, Zhong P, Nie S H, Jacob T and Chen L X.Volume-activated Cl-current in migrated nasopharyngeal carcinoma cells[J]. Sheng Li XueBao,2004,56(4):525-530.
    [50] Feng L, Campbell E B, Hsiung Y and MacKinnon R. Structure of a eukaryotic CLCtransporter defines an intermediate state in the transport cycle[J]. Science,2010,330(6004):635-641.
    [51]范爱辉,陈丽新,毛建文,聂思槐,王立伟.阻断氯通道对鼻咽癌细胞凋亡和细胞增殖的影响[J]. Guangdong Medical Journal,2006,26(12):1804-1806.
    [52] Mao J, Wang L, Fan A, Wang J, Xu B, Jacob T J and Chen L. Blockage ofvolume-activated chloride channels inhibits migration of nasopharyngeal carcinomacells[J]. Cell Physiol Biochem,2007,19(5-6):249-258.
    [53] Chen L, Wang L, Zhu L, Nie S, Zhang J, Zhong P, Cai B, Luo H and Jacob T J. Cellcycle-dependent expression of volume-activated chloride currents in nasopharyngealcarcinoma cells[J]. Am J Physiol Cell Physiol,2002,283(4): C1313-1323.
    [54] d'Anglemont de Tassigny A, Souktani R, Ghaleh B, Henry P and Berdeaux A. Structure andpharmacology of swelling-sensitive chloride channels, I(Cl,swell)[J]. Fundam ClinPharmacol,2003,17(5):539-553.
    [55]陈丽新,王立伟,朱林燕,聂思槐,张谨,钟平,罗海兵,蔡波,李攀,Tim Jacob. Cl-在鼻咽癌细胞调节性容积回缩中的作用[J].中国病理生理杂志,2002,18(5):490-493.
    [56] Qusous A, Geewan C S, Greenwell P and Kerrigan M J. siRNA-mediated inhibition ofNa(+)-K(+)-2Cl-cotransporter (NKCC1) and regulatory volume increase in thechondrocyte cell line C-20/A4[J]. J Membr Biol,2011,243(1-3):25-34.
    [57] Hughes A L, Pakhomova A and Brown P D. Regulatory volume increase in epithelial cellsisolated from the mouse fourth ventricle choroid plexus involves Na(+)-H(+) exchange butnot Na(+)-K(+)-2Cl(-) cotransport[J]. Brain Res,2010,1323(1-10.
    [58] Winpenny J P, Mathews C J, Verdon B, Wardle C J, Chambers J A, Harris A, Argent B Eand Gray M A. Volume-sensitive chloride currents in primary cultures of human fetal vasdeferens epithelial cells[J]. Pflugers Arch,1996,432(4):644-654.
    [59] Petrunkina A M, Jebe E and Topfer-Petersen E. Regulatory and necrotic volume increase inboar spermatozoa[J]. J Cell Physiol,2005,204(2):508-521.
    [60] Yang L, Ye D, Ye W, Jiao C, Zhu L, Mao J, Jacob T J, Wang L and Chen L. ClC-3is a maincomponent of background chloride channels activated under isotonic conditions byautocrine ATP in nasopharyngeal carcinoma cells[J]. J Cell Physiol,2011,226(10):2516-2526.
    [61] Cao G, Zuo W, Fan A, Zhang H, Yang L, Zhu L, Ye W, Wang L and Chen L.Volume-sensitive chloride channels are involved in maintenance of basal cell volume inhuman acute lymphoblastic leukemia cells[J]. J Membr Biol,2011,240(2):111-119.
    [62] Duan D, Winter C, Cowley S, Hume J R and Horowitz B. Molecular identification of avolume-regulated chloride channel[J]. Nature,1997,390(6658):417-421.
    [63] Hume J R, Wang G X, Yamazaki J, Ng L C and Duan D. CLC-3chloride channels in thepulmonary vasculature[J]. Adv Exp Med Biol,2010,661(237-247.
    [64] Zhu L, Yang H, Zuo W, Yang L, Zhang H, Ye W, Mao J, Chen L and Wang L. Differentialexpression and roles of volume-activated chloride channels in control of growth of normaland cancerous nasopharyngeal epithelial cells[J]. Biochem Pharmacol,2012,83(3):324-334.
    [65] Klausen T K, Bergdahl A, Hougaard C, Christophersen P, Pedersen S F and Hoffmann E K.Cell cycle-dependent activity of the volume-and Ca2+-activated anion currents in Ehrlichlettre ascites cells[J]. J Cell Physiol,2007,210(3):831-842.
    [66] Chen L X, Zhu L Y, Jacob T J and Wang L W. Roles of volume-activated Cl-currents andregulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinomacells[J]. Cell Prolif,2007,40(2):253-267.
    [67]张海峰.细胞周期蛋白D1对氯通道ClC-3的影响[D].广州:暨南大学,2010.
    [68]徐明锋,周慧,罗海兵,蔡波. Cyclin D1和CIC-3在鼻咽癌细胞周期调控中的相互关系[J].中国现代医药杂志,2008,10(6):10-13.
    [69] Mao J, Li X, Chen W, Xu B, Zhang H, Li H, Wang L, Jin X, Zhu J, Lin G, Wang W andChen L. Cell cycle-dependent subcellular distribution of ClC-3in HeLa cells[J]. HistochemCell Biol,2012.
    [70]范爱辉,王立伟,毛建文,阳小雅,聂思槐,陈丽新.氯通道在顺铂诱导的鼻咽癌细胞凋亡性容积减小中的作用[J].山东医药,2007,47(19):40-42.
    [71]左婉红,朱林燕,张海峰,王立伟,陈丽新.氯电流的激活参与过氧化氢诱导的PC12细胞凋亡[J].中国药理学通报,2009, suppl(139-140.
    [72]潘廷才,杨林杰,刘善文,李华荣,朱林燕,叶文才,王立伟,陈丽新.氯通道在鼻咽癌细胞凋亡性细胞容积减小和细胞凋亡中的作用[J].天津医药,2011,29(6):487-489.
    [73] Ise T, Shimizu T, Lee E L, Inoue H, Kohno K and Okada Y. Roles of volume-sensitive Cl-channel in cisplatin-induced apoptosis in human epidermoid cancer cells[J]. J Membr Biol,2005,205(3):139-145.
    [74] Zhang H N, Zhou J G, Qiu Q Y, Ren J L and Guan Y Y. ClC-3chloride channel preventsapoptosis induced by thapsigargin in PC12cells[J]. Apoptosis,2006,11(3):327-336.
    [75] Shen M R, Yang T P and Tang M J. A novel function of BCL-2overexpression inregulatory volume decrease. Enhancing swelling-activated Ca(2+) entry and Cl(-) channelactivity[J]. J Biol Chem,2002,277(18):15592-15599.
    [76] Lemonnier L, Shuba Y, Crepin A, Roudbaraki M, Slomianny C, Mauroy B, Nilius B,Prevarskaya N and Skryma R. Bcl-2-dependent modulation of swelling-activated Cl-current and ClC-3expression in human prostate cancer epithelial cells[J]. Cancer Res,2004,64(14):4841-4848.
    [77] Suh K S, Mutoh M, Gerdes M, Crutchley J M, Mutoh T, Edwards L E, Dumont R A, SodhaP, Cheng C, Glick A and Yuspa S H. Antisense suppression of the chloride intracellularchannel family induces apoptosis, enhances tumor necrosis factor {alpha}-inducedapoptosis, and inhibits tumor growth[J]. Cancer Res,2005,65(2):562-571.
    [78]徐晓,陈丽新.容积激活性氯通道在神经胶质瘤细胞迁移中的作用[J].现代肿瘤医学,2006,14(10):1315-1317.
    [79] Mao J W, Wang L W, Jacob T, Sun X R, Li H, Zhu L Y, Li P, Zhong P, Nie S H and Chen LX. Involvement of regulatory volume decrease in the migration of nasopharyngealcarcinoma cells[J]. Cell Res,2005,15(5):371-378.
    [80]李辉,王立伟,毛建文,何庆丰,孙雪荣,聂思槐,钟平,李攀,陈丽新.氯通道在不同生长周期的鼻咽癌细胞迁移中的作用[J].中国病理生理杂志,2005,21(9):1783-1786.
    [81] Mao J, Chen L, Xu B, Wang L, Wang W, Li M, Zheng M, Li H, Guo J, Li W, Jacob T J andWang L. Volume-activated chloride channels contribute to cell-cycle-dependent regulationof HeLa cell migration[J]. Biochem Pharmacol,2009,77(2):159-168.
    [82] Mao J, Chen L, Xu B, Wang L, Li H, Guo J, Li W, Nie S, Jacob T J and Wang L.Suppression of ClC-3channel expression reduces migration of nasopharyngeal carcinomacells[J]. Biochem Pharmacol,2008,75(9):1706-1716.
    [83] Lui V C, Lung S S, Pu J K, Hung K N and Leung G K. Invasion of human glioma cells isregulated by multiple chloride channels including ClC-3[J]. Anticancer Res,2010,30(11):4515-4524.
    [84] Ishiguro T, Avila H, Lin S Y, Nakamura T, Yamamoto M and Boyd D D. Gene trappingidentifies chloride channel4as a novel inducer of colon cancer cell migration, invasion andmetastases[J]. Br J Cancer,2010,102(4):774-782.
    [85] Wang J W, Peng S Y, Li J T, Wang Y, Zhang Z P, Cheng Y, Cheng D Q, Weng W H, Wu X S,Fei X Z, Quan Z W, Li J Y, Li S G and Liu Y B. Identification of metastasis-associatedproteins involved in gallbladder carcinoma metastasis by proteomic analysis and functionalexploration of chloride intracellular channel1[J]. Cancer Lett,2009,281(1):71-81.
    [86] Poulsen K A, Andersen E C, Hansen C F, Klausen T K, Hougaard C, Lambert I H andHoffmann E K. Deregulation of apoptotic volume decrease and ionic movements inmultidrug-resistant tumor cells: role of chloride channels[J]. Am J Physiol Cell Physiol,2009,298(1): C14-25.
    [87] Min X J, Li H, Hou S C, He W, Liu J, Hu B and Wang J. Dysfunction of volume-sensitivechloride channels contributes to cisplatin resistance in human lung adenocarcinoma cells[J].Exp Biol Med (Maywood),2011,236(4):483-491.
    [88] Lee E L, Shimizu T, Ise T, Numata T, Kohno K and Okada Y. Impaired activity ofvolume-sensitive Cl-channel is involved in cisplatin resistance of cancer cells[J]. J CellPhysiol,2007,211(2):513-521.
    [89] Xu Y, Zheng H, Kang J S, Zhang L, Su J, Li H Y and Sun L K.5-Nitro-2-(3-phenylpropyl-amino) benzoic acid induced drug resistance to cisplatin in human erythroleukemia celllines[J]. Anat Rec (Hoboken),2011,294(6):945-952.
    [90] Weylandt K H, Nebrig M, Jansen-Rosseck N, Amey J S, Carmena D, Wiedenmann B,Higgins C F and Sardini A. ClC-3expression enhances etoposide resistance by increasingacidification of the late endocytic compartment[J]. Mol Cancer Ther,2007,6(3):979-986.
    [91] Rietmann F E. ClC-channels and Etoposide Resistance in the Neuroendocrine Tumour CellLine LCC-18[D][J]. Berlin: Charité-Universit tsmedizin Berlin,2010.
    [92] Kang M K and Kang S K. Pharmacologic blockade of chloride channel synergisticallyenhances apoptosis of chemotherapeutic drug-resistant cancer stem cells[J]. BiochemBiophys Res Commun,2008,373(4):539-544.
    [93] Carmo V A, Ferrari C S, Reis E C, Ramaldes G A, Pereira M A, De Oliveira M C andCardoso V N. Biodistribution study and identification of inflammation sites using99mTc-labelled stealth pH-sensitive liposomes[J]. Nucl Med Commun,2008,29(1):33-38.
    [94] Nobles M, Higgins C F and Sardini A. Extracellular acidification elicits a chloride currentthat shares characteristics with ICl(swell)[J]. Am J Physiol Cell Physiol,2004,287(5):C1426-1435.
    [95] Omori M, Yokoyama M, Matsuoka Y, Kobayashi H, Mizobuchi S, Itano Y, Morita K andIchikawa H. Effects of selective spinal nerve ligation on acetic acid-induced nociceptiveresponses and ASIC3immunoreactivity in the rat dorsal root ganglion[J]. Brain Res,2008,1219(26-31.
    [96] Krishtal O. The ASICs: signaling molecules? Modulators?[J]. Trends Neurosci,2003,26(9):477-483.
    [97] Yermolaieva O, Leonard A S, Schnizler M K, Abboud F M and Welsh M J. Extracellularacidosis increases neuronal cell calcium by activating acid-sensing ion channel1a[J]. ProcNatl Acad Sci U S A,2004,101(17):6752-6757.
    [98] Waldmann R, Champigny G, Bassilana F, Heurteaux C and Lazdunski M. A proton-gatedcation channel involved in acid-sensing[J]. Nature,1997,386(6621):173-177.
    [99] Lingueglia E. Acid-sensing ion channels in sensory perception[J]. J Biol Chem,2007,282(24):17325-17329.
    [100] Wemmie J A, Price M P and Welsh M J. Acid-sensing ion channels: advances, questionsand therapeutic opportunities[J]. Trends Neurosci,2006,29(10):578-586.
    [101] Yokokawa M, Carnally S M, Henderson R M, Takeyasu K and Edwardson J M.Acid-sensing ion channel (ASIC)1a undergoes a height transition in response toacidification[J]. FEBS Lett,2010,584(14):3107-3110.
    [102] Levanti M B, Guerrera M C, Calavia M G, Ciriaco E, Montalbano G, Cobo J, Germana Aand Vega J A. Acid-sensing ion channel2(ASIC2) in the intestine of adult zebrafish[J].Neurosci Lett,2011,494(1):24-28.
    [103] Junichi Yagi H N W, Ligia A. Naves. Sustained Currents Through ASIC3Ion Channels atthe Modest pH Changes That Occur During Myocardial Ischemia[J]. Circulation Research.,2006,99(5):501-509.
    [104] Jiang Q, Papasian C J, Wang J Q, Xiong Z G and Chu X P. Inhibitory regulation ofacid-sensing ion channel3by zinc[J]. Neuroscience,2010,169(2):574-583.
    [105] Chen X, Polleichtner G, Kadurin I and Grunder S. Zebrafish acid-sensing ion channel(ASIC)4, characterization of homo-and heteromeric channels, and identification ofregions important for activation by H+[J]. J Biol Chem,2007,282(42):30406-30413.
    [106] Chu X P, Close N, Saugstad J A and Xiong Z G. ASIC1a-specific modulation ofacid-sensing ion channels in mouse cortical neurons by redox reagents[J]. J Neurosci,2006,26(20):5329-5339.
    [107] Berdiev B K, Xia J, McLean L A, Markert J M, Gillespie G Y, Mapstone T B, Naren A P,Jovov B, Bubien J K, Ji H L, Fuller C M, Kirk K L and Benos D J. Acid-sensing ionchannels in malignant gliomas[J]. J Biol Chem,2003,278(17):15023-15034.
    [108] Ye J H, Gao J, Wu Y N, Hu Y J, Zhang C P and Xu T L. Identification of acid-sensing ionchannels in adenoid cystic carcinomas[J]. Biochem Biophys Res Commun,2007,355(4):986-992.
    [109] Kapoor N, Bartoszewski R, Qadri Y J, Bebok Z, Bubien J K, Fuller C M and Benos D J.Knockdown of ASIC1and epithelial sodium channel subunits inhibits glioblastoma wholecell current and cell migration[J]. J Biol Chem,2009,284(36):24526-24541.
    [110] Chen C C, Zimmer A, Sun W H, Hall J, Brownstein M J and Zimmer A. A role for ASIC3in the modulation of high-intensity pain stimuli[J]. Proc Natl Acad Sci U S A,2002,99(13):8992-8997.
    [111] Deval E, Noel J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M andLingueglia E. ASIC3, a sensor of acidic and primary inflammatory pain[J]. Embo J,2008,27(22):3047-3055.
    [112] Sluka K A, Radhakrishnan R, Benson C J, Eshcol J O, Price M P, Babinski K, Audette K M,Yeomans D C and Wilson S P. ASIC3in muscle mediates mechanical, but not heat,hyperalgesia associated with muscle inflammation[J]. Pain,2007,129(1-2):102-112.
    [113] Zhu G, Chanchevalap S, Cui N and Jiang C. Effects of intra-and extracellular acidificationson single channel Kir2.3currents[J]. J Physiol,1999,516(Pt3)(699-710.
    [114] Hughes B A and Swaminathan A. Modulation of the Kir7.1potassium channel byextracellular and intracellular pH[J]. Am J Physiol Cell Physiol,2008,294(2): C423-431.
    [115] Sandoz G, Douguet D, Chatelain F, Lazdunski M and Lesage F. Extracellular acidificationexerts opposite actions on TREK1and TREK2potassium channels via a single conservedhistidine residue[J]. Proc Natl Acad Sci U S A,2009,106(34):14628-14633.
    [116] Samuel J. Goodchild C L, Vincent Seutin. Inhibition of KCa2.2and KCa2.3channelcurrents by protonation of outer pore histidine residues[J]. J. Gen. Physiol.,2009,134(4):295-308.
    [117] Kawasaki M, Fukuma T, Yamauchi K, Sakamoto H, Marumo F and Sasaki S. Identificationof an acid-activated Cl(-) channel from human skeletal muscles[J]. Am J Physiol,1999,277(5Pt1): C948-954.
    [118] Petheo G L, Molnar Z, Roka A, Makara J K and Spat A. A pH-sensitive chloride current inthe chemoreceptor cell of rat carotid body[J]. J Physiol,2001,535(Pt1):95-106.
    [119] Auzanneau C, Thoreau V, Kitzis A and Becq F. A Novel voltage-dependent chloride currentactivated by extracellular acidic pH in cultured rat Sertoli cells[J]. J Biol Chem,2003,278(21):19230-19236.
    [120] Schnizler K, Saeger B, Pfeffer C, Gerbaulet A, Ebbinghaus-Kintscher U, Methfessel C,Franken E M, Raming K, Wetzel C H, Saras A, Pusch H, Hatt H and Gisselmann G. Anovel chloride channel in Drosophila melanogaster is inhibited by protons[J]. J Biol Chem,2005,280(16):16254-16262.
    [121] Friedrich T, Breiderhoff T and Jentsch T J. Mutational analysis demonstrates that ClC-4and ClC-5directly mediate plasma membrane currents[J]. J Biol Chem,1999,274(2):896-902.
    [122] Kwan D C, Fedida D and Kehl S J. Single channel analysis reveals different modes ofKv1.5gating behavior regulated by changes of external pH[J]. Biophys J,2006,90(4):1212-1222.
    [123] Diewald L, Rupp J, Dreger M, Hucho F, Gillen C and Nawrath H. Activation by acidic pHof CLC-7expressed in oocytes from Xenopus laevis[J]. Biochem Biophys Res Commun,2002,291(2):421-424.
    [124] Ye D, Zhang H F, Zhu L Y, Wang L W and Chen L X. ClC-3siRNA inhibits regulatoryvolume decrease in nasopharyngeal carcinoma cells[J]. Nan Fang Yi Ke Da Xue Xue Bao,2011,31(2):216-220.
    [125] Cao L, Zhang X D, Liu X, Chen T Y and Zhao M. Chloride channels and transporters inhuman corneal epithelium[J]. Exp Eye Res,2010,90(6):771-779.
    [126] Comes N, Gasull X, Gual A and Borras T. Differential expression of the human chloridechannel genes in the trabecular meshwork under stress conditions[J]. Exp Eye Res,2005,80(6):801-813.
    [127] Lai J P, Yang J H, Douglas S D, Wang X, Riedel E and Ho W Z. Quantification of CCR5mRNA in human lymphocytes and macrophages by real-time reverse transcriptase PCRassay[J]. Clin Diagn Lab Immunol,2003,10(6):1123-1128.
    [128] Makara J K, Petheo G L, Toth A and Spat A. pH-sensitive inwardly rectifying chloridecurrent in cultured rat cortical astrocytes[J]. Glia,2001,34(1):52-58.
    [129] Anderson M P and Welsh M J. Regulation by ATP and ADP of CFTR chloride channelsthat contain mutant nucleotide-binding domains[J]. Science,1992,257(5077):1701-1704.
    [130] Quinton P M and Reddy M M. Control of CFTR chloride conductance by ATP levelsthrough non-hydrolytic binding[J]. Nature,1992,360(6399):79-81.
    [131] He Q F, Wang L W, Mao J W, Sun X R, Li P, Zhong P, Nie S H, Jacob T and Chen L X.Activation of chloride current and decrease of cell volume by ATP in nasopharyngealcarcinoma cells[J]. Sheng Li Xue Bao,2004,56(6):691-696.
    [132] Eraso P and Gancedo C. Activation of yeast plasma membrane ATPase by acid pH duringgrowth[J]. FEBS Lett,1987,224(1):187-192.
    [133] Wolosker H and de Meis L. pH-dependent inhibitory effects of Ca2+, Mg2+, and K+onCa2+efflux mediated by sarcoplasmic reticulum ATPase[J]. Am J Physiol,1994,266(5Pt1): C1376-1381.
    [134] Bishop J E and Al-Shawi M K. Inhibition of sarcoplasmic reticulum Ca2+-ATPase byMg2+at high pH[J]. J Biol Chem,1988,263(4):1886-1892.
    [135] Mao J, Chen L, Xu B, Wang L, Wang W, Li M, Zheng M, Li H, Guo J, Li W and Jacob T J.Volume-activated chloride channels contribute to cell-cycle-dependent regulation of HeLacell migration[J]. Biochem Pharmacol,2009,77(2):159-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700