Nogo-A、NgR和RhoA在未成熟大鼠少突胶质前体系细胞的表达和缺氧后的表达变化及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:获取高纯度的少突胶质前体细胞系,并作鉴定,为进一步研究作细胞准备。
     方法:出生2日龄的SD大鼠,无菌条件下断头取脑,剔除脑膜及血管。根据星形胶质细胞和少突胶质前体细胞系生长的时间差异,细胞的粘附特性不同,利用振荡分离纯化法获得纯化的大鼠少突胶质前体细胞,再用添加了N2、PDGF、bFGF的无血清培养基传代培养。分别用少突胶质前体细胞系不同发育阶段的特异性抗体:A285、O4、O1,采用免疫荧光法对表面抗原进行细胞鉴定。
     结果:获得纯度95%以上的未成熟SD大鼠少突胶质前体细胞,少突胶质祖细胞A285、O4抗体阳性;未成熟少突胶质细胞O4、O1阳性。
     结论:通过振荡分离纯化法及结合少突胶质细胞定向培养基是培养少突胶质前体细胞的可靠方法;N2、PDGF、bFGF的添加可以显著提高细胞的产量,并使细胞保持在未成熟阶段。
     目的:建立未成熟大鼠少突胶质前体系细胞缺氧缺糖损伤模型,并观察缺氧不同时间点细胞的变化。
     方法:体外分离纯化培养未成熟SD大鼠少突胶质前体细胞系(OLPs)并鉴定(同第一部分)。缺氧缺糖模型组(oxygen&glucosedeprivation,OGD)选择A285或O4或O1表面抗体标记阳性的细胞(即晚期OL前体和未成熟OL,OLPs),使用耗氧剂连二亚硫酸钠(Na_2S_2O_4)及无糖Earle’s液制造OGD环境,细胞分别在此环境下培养10min、30min、60min及90min,并设立成熟OL OGD对照组和OLPs正常(无OGD)对照组。观察各组细胞在不同时间点光镜、电镜下形态的改变;MTT法检测不同时间点各组细胞存活率;DAPI染色,荧光显微镜下观察各组少突胶质细胞凋亡百分率。
     结果:(1)加入Na_2S_2O_4浓度为10mmol/L时,无糖培养基中氧分压在90min内保持无氧或低氧,故选择该浓度为制作OGD模型的适当浓度。(2)光镜下,模型组OGD10min出现胞体水肿;30min即出现了明显的细胞死亡和凋亡,胞体水肿,胞膜破裂,轴突肿胀,断裂;正常对照组和成熟OL组细胞形态变化不明显。(3)MTT结果显示模型组OGD30min,细胞存活率降至75%;OGD90min,细胞存活率降至约50%。明显低于正常对照组和成熟OL组(ρ均<0.05)。(4)DAPI染色显示,模型组0GD10min即出现细胞凋亡,随着OGD时间的延长,凋亡细胞百分率逐渐增加,OGD60min,凋亡细胞百分率接近50%,模型组细胞凋亡百分率明显高于正常对照组和成熟OL组(ρ均<0.05)。
     结论:OGD导致OLPs形态学损伤,细胞存活率下降及凋亡率增加,同时表明OLPsOGD模型(OGD模型)建立成功,证实了OLPs对缺氧损伤的成熟依赖性。
     目的:观察Nogo-A、NgR及RhoA在未成熟大鼠少突胶质前体细胞系(OLPs)的表达和细胞定位,以及缺氧缺糖损伤后的表达,探讨它们在OLPs系损伤后再生抑制中的作用。
     方法:采用改良振荡分离纯化法体外培养OLPs(同第一部分);用含连二亚硫酸钠的无糖培养基模拟造成OLPsOGD模型(同第二部分)。用OLPs特异性抗体A285、O4、O1和MBP进行免疫荧光法作细胞鉴定。然后在相应的OLPs分化阶段和分别在OGD不同时段:10min、30min、60min用免疫荧光法和免疫印迹法观察Nogo-A、NgR及RhoA的表达。
     结果:Nogo-A、NgR、RhoA在OLPs分离纯化培养后的第1、2和4天均有阳性表达,且随细胞成熟度增加而表达增强,Nogo-A、NgR的阳性信号位于胞体及突起;RhoA的阳性信号位于胞浆及突起。Nogo-A在OLPs缺氧缺糖10min表达较正常对照组增强,30min继续增高,60min最高,差异有统计学意义(ρ<0.05);NgR在OLPs缺氧缺糖后10min,表达较正常对照明显增强,30min达最高,差异有统计学意义(ρ<0.05),60min降低,与对照组比较差异无统计学意义(ρ<0.05):RhoA在OGD后10min,表达较正常显著增强,且迅速达最高峰,OGD后30min,RhoA表达逐渐减弱,60min继续下降,但RhoA表达均正常对照组显著增强,差异有统计学意义(ρ<0.05)。
     结论:在OLPs胞体及突起上均表达Nogo-A和NgR;胞浆和突起上表达有RhoA。它们在OGD损伤后表达明显增强,与此同时,OLPs细胞在形态学上出现明显损伤,细胞存活率显著降低,凋亡率明显增加。提示Nogo-A和NgR表达增强可能影响OLPs损伤后的修复过程,其通路可能通过激活下游RhoA的表达而发挥作用。该结果为研究神经再生抑制因子Nogo-A、NgR,及其信号传导蛋白RhoA在以OLPs为主要成分的早产儿脑室周围白质软化再生抑制机制中的作用提供了基础资料。
Object: To obtain highly purified oligodendrocyte precursor lineage cells of newborn immature SD rats in vitro for the needs of further study.
     Method: The 2 day-old SD rats were sacrificed by disconnecting neck under aseptic conditions and the brain was taken out. The meninges and blood vessels on the brain were removed. The oligodendrocyte precursors of the brain were separated from astrocyte by orbital shaker and further purified by differential adhesion and finally cultured in chemically defined serum-free medium with appended N2, PDGF, bFGF. Immunofluorescence assay was applied to identify the separated cells with A2B5,O4 and O1 antibodies which represent different phases of differentiation of oligodendrocyte precursors.
     Result: Over 95%of cultured oligodendrocyte precursor cells were obtained. The oligodendrocyte progenitors are A2B5 and O4 positive, while immature oligodendrocytes are O4 and O1 positive.
     Conclusion: Separation and purification by shaking and differential adhesion and chemically defined medium are suitable and effective to obtain highly purified oligodendrocyte precursor cells. The output of cells increases notably and keep in immature phase by
     Object: To set up the model of oligodendrocyte precursors (OLPs) of immature SD rat deprived of oxygen & glucose and observe the changes of OLPs cells morphologically and in survival rate and apoptosis rate in different time of deletion of oxygen and glucose.
     Method: separate and culture highly purified oligodendrocyte precursor lineage cells and make identification of immature SD rat in vitro. Choose the cells that surface antibody A2B5 or O4 or O1 positive to culture in absence of oxygen and glucose conditions by using Na_2S_2O_4 and Earle's fluid in the medium for 10min, 30min, 60min and 90min, respectively to set up the oxygen & glucose deletion injured model(OGD) of OLPs . Meanwhile, the both of mature oligodendrocytes (OL) with deletion of oxygen & glucose and normal OLPs without deletion of oxygen & glucose are set up for the control groups. The morphologic changes of cells are observed by light microscope and electron microscope in different hypoxic duration and the livability of cells in each group is detected by MTT and the cell apoptosis rate is measured by DAPI dye.
     Results: (1) When Na_2S_2O_4'S concentration is 10mmol/L in culture medium, the oxygen pressure in culture medium without glucose keeps in very low or zero, so we choose 10mmol/L Na_2S_2O_4 as the property concentration for making the hypoxia model. (2) Compared with the two control groups, OLPs in OGD model was significantly damnified OLPs cells became markedly swelling and cell prominences reduced and the cell membrance ruptured. The nuclei were large and chromatin was condensed, and OLPs were collapsing and floating in culture medium. (3) MTT's results showed that OLPs livability rate in OGD model was significantly lower than those of the both control groups (P<0. 05) . (4) The apoptosis rate by DAPI in OGD model group was significantly higher than those in the both control groups.
     Conclusion: The OGD model of oligodendrocyte precursors damage was successfully established, approving that hypoxic lesions of OLPs is maturity- dependent.
     Objective: To detect the expressions of Nogo-A, NgR & RhoA in OLPs and in OGD model in vitro to discuss their functions in restraining OLPs regeneration after the OLPs damage.
     Method: The OLPs were separated by improved separation and purification through agitation and then cultured in chemically defined medium. Set up OGD model of OLPs by N_2S_2O_4 in vitro. Immunofluorescence assay is applied to identify the separated cells with A2B5, O4, O1 antibodies and western blotting to observe the expressions ofNogo-A, NgR and RhoA in OLPs of different duration (10min, 30minand 60min, respectively)of OGD model and normal OLPs groups.
     Results: Nogo-A, NgR & RhoA were detected in purified OLPs and the positive signals of Nogo-A, NgR were located in the cell's body and the prominence whereas RhoA in cell plasm and prominence of OLPs. Compared with the control,the expressions of NogoA, increased significantly at 10min , 30min and 60min in OGD model(P<0.05). The expressions of NgR increased significantly at 10min and 30min(P<0.05),whereas decreased at 60min in OGD model(P>0.05). The expressions of RhoA increased significantly at 10min ,30min and 60min of OGD compared with the control(P<0.05).
     Conclusion: The expressions of Nogo-A and NgR proteins locate both in prominence and cell body of OLPs, and the expression of RhoA protein in the cell plasm and promincence of OLPs.After OGD injury, their expression all increased. Meanwhile, OLPs damage was consistant with the expression of Nogo-A,NgR and RhoA.suggesting that Nogo-A and NgR may play a role inOLPs damage, which might be due to the activation of RhoApassway. These findings may be useful for further experimental research in the understanding of pathogenesis ofrestraining OLPs' regeneration in premature periventricularleukomalacia (PVL).
引文
1. Regina C.Armstomg. Isolation and Characterization of Immature Oligodendrocyte Lineage Cells [J] A Comanion to Methods in Enzymology 1998, 16: 282-292.
    2.殷红兵,丁爱石,吴卫平,等.新生大鼠高纯度少突胶质前体细胞系细胞的培养与鉴定:改良振荡分离纯化法的特点[J].中国临床康复,2005,9(17):36-37.
    3. Ken D, Mccarthy, Jean de Vellis, Preparation of Separat Astroglial and Oligodendroglial Cell Cultures from Rat Cerebral tissue, Cell Biology [J] 1980, 85: 890-902.
    4.何平,沈馨亚,少突胶质细胞增殖和分化的研究进展[J],神经解剖学杂志,2000,16(2)183-188.
    5.孙燕,夏春林,何炎,等.体外培养获取高纯度O-2A祖细胞[J].解剖学研究,2002,24(4):258-259.
    6.伍亚民,马海涵,廖维宏,大鼠星形胶质细胞和少突胶质细胞的纯化培养与鉴定[J].创伤外科杂志,2000,2(4):207-208.
    7.屈卫东,彭小东,吴德生,等.星形胶质细胞、少突胶质细胞分离培养新方法研究(J).卫生研究,1999,28(5):263-264.
    8.周洪语,路丽明,沈健康,等.SD大鼠星形胶质细胞的原代培养[J].中华神经医学杂志, 2003,2 (5): 346-347.
    9. Wenbin Deng,Randall D,McKinnon,et al,Lead Exposure Delays the Differentiation of Oligoderoglial Progenitors In Vitro,Toxiology and Applied Pharmacology (J) .2001,174:235-244.
    10. Ronen Marmur,Peter C..Mabie,Solen Gokhan,Isolation and Devlopmental Characterization of Cerebral Cortial Multipotent Progenitors, Development Biclogy (J) . 1998,201:577-591.
    1. Fern R, Moiler T. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutame release feedback loop[J]. JNeurosci, 2000, 20(1): 34-42.
    2. Inage YW, Itoh M, Takashima S. Correlation between cerebrovascular maturity and periventricular leukomalacia[J]. Pediatr Neurol, 2000, 22(3): 2042208.
    3.许蜀闽,王培勇,马洪英,连二亚硫酸钠在建立培养细胞的无氧环境中的应用.第三军医大学学报,[J].2005.27(4):p.359-360.
    4.邓嘉元,李运曼,方伟蓉,龙血竭总黄酮对乳鼠损伤心肌细胞的保护作用,中国天然药物,[J].2006,4(5):372-376.
    5.张壮,闫彦芳,韦颖,等,党参皂苷L1抗缺氧缺糖再给氧诱导大鼠皮质神经细胞凋亡的作用.中国中医基础医学杂志,[J].2005,11(5):341-343.
    6.张壮,闫彦芳,孙塑伦,等,比较猪去氧胆酸与牛磺熊去氧胆抗神经细胞缺氧缺糖再给氧损伤的作用,中国临床康复,[J].2005,9(17):134-136.
    7. Ness JK, Romanko MJ, Rothstein RP, et al. Perinatal hypoxia—ischemiainduces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors[J]. Dev Neurosci, 2001,23 (3): 2032208.
    8. Hollensworth SB, Shen C, Sim JE, et al. Glial cell typespecific sponses to menadioneinduced oxidative stress [J]. Free Radic Biol Med, 2000,2(8): 1161~1174.
    9. Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons[J]. J Cell Physio1,2002,192 (2): 131~137.
    10. McDonald JW, Althomsons SP, Hyrc KL, et al. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor2mediated excitotoxicity. Nat Med, 1998,4: 291-297.
    11. Fern R, Moller T. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop[J]. J Neurosci, 2000,20(1): 34~42.
    1. Inage YW, Itoh M, Takashima S. Correlation between cerebrovascular maturity and periventricular leukomalacia[J]. Pediatr Neurol, 2000, 22(3): 2042208.
    2. McKerracher L, David S, Jackson DL, et al. Identification of myelinassociated glycop rotein as amajormyelin—derived inhibitor of neurite growth[J]. Neuron, 1994, 13 (4): 8052811.
    3. TakaiY, Sasaki MatozakiT. SmallG GTP-binding proteins Physiol Rev, 2001, 81(1): 153—208.
    4. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998. 279: 509-514.
    5. Ridley A, Hall A1 [ J ] 1 Cell, 1992, 70 (3): 3892-3991.
    6. Caroni P, Schwab ME.Two membrane protein fractions from ratcentral myelin with inhibitory propenies for neurite growthand fibroblast spreading [J].J Cell Biol, 1988, 106 ( 4): 1281-1288.
    7. Spillmann AA, Bandtlow CE, Lottspeich F, et al. Identification and characterization of a bovine neurite growth inhibitor( bNI- 220) [J].J Biol Chem, 1998, 273( 30): 19283-19293.
    8. Chen MS, Huber AB, van der Haar ME, et al. Nogo- A is a myelin - associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN- 1[J].Nature, 2000, 403( 6768): 434-439.
    9. GrandpreT, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a reticulon protein [J].Nature, 2000, 403( 6768): 439- 444.
    10. BussA, SellhausB, WolmsleyA et al. Exp ression pattern of Nogo—A p rotein in the human nervous system. Acta Neuropathol, 2005; 110: 113-119.
    11. Huber AB,Weinmann O, Brosamle C, et al. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions [J] J Neurosci, 2002, 22 (9): 3553-3567.
    12. Wang XX,Chun SJ,Treloar H,et al.Location of Nogo-A and Nogo receptor proteins at sites of axon-myelin and synaptic contact. J Neurosci,2002,22:5505-5515.
    13. Taketomi M,Kinoshita N,Kimura K,et al.Nogo-A expression in mature oligodendrocytes of rat spinal cord in association with specific molecules.Neurosci Lett,2002,332:37-40.
    14. NgCE, Tang BL. Nogos and the Nogo 66 receptor: factors inhibiting CNS neuron regeneration. J Neurosci Res, 2002; 67: 559 - 565.
    15. Woolf CJ,Bloechlinger S.It takes more than two to Nogo. Science, 2002,297: 1132-1134.
    16. Changman Zhou,Yun Li,Anli Nanda,et al.HBO suppresses Nogo-A,Ng-R,or RhoA expression in the cerebral cortex after global ischemia.Bio Bio Res Com,2003,309:368-376.
    17. Wiessner C,Barryre PR,Allegrini AK,et al.Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticorspinal plasticity in normotensive and spontaneously hypertensive rats.J Cereb Blood Flow Metab,2003,23:154-165.
    18. Weiss J,Takizawa B,MCGee A,et al. Neonatal hypoxia suppresses oligodendrocyte Nogo-A and increases axonal sprouting in a rodent model for human prematurity.Exp Neurol,2004,189:141-149.
    19. Thallmair M,Metz GA,Z'Graggen WJ, et al.Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat Neurosci, 1998,1:124-131.
    20. Papadopoulos CM, Tsai SY, Alsbiei T, et al.Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat.Ann Neurol, 2002, 51:433-441.
    21. Grandpre T, Li S,Stritmatter SM, et al.Nogo-66 receptor antagonist peptide promotes axonal regeneration.Nature,2002, 417:547-551.
    22. Bareyre FM, Haudenschild B,Schwab ME.Long-lasting sprouting and gene expression changes induced by the monoclonal antibody IN-1 in the adult spinal cord.J Neurosci,2002,22:7097-7110.
    23. Fournier AE,Gould GC,Liu BP, et al.Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin.J Neurosci,2002,22:8876-8883.
    24. Foumier AE, GrandPre T, Strittmatter SM1[J] 1 Nature, 2001, 409 (6818): 341—346.
    25. Oerile T, Vail der HanrME, Ban dtlow CE, et all[J] 1 J Neurosci, 2003, 23 (13): 5393—54061
    26. Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci, 2004,7 (3): 221-228.
    27. Hunt D, Mason MR, Campbell G, et al. Nogo receptor mRNA expression in intact and regenerating CNS neurons[J]. Mol Cell Neurosci. 2002: 20: 537—552.
    28.谢琳,贺翔鸽,何凤慈,等.Nogo-66受体在大鼠神经组织中的表达,第三军医大学学报,[J].2005;27(23):2335-2338.
    29. Josephson A, Trifunovski A, Widmer H R, et al. Nogo-receptor geneactivity: cellular localization and developmental regulation of mRNA in mice and humans[J]. J Comp Neurol, 2002, 453 (3): 292-304.
    30.胡泽岚,刘莹莹,金卫林,等,Nogo-66受体在成年大鼠脊髓白质内胶质细胞的分布,第四军医大学学报.[J].2004,25(16):1444-1448.
    31.王丰,朱悦.大鼠脊髓来源神经干细胞NgK的表达.中国医科大学学报,[J]2006;5(35):472-475.
    32. Changman Zhou,Yun Li,Anli Nanda, et al. HBO suppresses Nogo-A, Ng-R, or RhoA expression in the cerebral cortex after global ischemia. Bio Bio Res Com,2003,309:368-376.
    33. Hall A. Rho GTPase andthe actin cytoskeleton. Science. 1998, 279 (5350): 509~514.
    34. Ridley A, Hall Al[J] 1 Cell, 1992, 70 (3): 3892—3991.
    35. HuberAB, Weinmann O, Brosamle C, et all[J]1 J Neurosci, 2002, 22 (9): 35532—35671
    36. Niederost B,Oertle T, Fritsche J,etal.Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Racl. J of Neurosci,2002,22(23): 10368-76.
    37. Yin HL, Stoll JT. Proteins that regulate dynamics actin remodeling in response to membrance signaling minireview series. J of Biol Chem, 1999,274(46):32529-30.
    38. Cheryl L,Gantto,Barbara J. Local ERM activation and dynamic growth cones at Schwann cell tips implicated in efficient of nodes of Ranvier.The Journal of Cell Biology,2003,162(3):489-98.
    39. Fiedler M, Horn C, Bandtlow C, et al. An engineered IN-1 Fab fragment with improved affinity for the Nogo-A axonal growth inhibitor permits immunochemical detection and shows enhanced neutralizing acitivty [J]. Protein Eng, 2002, 15(11): 931-941.
    40. Fouad K, Klusman I, Schwab ME. Regenerating corticospinal fibers in the Marmoset after spinal cord lesion and treatment with the anti-Nogo-A antibody IN-1 [J].Eur J Neurosci,2004, 20(9): 2479-2482.
    41. Buffo A, Zagrebelsky M, Huber AB, et al. Application of neutralizing antibodies against NI-35/250 myelin-associated neurite growth inhibitory proteins to the adult rat cerebellum induces sprouting of uninjured Purkinje cell axons [J].J Neurosci,2000, 20( 6): 2275- 2286.
    42. Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promote spinal cord repair [J].J Neurosci,2002, 22( 15): 6570- 6577.
    43. Li S, Strittmatter SM. Delayed systemic Nogo- 66 receptor antagonist promotes recovery from spinal cord injury [J].J Neurosci,2003, 23( 10): 4219- 4227.
    44. Lehmann M . Fournier A. Seles. Navarro 1. et al. Inactivation of Rho signalling pathway promotes CNS axon regeneration. JNeurosci, 1999. 19(17): 7537—7547
    45. Dergham P, Ellezam B, Essagian C. et al. Rho signaling pathway targeted to promote spinal cord repMr. JNeurosci, 2002, 22(15): 6570—6577.
    46. Foumier A E. Takizawa B T. Strittmtter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS. JNeurosci. 2003. 23(4): 1416—1423.
    1.陈宜张.分子神经生物学,北京:人民军医出版社,1995,247~266
    2. A sou H, Hamada K, M iyazaki T, et al. CNS myelinogenesis in vitro: time course and pattern of rat oligodendrocyte development. J Neurosci Res, 1995, 40: 519~534
    3. A nn strong RC. Isolation and characterization of immature oligodendrocyte lineage cells. Methods, 1998, 16: 282~292
    4. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. N ature, 1983, 303: 390~396
    5. Eisenbarth G, Walsh FS, Nirenberg M. Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl A cad Sci USA, 1979, 76: 4913~4917
    6. Gard AL, Pfeiffer SE. Two proliferative stages of the oligodendrocyte lineage (A 2B5+and O 4+Galc-) under different mitogenic control. Neuron, 1990, 5: 615~625
    7. Hardy R, Reynolds R. Proliferation and differentiation of rat forebrain oligodendroglial progenitors both in vitro and in vivo.Development, 1991, 111: 1061~1080
    8. Sommer I, SchachnerM. Monoclonal antibodies (Olto O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol, 1981, 83: 311~327
    9. Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for humanperinatal white matter injury. J Neurosci, 2001,21 : 1302-1312.
    10. Raff M C, L illien L E, Richardson WD, et al. Platelet—derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature, 1988, 333:562— 565
    11. Calver AR, Hall AC, Yu W P, et al. Oligodendrocyte population dynam ics and the role of PDGF in vivo. Neuron, 1998, 20:869— 882
    12. Bogler O , W ren D, Barnett SC, et al. Cooperation between two growth factors promotes extended self—renewal and inhibits differentiation of oligodendrocyte—type—2 astrocyte (O — 2A) progenitor cells. Proc NatlA cad SciUSA , 1990, 87: 6368— 6372
    13. McKinnon RD, Matsui T, Dubois—Dalcq M , et al. FGF modulates the PDGF—driven pathway of oligodendrocyte development. Neuron, 1990, 5: 603— 614
    14. Kumar S, Kahn MA , D inh L , et al. N T—3—mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. J Neuro sci Res, 1998, 54: 754- 765
    15. Barres BA , Raff MC, Gaese F, et al. A crucial role for neuro trophin—3 in oligodendrocyte development. Nature,1994, 367: 371— 375
    16. Barres BA , Schmid R, Sendtner M , et al. Multiple extracellular signals are required for long-term oligodendrocyte survival.Development, 1993, 118:283— 295
    17. McMorris FA , Dubois—Dalcq M. Insulin—like growth factor 1 promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J Neuro sci Res,1988,21: 199- 209
    18. BarresBA , RaffMC. Control of oligodendrocyte number in the developing rat optic nerve. Neuron, 1994, 12: 935- 942
    19. Gao FB, Apperly J, RaffMC. Cell—intrinsic timers and thyroid hormone regulate the probability of cell—cycle withdrawal and differentiation of oligodendrocyte precursor cells. Dev Bio 1,1998, 197:54- 66
    20. Ibarro la N , Mayer—Proschel M , Rodriquez—Pena A , et al.Evidence for the existence of at least two timing mechanisms that contribute to oligodendrocyte generation in vitro. Dev Biol, 1996, 180: 1- 21
    21. Yakovlev A Y, Boucher K, Mayer—Proschel M , et al.Quantitative insight into proliferation and differentiation of oligodendrocyte type 2 astrocyte progenitor cells in vitro. Proc Natl A cad Sci USA, 1998,95: 14164- 14167
    22. McKinnon RD, Piras G, Ida JA , et al. A role for TGF —βin oligodendrocyte differentiation. J Cell Biol, 1993,121:1397-1407
    23. Orentas DM , Miller RH. Regulation of oligodendrocyte development. Mol Neurobiol, 1998,18: 247- 259
    24. Skoff RP. Increased proliferation of oligodendrocytes in the hypomyelinated mousemutant— jimpy. Brain Res, 1982, 249: 19— 31
    25. Barres BA , Raff MC. Proliferation of oligodendrocyte precursor cells depends on electrocal activity in axons. Nature, 1993, 361: 258— 260
    26. Perry VH, Brown MC, Lunn ER. Very slow retrograde and Wallerian degeneration in the central nervous system of C57BI/Olamice. Eur J N euro sci, 1991, 3: 102— 105
    27. Ghiani CA , Eisen AM , Yuan X,et al. Neuro transmitter receptor activation triggers p27 ( Kip1 ) and p21 ( CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte proginators. Development, 1999, 126: 1077- 1090
    28. Yuan X, Eisen AM , M cBain CJ , et al. A ro le for glutamate and its recep to rs in regulation of o ligodendrocyte development in cerebellar tissue slices. Development, 1998, 125: 2901—2914
    29. Bottenstein JE, Sato GH. Growth of a rat neuroblastoma cellline in serum—free supplemented medium. Proc Natl Acad Sci USA , 1979, 76: 514- 517
    30. Gu J , Royland JE, Wiggins RC, et al. Selenium is required for normal up regulation of myelin in differentiating oligodendrocytes. J Neuro sci Res, 1997,47: 626— 635
    31. Mabie PC, M ehlerM F, M armur R, et al. Bonemo rphogenetic proteins induce astroglial differentiation of oligodendroglial—astroglial progenitor cells. J Neuro sci, 1997, 17: 4112— 4120
    32. Gard A 1, Pfeiffer SE. Glial cell mitogens bFGF and PDGF differentially regulate development of O 4 + Galc +oligodendrocyte progenitors. Dev Biol,1993, 159: 618- 630
    33. Lubetzki C, Demerens C, A nglade P, et al. Even in culrure,oligodendrocytes myelinate solely axons. Proc Natl Acad Sci USA , 1993, 90: 6820- 6824
    34. Kurosinski P, Gotz J. Glial cells under physiologic and pathologic conditions[ J ]. Arch Neurol, 2002, 59 (10): 152421528.
    35. Baumann N, Pham2Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[ J ]. Physiol Rev, 2001, 81(2): 8712927.
    36. Chen ZJ, Ughrin Y, Levine JM. Inhibition of axon growth by oligodendrocyte precursor cells [ J ]. Mol Cell Neurosci, 2002, 20 (1): 1252139.
    37. DengW, Poretz RD. Oligodendroglia in developmental neurotoxicity[ J ]. N eurotoxicology, 2003, 24(2): 1612178.
    38. Sortwell CE, Daley BF, PitzerMR, et al. Oligodendrocyte—type 2 Astrocyte—derived trophic factors increase survival of developing do pamine neurons through the inhibition of apoptotic cell death [ J ]. J Com p Neurol, 2000,426 (1): 1432153.
    39. Du Y, Dreyfus CF. Oligodendrocytes as providers of growth factors [ J ]. J Neurosci Res, 2002, 68 (6): 6472654.
    40. Mckerracher L, WintonMJ. Nogo on the go[ J ]. Neuron, 2002, 36(3): 3452348.
    41. Levison SW, Rothstein RP, RomankoMJ, et al. Hypoxia / ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells[ J ]. Dev Neurosci, 2001, 23 (3): 2342 247.
    42. Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia / ischemia [J].JN eurosci,2002, 22 (2): 4552463.
    43. MasumuraM, Hata R, Nagai Y, et al. Oligodendroglial cell death with DNA fragmentation in the white matter under chronic cerebral hypoperfusion: comparison between normotensive and spontaneously hypertensive rats[ J ]. Neurosci Res, 2001, 39 (4): 4012412.
    44. Mabuchi T, Kitagawa K, Ohtsaki T, et al. Contribution of microglia /macrophages to expansion of infarction and response of oligodendrocyte after focal cerebral ischemia in rats [ J ]. S troke, 2000, 31(7): 173521743.
    45. Gotz J. Tau and transgenic animal models[ J ]. Brain Res B rain Res Rev, 2001, 35 (3): 2662286.
    46. Gotz J, TolnayM, Barmettler R, et al. Oligodendroglial tau filament formation in transgenic mice expressing G272V tau [ J ]. EurJNeuro sci, 2001, 13 (11): 213122140.
    47. Baumann N , Pham—Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev ,2001 , 81: 871—892.
    48. Wolswijk G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain ,2002, 125(2) : 338-349.
    49. Nishiyama A , Chang A , Trapp BD. NG~(2+) glial cells : a novel glial cell population in the adult brain. J Neuropathol Exp Neurol, 1999,58: 1113 — 1124.
    50. Espinosa de los Monteros A , Baba H , Zhao PM, et al. Remyelination of the adult demyelinated mouse brain by grafted oligodendrocyte progenitors and the effect of B2104 cografts.Neurochem Res, 2001, 26: 673-682.
    1. Inage YW, Itoh M, Takashima S. Correlation between cerebrovascular maturity and periventricular leukomalacia[J]. Pediatr Neurol, 2000,22 (3): 2042208.
    2.李华良,秦丽.新生儿脑室周围白质软化症.临床儿科杂志[J],2000,18(5):311-12.
    3.毛健.感染与早产儿脑白质损伤[J].小儿急救医学,2004,11(4):216-217.
    4. Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitor coincide with the developmental window of vulnerability for human perinatal white matter injury[J]. J Neurosci, 2001,21(4): 1302-1312.
    5. Fern R, Moller T. Rapid ischemic cell death in immature oligodendrocytes: a fatal glutame release feedback loop[J]. J Neurosci, 2000,20(1):34-42.
    6. McDonald JW, Althomsons SP, Hyrc KL, et al. Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor2mediated excitotoxicity. Nat Med, 1998,4: 291-297.
    7. Back SA, Luo NL, Borenstein NS, et al. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neural, 2002,61: 197-211.
    8. Irving EA , Yatsushiro K, McCulloch J , et al . Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cereb Blood Flow Metab, 1997 , 17:612-622.
    9. Tsuji M, Saul JP , du Plessis A , et al . Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants[J ]. Pediatrics ,2000 ,106 (4) :6252632.
    10. Wang JY, Shum AY,Wang JY. Hypoxia/ reoxygenation induced cell injury via different mechanism in cultured rat cortical neurons and glial cells[J ] . Neurosci Lett ,2002 ,322(3) :1872191.
    11. Inder T ,Mocatta T ,Daarlow B , et al. Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury[J ]. Pediat r Res ,2002 ,52 (2) :213 - 218.
    12. Back SA , Luo NL , Borenstein NS , et al . Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci , 2001,21 : 1302-1312.
    13. Irving EA , Yatsushiro K, McCulloch J , et al . Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cereb Blood Flow Metab , 1997 , 17:612-622.
    14. Back SA , Luo NL , Mallinson RA , et al. Selective vulnerability of preterm white matter to oxidative damage defined by F2 - iso2prostanes[J] .A nn Neurol ,2005 ,58 (1) :108 -120.
    15. McDonald JW, Althomsons SP , Hyrc KL , et al . Oligodendrocytes from forebrain are highly vulnerable to AMPA/ kainate receptor2mediated excitotoxicity. Nat Med, 1998 , 4 : 291 - 297.
    16. Tekkok SB , Goldberg MP. Ampa/ kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci, 2001 ,21 : 4237 - 4248.
    17. Fern R ,M¨oller T. Rapid ischemic cell death in immature oligodendrocytes :a fatal glutamate release feedback loop [J ]. J Neurosci ,2000 ,20(1) :34-42.
    18. Vannucci RC , Brucklacher RM, Vannuai SJ . Intracellular calcium accumulation during the evolution of hypoxic2ischemic brain damage in the immature rat [J ] .Brain Res Dev Brain Res ,2001 ,126(1) :1172120.
    19. Bondarenko A , Chesler M. Calcium dependence of rapid astrocyte death induced by transient hypoxia ,acidosis ,and extracellular ion shifts[J]. Glia ,2001,34 (2) :1432149.
    20. Hollensworth SB , Shen C , Sim JE , et al . Glial cell type2specific responses to menadione2induced oxidative stress [ J ]. Free Radic Biol Med ,2000,28(8): 1161 - 1174.
    21. Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons[J ]. J Cell Physiol ,2002 ,192 (2) :131 —137.
    22. Kim NG,Lee H ,Son E ,et al. Hypoxic induction of casepase— 11/ caspase— 1/interleukin— 1βin brain microglia [J ]. Brain Res Mol Brain Res ,2003 ,114(2): 1072114.
    23. Graham EM ,Holcroft CJ ,Rai KK, et al. Neonatal cerebral white matter injury in preterm infants is associated with culture positive infections and only rarely with metabolic acidosis [ J ]. A m J Obstet Gynecol ,2004 ,191 (4) :1305 -1310.
    24. Debillon T , Gras2Leguen C ,Verielle V , et al. Intrauterine infection induces programmed cell death in rabbit periventtricular white matter[J]. Pediatr Res ,2000,47 (6) :736 - 742.
    25. Minagawa K,Tsuji Y,Ueda H , et al. Possible correlation between high levels of IL - 18 in the cord blood of preterm infants and neonatal development of periventricular leukomalacia and cerebral palsy[J ]. Cytokine ,2002 ,17 (3) :164 - 170.
    26. Cai Z ,Pan ZL ,Pang Y, et al. Cytoklnes induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration[J]. Pediatr Res ,2000 ,47(1) :64 - 72.
    27. Lehnardt S ,Lachance C ,Patrizi S , et al . The toll - like receptor TLR4 isnecessary for lipopolysaccharide - induced oligodendrocyte injury in the CNS[J ]. J Neurosci ,2002 , (7) :2478 - 2486.
    28. Baerwald KD , Popko B. Developing and mature oligodendrocytes respond differently to the immune cytokine interfon - ganuna [J]. J Neurosci Res ,1998 ,52(2) :230 - 239.
    29. Ang Y,Cai Z ,Rhodes PG. Effect of tumor necrosis factor - alpha on developing optic nerve oligodendrocytes in culture [ J ] .J Neurosci Res ,2005 ,80 (2) :226 - 234.
    30. Ness JK, Romanko MJ, Rothstein RP , et al. Perinatal hypoxia—ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors[J ] . Dev Neurosci ,2001,23 (3) :2032208.
    31. Back SA ,Han BH ,Luo NL , et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia [ J ]. J Neurosci, 2002 , 22(2) :455-463.
    32. Hollensworth SB , Shen C , Sim JE , et al . Glial cell typespecific sponses to menadione— induced oxidative stress [ J ]. Free Radic Biol Med ,2000 ,2(8) :1161 — 1174.
    33. Ravagnan L, Roumier T , Kroemer G. Mitochondria, the killer organelles and their weapons[J ]. J Cell Physiol ,2002 ,192 (2) :131 —137.
    34. ShibataM, Hisahara S, Hara H, et al. Caspases determine the vulnerability of oligodendrocytes in the ischemic brain. J Clin Invest,2000, 106: 643 - 653.
    35. Han BH, D'Costa A, Back SA, et al. BDNF blocks caspase23 activation in neonatal hypoxia— ischemia. NeurobiolDis, 2000, 7: 38 -53.
    36. Fritzi KI ,Ashraf QM,Mishra OP , et al. Effect of morderate hypocapnia ventilation on nuclear DNA fragmentation and energy metabolism in the cerebral cortex of newborn piglet [J ]. Pediatr Res,2001 ,50 (5) :586 -589.
    37. Follett PL ,Rosenberg PA ,Volpe JJ , et al. NBQX attenuates excitotoxic injury in developing white matter[J ]. JNeurosci ,2001,20 (24) :9235 -9241.
    38. Fern R ,Moller T. Rapid ischemic cell death in immature oligodendrocytes :a fatal glutamate release feedback loop [J ]. J Neurosci ,2000 ,20(1) :34--42.
    39. Liu HN , Giasson BI ,Mushynski WE , et al . AMPA receptor — mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK,calpain and caspase 3[J ]. J Neurochem,2002 ,82(2) :398-409.
    40. Baud O, Foix-L'Helias L, Kaminski M, et al. Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants[J]. N Engl J Med, 1999, 341(16): 1190-1196.
    41.张红爱,王玲,冷钦,等.缺氧缺血新生鼠海马磷酸化环磷酸腺苷反应元件结合蛋白的变化及神经节苷酯对其影响[J].实用儿科临床杂志Shiyong Erke Lingchuang Zazhi,2004,19(4):283-284.
    1. McKerracher L, David S, Jackson DL, et al. Identification of myelin- associated glycoprotein as a major myelin- derived inhibitor of neurite growth[J].Neuron, 1994, 13( 4): 805- 811.
    2. McKerracher L, David S, Jackson DL, et al. Identification of myelinassociated glycop rotein as amajormyelin—derived inhibitor of neurite growth[ J ]. N euron, 1994, 13 (4): 8052811.
    3. Caroni P, Schwab ME.Two membrane protein fractions from ratcentral myelin with inhibitory propenies for neurite growthand fibroblast spreading [J].J Cell'Biol, 1988, 106 ( 4): 1281-1288.
    4. Spillmann AA, Bandtlow CE, Lottspeich F, et al. Identification and characterization of a bovine neurite growth inhibitor( bNI- 220) [J].J Biol Chem, 1998, 273( 30): 19283-19293.
    5. Chen MS, Huber AB, van der Haar ME, et al. Nogo- A is a myelin - associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN- l[J].Nature, 2000, 403( 6768): 434-439.
    6. GrandpreT, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a reticulon protein [J].Nature, 2000, 403( 6768): 439- 444.
    7. Diekmann H, KlingerM, Oertle T et al. Analysis of the reticulon gene family demonstrates the absence of the neurite growth inhibitor Nogo—A in fish. Mol Biol Evol, 2005; 22:1635 - 1648.
    8. Huber AB,Weinmann O, Brosamle C, et al. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions [J].J Neurosci, 2002, 22 (9): 3553-3567.
    9. NgCE, Tang BL. Nogos and the Nogo 66 receptor: factors inhibiting CNS neuron regeneration. J Neurosci Res, 2002; 67: 559 - 565.
    10. BussA, SellhausB, WolmsleyA et al. Exp ression pattern of Nogo—A p rotein in the human nervous system. Acta Neuropathol, 2005; 110: 113-119.
    11. Wang XX, Chun SJ, Treloar H, et al. Localization of Nogo- A and Nogo- 66 receptor proteins at sites of axon- myelin and synaptic contact[J].J Neurosci, 2002, 22( 13): 5505- 5515.
    12. Jin WL, Liu YY, Liu HL, et a!. Intraneuronal localization of Nogo- A in the rat[J].J Comp Neurol, 2003, 458(1): 1-10.
    13. Josephson A, Widenfalk J, Widmer Hw, et al. Nogo mRNA expression in adult and fetal human and rat nervous tissue and in weight drop injury. Exp Neurol, 2001, 169: 319~328.
    14. Huber AB, Weinmann O, Brosamle C, et al. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions[J]. J Neurosci, 2002,22 (9):3553-3567.
    15. Barde YA. Neurotrophins: a family of proteins supporting the survival of neurons[J]. Ping Clin Biol Res, 1994,390:45-56.
    16.程希平,刘惠玲,宋朝君,等.Nogo-A在成年大鼠脑内神经元的分布,解剖学报[J].2005,5(36):463-470.
    17. Liu HL, Lang B, Wang BR, et al. Distribution and comparison of nestin in the central nervous system of the adult Sprague-Dawley rat and C57 mice[J]. Acta Anatomica Sinica, 2002,35(2): 1172121.
    18. Liu BP, Foumier A, GrandPre T, et al. Myelin- associated glycoprotein as a functional ligand for the Nogo-66 receptor[J].Science, 2002, 297(5584): 1190-1193.
    19. Buffo A, Zagrebelsky M, Huber AB, et al. Application of neutralizing antibodies against NI-35/250 myelin-associated neurite growth inhibitory proteins to the adult rat cerebellum induces sprouting of uninjured Purkinje cell axons [J].J Neurosci, Neurosci,2000, 20(6): 2275-2286.
    20. Hu F, Liu BP, Budel S et al. Nogo—A interactswith the Nogo—66 receptor through multiple sites to create an isoformselective subnanomolar agonist. J Neurosci, 2005; 25: 5298-5304
    21. Fournier AE, GrandPre T, Strittmatter SM1[J] 1 Nature, 2001, 409 (6818): 341—346.
    22. Oerile T, Vail der HanrME, Ban dtlow CE, et all [J] 1 J Neurosci, 2003, 23 (13): 5393—54061
    23. FoumierAE, GouldGC, LiuBP, et al1 [J] 1 J Neurosci, 2002, 22 (20): 8876—8883.
    24. Pignot V, Hein AE, Barske C, et al. Characterization of two novel proteins, NgRH1 and NgRH2, structurally and biochemically homologous to the Nogo—66 recep tor. J Neurochem, 2003,85(3): 717-728.
    25. Marc TL, Goodman CS. Regeneration in the Nogo Zone. Science, 2000,287 (5 454 ): 813—814.
    26. Fournier AE, Gould GC, Liu BP, et al. Truncated soluble Nogo recepter binds Nogo—66 inhibition of axon growth by myelin[J]. J Neurosci, 2002,22 (20): 8876-8883.
    27. GrandPre T, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature,2000, 4(3):439-444.
    28. Hunt D, Mason MR, Campbell G, et al. Nogo receptor mRNA expression in intact and regenerating CNS neurons[J]. Mol Cell Neurosci. 2002: 20: 537—552.
    29. Josephson A, TrifunovskiA, Widmer HR et al. Nogo2recep tor gene activity: cellular localization and developmental regulation ofmRNA in mice and humans. J Comp Neurol, 2002; 453:292-304.
    30.胡泽岚,刘莹莹,金卫林,等,Nogo-66受体在成年大鼠脊髓白质内胶质细胞的分布,第四军医大学学报.[J].2004,25(16):1444-1448.
    31. Satoh JI, Kuroda Y. Cytokines and neurotrophic factors fail to affect Nogo—A mRNA expression in differentiated human neurons: Implications for inflammation—related axonal regeneration in the central nervous system[J]. Neuropathol Appl Neurobiol, 2002; 28(2): 95—106.
    32. Woodhal E, West AK, Vickers JC, et al. Olfactory ensheathing cell phenotype following implantation in the lesioned spinal cord cell[J]. Cell Mol Life Sci, 2003; 60: 2241—2253.
    33.王丰,朱悦.大鼠脊髓来源神经干细胞NgR的表达.中国医科大学学报,[J].2006;5(35):472-475.
    34.雷季良 陈白羽 栾丽菊,等.Nogo受体(N—20)在大鼠视神经损伤后视网膜的表达,神经解剖学杂志,[J].2004;20(5):444-448.
    35.谢琳,贺翔鸽,何凤慈,等Nogo-66受体在大鼠神经组织中的表达,第三军医大学学报,[J].2005;27(23):2335-2338.
    36. Josephson A, Trifunovski A, Widmer H R, et al. Nogo-receptor geneactivity: cellular localization and developmental regulation of mRNA in mice and humans[ J ]. J Comp Neurol, 2002, 453 (3): 292 - 304.
    37. Etienne-MannevilleS, HallA. RhoGtp sincellbiology. Nature. 2002. 420: 629—635.
    38. TakaiY, Sasaki MatozakiT. SmallG GTP-binding proteins Physiol Rev, 2001, 81(1): 153 — 208.
    39. HallA. Rho GTPases and the actin cytoskeleton. Science. 1998. 279: 509-514.
    40. HallA. Rho GTPase and the actin cytoskeleton. Science. 1998, 279(5350): 509—514.
    41. Hall Al Rho GTPases and the actin cytoskeletonl Science , 1998 , 279 :509-5141.
    42. Negishi M, Katoh H1 Rho family GTPases as key regulators for neuronal network formation1 J Biochem Tokyo , 2002 , 132 : 157—166.
    43. Kobayashi K, Takahashi M, Matsushita N , et all Survival of developing motor neurons mediated by Rho GTPase signaling pathway through Rho -kinasel J Neurosci, 2004 , 24 : 3480—3488.
    44. Wheeler AP , Ridley AJ1 Why three Rho proteins ? RhoA , RhoB , RhoC ,and cell motilityl Exp Cell Res ,2004, 301 : 43-49.
    45. Kentaro I, Sachiko M, Masato K, et al . Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue 1J Biol Chem,1998 , 273 : 9656—9666.
    46. Kim JE, Li S, Grandp reT, et al. Axon regeneration in young adult mice lacking Nogo-A /B. Neuron, 2003, 38 (2): 187-199.
    47. Zheng B , Ho C, Li S, et al. Lack of enhanced sp inal regeneration in Nogo2deficient mice. Neuron, 2003 , 38 (2 ): 213 2224.
    48. Simonen M, Pedersen V, Weinmann O, et al. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A imp roves regenerative and plastic responses after spinal cord injury. Neuron,2003,38(2):201 2211.
    49. ChenMS, HuberAB, van der HaarME et al. Nogo2A is a myelin—associated neurite outgrowth inhibitor and an antigen formonoclonal antibody IN—1. Nature, 2000; 403: 434-439.
    50. Fouad K, Klusman I, SchwabME. Regenerating corticospinal fibersin the Marmoset ( Callitrix jacchus) after spinal cord lesion and treatment with the anti—Nogo—A antibody IN—1. Eur J Neurosci,2004; 20: 2479 - 2482.
    51. Liebscher T, SchnellL, SchnellD et al. Nogo—A antibody improves regeneration and locomotion of spinal cord—injured rats. Ann neuro,2005; 58, 706 - 719.
    52. FischerD, He Z, BenowitzL I. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J Neurosci, 2004; 24: 1646 - 1651.
    53. Buffo A, ZagrebelskyM, HuberAB et al. App lication of neutralizing antibodies against NI235 /250 myelin—associated neurite growth inhibitory proteins to the adult rat cerebellum induces sprouting of uninjured Purkinje cell axons. J Neurosci, 2000; 20: 2275 - 2286.
    54. Sivasankaran R , Pei J ,Wang KC , et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat Neurosci. 2004,7( 3 ):261-268.
    55. DomeniconiM , Cao Z, Spencer T, et al. Myelin 2associated glycoprotein interacts with thenogo6 6 receptor to inhibit neurite out growth. Neuron. 2002,35( 2 ) :283-290
    56. Wang X , Chun SJ , Treloar H , et al. Localization of Nogo—A andNogo—6 6 receptor proteins at sites of axonmyelin and synap ticcontact. J Neurosci. 2002 , 22(13):5505 —5515.
    57. OpNeill P, Whalley K, Ferretti P. Nogo and Nogo266 recep tor in human and chick: imp lications for development and regeneration.Dev Dyn, 2004; 231: 109-121.
    58. Mingorance A, Fontana X, SoleM, et, al. Regulation of Nogo and Nogo receptor during the development of the entorhinohippocampal pathway and after adult hippocampal lesions. Mol Cell Neurosci,2004; 26: 34-49.
    59. Josephson A , Trifunovski A , Widenfalk S, et al. Activity induced and developmental downtegulation of the Nogo receptor.Cell Tissue Res. 2003 ,311(3): 333-342.
    60. Kim JE, Liu BP, Park JH, et al. Nogo266 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron, 2004 , 44 ( 3 ) : 439-451.
    61. Zheng B , Atwal J , Ho C, et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci U S A.2005, 102(4): 1205 21210.
    62. Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor / p75 signaling complex. Nat Neurosci, 2004 ,7(3): 221-228.
    63. Kobayashi K, Takahashi M, Matsushita N , et al Survival of developing motor neurons mediated by Rho GTPase signaling pathway through Rho -kinasel J Neurosci, 2004 , 24 : 3480-3488.
    64. Ridley A, Hall Al [ J ] 1 Cell, 1992, 70 (3): 3892-3991.
    65. HuberAB, Weinmann O, Brosamle C, et all [ J ]1 J Neurosci, 2002,22 (9): 35532-35671
    66. Hall Al [ J ] 1 Science, 1998, 279 ( 5350 ): 5092-5141.
    67. Vinson M, Rausch O, Maycox PR, et all [ J ] 1 Mol CellNeurosci, 2003, 22 (3): 3442-3521.
    68. Dergham P, Ellezam B, Essagian C, et all [ J ]1J Neurosci, 2002, 22 (15): 6570-65771.
    69. Matsui T, Amano M, Yanmmoto T. et al. Rho—associated kinase. A novel serine / threonine kinase. as a putative target for the Silkall GTP binding protein Rho. EMBO J, 1996, 15(9): 2208-2216.
    70. Fournier A E. Takizawa B T. Strittmtter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS. JNeurosci. 2003, 23(4): 1416—1423.
    71. Kimura K, ho M, Aman o M, et al. Regulation of myosin phosphatase by Rho and Rho—associated kinase (Rho-like). Science. 1996, 273(5272): 245—248.
    72. Schmidt J T, Morgan P, Dowel N, et al. Myosin light chain phosphorylation and growth cone motility. J Neurobiol, 2002, 52(3); 175—188.
    73. Niederost B ,Oertle T ,Frit sche J ,et al . Nogo—A and myelin — associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Racl[J ] . J Neurosci ,2002 ,22 (23): 10368 -10376.
    74. Spencer T. Fibin MT. A role for cAMp in regeneration of the adult mammalian CNS. J Anat, 2004, 2o4(1): 49—55.
    75. NeumannS, BradkeF, Tessier—LaviEneM, et . Regeneration of Sensory axonals within the injured spinal cord induced by intraganglionie cAMP devation. Neuron, 2002, 34(6): 885—893.
    76. Kobayashi K, Takahashi M, Matsushita N , et all Survival of developing motor neurons mediated by Rho GTPase signaling pathway through Rho -kinasel J Neurosci, 2004 ,24 : 3480-3488
    77. Fournier AE , Takizawa BT, Strittmatter SM1 Rho kinase inhibition enhances axonal egeneration in the injured CNS1 J Neurosci, 2003 , 23 :1416-14231
    78. Fiedler M, Horn C, Bandtlow C, et al. An engineered IN- 1 Fab fragment with improved affinity for the Nogo- A axonal growth inhibitor permits immunochemical detection and shows enhanced neutralizing acitivty [J].Protein Eng, 2002, 15(11): 931- 941.
    79. Fouad K, Klusman I, Schwab ME. Regenerating corticospinal fibers in the Marmoset after spinal cord lesion and treatment with the anti - Nogo - A antibody IN- 1 [J].Eur J Neurosci,2004, 20( 9): 2479- 2482.
    80. Buffo A, Zagrebelsky M, Huber AB, et al. Application of neutralizing antibodies against NI-35/250 myelin- associated neurite growth inhibitory proteins to the adult rat cerebellum induces sprouting of uninjured Purkinje cell axons [J].J Neurosci,2000, 20( 6): 2275- 2286.
    81. Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promote spinal cord repair [J].J Neurosci,2002, 22( 15): 6570- 6577.
    82. Li S, Strittmatter SM. Delayed systemic Nogo- 66 receptor antagonist promotes recovery from spinal cord injury [J].J Neurosci,2003, 23(10): 4219- 4227.
    83. LehmannM . Fournier A. Seles. Navarro 1. et al. Inactivation of Rho signalling pathway promotes CNS axon regeneration. J Neurosci, 1999. 19(17): 7537—7547
    84. Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promote spinal cord repMr. JNeurosci, 2002, 22(15): 6570—6577.
    85. Fournier A E. Takizawa B T. Strittmtter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci. 2003. 23(4): 1416—1423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700