超声微泡造影剂联合脂质体介导pNogo-R shRNA转染神经干细胞的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨超声微泡介导pGPU6/Neo质粒转染大鼠NSCs的最优参数。
     方法:以一定能量的超声介导质粒转染大鼠NSCs,分为:空白组、pGPU6/Neo质粒组、pGPU6/Neo质粒+微泡组、pGPU6/Neo质粒+超声组、pGPU6/Neo质粒+微泡+超声组,并按不同转染条件分为亚组。转染48 h后荧光显微镜观察转染效率,台盼蓝染色法检测细胞活性。
     结果:最优参数为声强1.0 W/cm~2,辐照时间30 s时,超声微泡介导质粒转染率最高,且对细胞活性无明显影响。超声微泡介导质粒对NSCs的转染效率,明显高于其他实验组(P<0.05)。
     结论:在超声声强为1.0 W/cm~2,辐照时间30 s的条件下,超声微泡造影剂能够安全、有效地介导基因转染NSCs。
     目的:探讨超声微泡介导pNogo-R shRNA转染大鼠NSCs的有效率及可行性,同时评估UMMD联合脂质体提高基因转染效率的协同作用。
     方法:NSCs自清洁级SD新生大鼠分离获得,以不同的方式转染培养至第三代的NSCs,分为:A.空白组、B.阴性质粒+超声微泡组、C. pNogo-R shRNA质粒+超声微泡组、D. pNogo-R shRNA质粒+脂质体组、E. pNogo-R shRNA质粒+超声微泡+脂质体组。
     结果:荧光显微镜观测结果显示,E组转染效率明显高于其他实验组,而C组与D组间无显著差异;同时,台盼蓝染色法显示,与其他组相比较,超声微泡联合脂质体组对细胞活性影响无显著差异;转染24小时后,E组Nogo-R的蛋白及mRNA表达水平明显低于其他组别(P<0.05),差异具有统计学意义。
     结论:本研究结果表明,超声微泡联合脂质体的基因转染为一非侵袭性转染方法,对细胞活性影响小,具有一定可行性。超声微泡和脂质体的联合作用能增强pNogo-R shRNA质粒转染NSCs,这种联合转染方式为NSCs转基因治疗提供了一种新方法。
Objective: To investigate the parameters of ultrasound-mediated microbubble destruction of pGPU6/Neo plasmid transfected into NSCs of rats by ultrasound.
     Methods: The plasmid was used to transfect into NSCs by ultrasound-mediated microbubble destruction. The NSCs were divided into 5 groups: blank control, pGPU6/Neo plasmid, pGPU6/Neo plasmid-microbubble, pGPU6/Neo plasmid-ultrasound and pGPU6/Neo plasmid-microbubble-ultrasound. The last group was further divided into subgroups according to different conditions of ultrasound. After 48 h, the expression of GFP was detected by fluorescent microscope. The cell vitality was measured by typan-blue stainning.
     Results: The transfection efficiency was the highest and the cell vitality was not different from other subgroups when ultrasound was radiated at frequency of 300 kHz and sound intensity of 1.0 W/cm2 for 30 s. The transfection efficiency of plasmid-microbubble-ultrasound group was statistically higher than those of other groups (P<0.05).
     Conclusions: Under sound intensity 1.0 W/cm~2 and exposure time 30 s, ultrasound-mediated microbubble destruction could enhance gene transfection in NSCs.
     Objective: To explore the feasibility and efficiency of transfection into NSCs with pNogo-R shRNA by ultrasound-mediated microbubble destruction (UMMD), and to assess synergistic effect of UMMD together with liposome -plasmid DNA in increasing transfection efficiency.
     Methods: NSCs was sterilely obtained from neonatal Sprague Dawley rats. The third passaged cells were treated transgene following by different transfection conditions with (A) blank, (B) negative control+ultrasound microbubble, (C) pNogo-R shRNA+ ultrasound microbubble, (D) pNogo-R shRNA+Liposome, and (E) pNogo-R shRNA+Liposome+ultrasound microbubble, respectively.
     Results: In vitro cell experiments, no significant difference between C and D with fluorescence microscope was found, while transfection efficiency in group E was the highest compared with those of the other groups. More importantly, Liposome+ultrasound microbubble-mediated group did not affect the cell vitality comparing with the other groups by trypan-blue staining. In addition, Nogo-R mRNA and protein expression was dramatically decreased in group E (P<0.05), compared with other groups after 24 h transfection.
     Conclusion: Taken together, the present data demonstrates that UM+Lip-mediated transtection could be an efficiently noninvasive mean in transfection of NSCs. Ultrasound-microbubble technique could increase Nogo-R gene transfer into NSCs together with liposome, suggesting that the combination transfection provides a new method for transgene therapy of NSCs
引文
[1] Lim PA, Tow AM. Recovery and Regeneration after Spinal Cord Injury: A Review and Summary of Recent Literature[J]. Ann Acad Med Singapore. 2007,36(1):49-57
    [2] Webb AA, Ngan S, Fowler JD. Spinal cord injury I: A synopsis of the basic science [J]. Can Vet J. 2010,51(5):485-492
    [3] Bottai D, Madaschi L, Di Giulio AM, et al. Viability-dependent promoting action of adult neural precursors in spinal cord injury [J]. Mol Med. 2008, 14(9-10):634-644
    [4] Eftekharpour E, Karimi-Abdolrezaee S, Fehlings MG. Current status of experimental cell replacement approaches to spinal cord injury [J]. Neurosurg Focus. 2008,24(3-4):E19
    [5] Wei Li, Su Liu, Jianli Ren,et al. Gene Transfection to Retinal Ganglion Cells Mediated by Ultrasound Microbubbles in vitro [J]. Acad Radiol. 2009,16(9): 1086- 1094
    [6] Akowuah EF, Gray C, Lawrie A, et al. Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model [J]. Gene Ther. 2005;12(14):1154-1157
    [7]聂芳,徐辉雄,吕明德,等.超声介导微泡造影剂促进HSV-TK基因转染抑制小鼠肝癌移植瘤的实验研究[J].中国超声医学杂志. 2008,24(5):399-402
    [8]李红丽,杜联芳,郑孝志,等.超声辐照微泡介导脂质体小干扰RNA转染视网膜色素上皮细胞[J].中国医学影像技术. 2010,26(1):22-24
    [9]廖沁,周希瑗,王志刚,等.超声微泡造影剂介导PEDF质粒转染大鼠视网膜的实验研究[J].中国医学影像技术. 2008,24(8):1149-1152
    [10] Yu P, Huang L, Zou J,et al.Immunization with recombinant Nogo-66 receptor (NgR) promotes axonal regeneration and recovery of function after spinal cord injury in rats [J]. Neurobiol Dis.2008;32(3):535-542
    [11] Wang F, Zhu Y.The interaction of Nogo-66 receptor with Nogo-p4 inhibits the neuronal differentiation of neural stem cells [J]. Neuroscience. 2008;151(1):74-81
    [12] Kabatas S, Teng YD.Potential roles of the neural stem cell in the restoration of the injured spinal cord: review of the literature [J].Turk Neurosurg.2010,20(2):103-110
    [13] Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review [J]. J Neurosci Res. 2009,87(10):2183-2200
    [14] Mayer CR, Geis NA, Katus HA, et al.Ultrasound targeted microbubble destruction for drug and gene delivery [J].Expert Opin Drug Deliv. 2008,5(10):1121-1138
    [15] Dijkmans PA, Juffermans LJ, Musters RJ,et al.Microbubbles and ultrasound:from diagnosis to therapy [J].Eur J Echocardiogr. 2004,5(4):245-256
    [16] Yong FU, Shen-qing WANG, Ying-peng LIU, et al. Gene transfer into primary cultures of fetal neural stem cells by a recombinant adenovirus carrying the gene for green fluorescent protein [J]. Zhejiang Univ Sci B. 2008;9(4):299-305
    [17]湛彦强,王芙蓉,黎逢光,等.不同方法及载体转染神经干细胞的实验研究[J].卒中与神经疾病. 2007,14(5):259-262
    [18] Zhou BJ, Zha DG, DU RS, et al.Impact of ultrasound-mediated microbubbles on myocardial vascular permeability in rats [J].Nan Fang Yi Ke Da Xue Xue Bao. 2010,30(2):239-241
    [19] Mayer CR,Bekeredjian R.Ultrasonic gene and drug delivery to the cardiovascular system [J].Adv Drug Deliv Rev. 2008,60(10):1177-1192
    [20] Vancraeynest D,Havaux X,Pouleur AC,et al.Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destruction [J].Eur Heart J. 2006,27(2):237-245
    [21] Meijering BD,Henning RH,Van Gilst WH, et al.Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells [J].J Drug Target. 2007,15(10):664-671
    [22]董培婷,熊正爱,李攀,等.超声微泡介导P53对宫颈癌HeLa细胞转染效率的试验研究[J].生物技术通报, 2009,(9):92-96
    [23]骆书美,张云燕,钟晓波,等.超声微泡造影剂介导pEGFP-N1质粒转染HGFs的实验研究[J].第三军医大学学报, 2009,31(24):2459-2462
    [24] Paspala SA, Balaji AB, Nyamath P,et al. Neural stem cells & supporting cells--the new therapeutic tools for the treatment of spinal cord injury [J]. Indian J Med Res. 2009,130(4):379-391
    [25] Nandoe Tewarie RS, Hurtado A, Bartels RH,et al.Stem cell-based therapies for spinal cord injury [J]. J Spinal Cord Med. 2009,32(2):105-114
    [26] Bagnis C, Mannoni P. Stem Cell-Based Gene Therapy [J]. Oncologist. 1997,2(3):196-202
    [27] Su Y, Wang F, Zhao SG, et al. Axonal regeneration after optic nerve crush in Nogo-A/B/C knockout mice [J].Mol Vis. 2008,14:268-273
    [28] Xie F,Zheng B.White matter inhibitors in CNS axon regeneration failure [J]. Exp Neurol. 2008,209(2):302–312
    [29]王东,张建军,杨忠旭.神经干细胞NgR基因沉默移植治疗大鼠脊髓损伤[J].中国危重病急救医学. 2010,22(1):28-31
    [30] Wu J, Nyborg WL.Ultrasound, cavitation bubbles and their interaction with cells [J]. Adv Drug Deliv Rev. 2008,60(10):1103-1116
    [31] O'Brien WD Jr.Ultrasound-biophysics mechanisms [J].Prog Biophys Mol Biol. 2007,93(1-3):212-255
    [32] Newman CM, Bettinger T.Gene therapy progress and prospects: ultrasound for gene transfer [J]. Gene Ther. 2007,14(6):465-475
    [33] Zhou XY, Liao Q, Pu YM, et al.Ultrasound-mediated microbubble delivery of pigment epithelium-derived factor gene into retina inhibits choroidal neovascularization [J]. Chin Med J. 2009,122(22):2711-2717
    [34] Nishida K, Doita M, Takada T, et al. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy [J]. Spine. 2006,31(13):1415-1419
    [35] Della Martina A, Allémann E, Bettinger T, et al.Grafting of abciximab to a microbubble-based ultrasound contrast agent for targeting to platelets expressing GP IIb/IIIa–characterization and in vitro testing [J]. Eur J Pharm Biopharm. 2008,68(3):555- 564
    [36] Guo DP, Li XY, Sun P, et al.Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells [J]. Biochem Biophys Res Commun. 2006,343(2):470-474
    [37] Ewert KK, Ahmad A, Bouxsein NF, et al. Non-viral gene delivery with cationic liposome-DNA complexes [J]. Methods Mol Biol. 2008,433:159-175
    [38] Karmali PP, Chaudhuri A. Cationic liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises [J]. Med Res Rev. 2007,27(5):696-722
    [1] Lim PA, Tow AM. Recovery and regeneration after spinal cord injury: a review and summary of recent literature [J]. Ann Acad Med Singapore.2007,36(1):49-57
    [2] Wen T, Li H, Song H, et a1. Down-regulation of specific gene expression by double-strand RNA induces neural stem cell diferentiation in vitro [J]. Mol CelI Biochem. 2005,275(1-2): 215-221
    [3] Wong AM, Hodges H, Horaburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia [J]. Brain Res. 2005, 1063(2):140-150
    [4] Setoguchi T, Nakashima K, Takizawa T, et al. Treatment of spinal cord injury bytransplantation of fetal neural precursor cells engineered to express BMP inhibitor [J]. Exp Neurol. 2004,189(1): 33-44
    [5] Paspala SA, Balaji AB, Nyamath P,et al. Neural stem cells & supporting cells--the new therapeutic tools for the treatment of spinal cord injury [J]. Indian J Med Res. 2009,130(4):379-391
    [6] Nandoe Tewarie RS, Hurtado A, Bartels RH,et al.Stem cell-based therapies for spinal cord injury [J]. J Spinal Cord Med. 2009,32(2):105-114
    [7] Ryu MY, Lee MA, Ahn YH, et al. Brain transplantation of neural stem cells cotransduced with tyrosine hydroxylase and GTP cyclohydrolase 1 in Parkinsonian rats [J]. Cell Transplant. 2005,14(4): 193-202
    [8] Domeniconi M, Cao Z, Spencer T, et al. Myelin-associated glycoprotein interacts with the nogo66 receptor to inhibit neurite outgrowth [J]. Neuron. 2002,35(2): 283-290
    [9] Liu BP, Fournier A, GrandPre T, et al. Myelin-associated glycoprotein interacts as a functional ligand for Nogo-66 receptor [J]. Science.2002,297(5584):1190-1193
    [10] Fournier AE, GrandPre T, Strittmatter SM. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration [J]. Nature. 2001,409(6818):34l-346.
    [11] Barton WA, Liu BP, Tzvelkova D, et al. Structure and axon outgowth inhibitor binding of the Nogo-66 receptor and related proteins [J]. EMBO J. 2003,22(13):329l-3302
    [12] Hunt D, coffin RS, Anderson PN. The Nogo receptor, its ligands and axonal regenemtion in the spinal cord: a review [J]. J Neurocytol. 2002,3l(2):93-120
    [13] Wang KC, Kim JA, Sivasankaran R, et al. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and Omgp [J]. Nature. 2002,420(6911):74-78
    [14] Wong ST, Henley JR, Kanning KC, et a1. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glyeoprotein [J]. Nat Neurosci. 2002,5(12):1302-1308
    [15] Mi S, Lee X, Shan Z, et al. LINGO-l is a component of the Nogo-66 receptor/p75 signaling complex [J]. Nat Neurosci. 2004,7(3):221-228
    [16] Moon SY, Zheng Y. Rho GTPase-activating proteins in cell regulation [J]. Trends Cell Biology. 2003,13(1):13-22
    [17] Fournier AE, Takizawa BT, Strittmatter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS [J]. J Neurosci. 2003,23(4):1416-1423
    [18]高明勇,郑启新,肖建德,等.大鼠脊髓源神经干细胞胶质细胞源性神经营养因子基因转染实验研究[J].中华实验外科杂志. 2005,22(4): 474
    [19]丁继故.脊髓源神经干细胞转基因治疗脊髓损伤的研究及展望[J].咸宁学院学报. 2006,20(5):369-372
    [20]王丰,朱悦.RNA干扰沉默神经干细胞Nogo-66受体基因阻断Nogo-66抑制神经突生长作用的研究[J].中国修复重建外科杂志. 2007,21(6):642-647
    [21]王东,张建军,杨忠旭.神经干细胞NgR基因沉默移植治疗大鼠脊髓损伤[J].中国危重病急救医学. 2010,22(1):28-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700