单晶钛酸铅纳米结构的可控制备、掺杂、相变与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿结构铁电氧化物纳米材料具有优异的物理和化学性能,在高密度存储器、压电纳米发电机和催化等领域有着广阔的应用前景。开展纳米尺度钙钛矿结构铁电氧化物的可控制备,研究其结构与性能间的相互关系,对于这类材料的发展以及应用拓展都具有重要的指导意义。
     本文首先简要概述了铁电氧化物的结构特点,重点总结和评述了PbTiO3(PT)及其固溶体铁电纳米材料的制备与性能研究现状。针对一维单晶PT及其固溶体铁电纳米材料的可控制备和尺寸调控等难点问题,本文采用PVA作为表面修饰剂辅助水热法分别首次成功合成出Ba、Fe、Zr掺杂前钙钛矿相PT单晶纳米纤维,并通过固相烧结法获得Ba、Fe、Zr掺杂的四方钙钛矿相PT单晶纳米纤维。此外,采用多种分析测试技术对前钙钛矿相和钙钛矿相Ba、Fe、Zr掺杂PT单晶纳米纤维的铁电性、铁磁性和荧光等性能进行了研究。系统研究了前钙钛矿相PT纳米纤维的相变过程和介孔形成机制。以低维PT铁电纳米材料为载体,分别对其负载Pt和Ti02合成Pt-PT和PT-TiO2复合材料,成功将铁电氧化物纳米材料拓展到CO催化和可见光光催化领域。本文主要研究内容如下:
     (1)采用PVA辅助水热法,首次成功制备了一系列具有规则刻面且表面光滑的Ba掺杂前钙钛矿相PT纳米纤维,其直径为100-600nm,长度为13-120gm,纳米纤维长径比高达200,Ba2+在前钙钛矿相PT中的掺杂极限值为5-8mo1%。在生长过程中,PVA分子链通过氢键或化学吸附附着在Ba掺杂前钙钛矿相PT晶核表面,抑制了{001}晶面的生长速率,使其沿[001]方向发生取向生长,从而制备出Ba掺杂前钙钛矿相PT单晶纳米纤维。该纳米纤维在高温热处理后会相变成为单晶Ba掺杂钙钛矿相PT纳米纤维,压电力显微镜研究表明5mol%Ba掺杂PT单晶纳米纤维具有明显的压电铁电性能。
     (2)采用PVA辅助水热法,首次成功制备了A位Fe掺杂前钙钛矿相PT单晶纳米纤维,其掺杂极限在2-5mo1%之间,该纳米纤维在高温热处理后相变为B位Fe掺杂的四方钙钛矿相PT纳米纤维。Fe掺杂前钙钛矿相PT纳米纤维的M-H结果表明,未掺杂的样品为典型的抗磁性,Fe掺杂浓度为1mol%时,样品表现为铁磁性,当掺杂含量增加至2mo1%,转变为顺磁性;Fe掺杂钙钛矿相PT纳米纤维的M-H曲线显示,纯PT表现为抗磁性,当掺杂含量为1mol%时,样品为铁磁性,且随着Fe浓度增加至2mo1%时,样品饱和磁化强度基本不变。
     (3)采用PVA辅助水热法,首次成功制备了一系列Zr掺杂前钙钛矿相PT纳米纤维,其直径为100-400nm,长度为5-30μm,掺杂极限在15-20mo1%+之间;该纳米纤维在高温热处理后可以转变为Zr掺杂钙钛矿相PT单晶纳米纤维。室温条件下,经325nm激光激发后,Zr掺杂前钙钛矿相PT纳米纤维在绿光和近红外波段都有荧光发光峰,且随着Zr掺杂浓度增加,其发光强度减弱,发光峰位基本不变。
     (4)采用高温热处理法,结合In-situ XRD和In-situ TEM等测试手段,系统研究了前钙钛矿相向钙钛矿相PT的相变过程和介孔形成机制。在相变过程中,随着温度的升高,前钙钛矿相晶体结构的ab面首先被打破,产生大量熔化形成的非晶区域,这些区域的出现有效降低了前钙钛矿和钙钛矿相PT晶格不匹配造成的界面能,使其相变过程顺利进行。此外,相变过程中产生的非晶区域结晶成为立方钙钛矿结构时,由于两种结构存在较大的密度差,纳米纤维内部出现孔径为5-10nm的介孔,这种介孔随着温度的升高相互吞并长大,直至迁移至表面、消失;采用短时间热处理并结合快速冷却的方式可以有效保留这些介孔,获得单晶介孔的铁电纳米纤维。
     (5)采用浸渍还原法获得Pt-PT纳米纤维,其CO催化结果显示,纯钙钛矿相PT纳米纤维在温度升高至250℃对CO仍无催化作用;开孔Pt/meso-PT样品和闭孔Pt/meso-PT-surf-block样品在温度为85℃时,均可实现对CO的100%转化率,而无孔的Pt-PT样品温度为100℃。通过对比三者的动力学曲线,发现其表观活化能呈递减趋势,介孔Pt/meso-PT纳米纤维的催化活性最高。
     (6)采用简单的二次水热法成功合成出不同浓度的PT-TiO2复合纳米材料,研究发现Ti02纳米颗粒与PT纳米片可能发生外延生长,形成异质结结构。有机物光降解研究表明:可见光(λ~420nm)连续辐照3h后,PT-TiO2复合纳米材料对亚甲基蓝(MB)溶液的降解效率接近100%;且随着复合材料中Ti02比例增加,PT-TiO2复合纳米材料的一级反应速率常数从0.0161增加至0.0203min-1。
     (7)采用水热法合成了a-FeOOH单晶纳米棒,在氧气和氮气保护下对其进行热处理,分别获得单晶介孔a-Fe2O3和Fe304纳米棒,二者孔径分布范围对应为1-8nm和1-18nm。三种不同结构氧化铁的电化学性能数据显示,在0.1C倍率下,无孔a-FeOOH样品循环性能较差,而具有介孔结构的a-Fe2O3和Fe304单晶纳米棒由于结构稳定性好,比表面积高,在0.1C倍率下充放电50次后,可逆容量分别高于890mAhg-1和840mAhg-1,表现出优异的循环性能。
Perovskite-type ferroelectric oxide nanomaterials demonstrate unique physical and chemical properties, affording versatile potential applications ranging from high-density ferroelectric random access memory, nanogenerators to catalysis. Investigation on the controllable growth of the perovskite nano-ferroelectrics and further building the relationship between the microstructures and properties, are highly desired to develop and expand application for these materials.
     In this dissertation, the structure and preparation of ferroelectric nanomaterials has been reviewed firstly. Furthermore, the current situation and main problems on the synthesis and properties of PbTiO3(PT) as well as its solid solutions have been summarized in detail. However, the controllable growth of one-dimensional(ID) single-crystal PT and its solid solutions nanostructures remains a challenge. Thus, single-crystal pre-perovskite PT nanofibers with different dopant such as Ba, Fe and Zr ions were synthesized via a polymer-assisted hydrothermal method. On the basis of the doped pre-perovskite PT nanofibers, single-crystal Ba, Fe and Zr-doped perovskite PT nanofibers have been prepared accordingly via a phase transformation route. Moreover, various measurement methods were employed to study ferroelectricity, ferromagnetism and photoluminescence (PL) properties of the pre-perovskite and perovskite PT nanofibers with Ba, Fe and Zr dopant. In particular, the phase transformation from pre-perovskite PT to perovskite PT, accompanied by the formation of the mesoporosity has been systematically explored. To further investigate the applications of the low-dimensional PT ferroelectrics, the obtained PT nanostructures were loaded by Pt and TiO2nanocrystals, respectively. It is clearly demonstrated that Pt-PT and TiO2-PT composite materials represent fascinating CO catalytic activity and visible-light photocatalytic performances, which could extend the applications of ferroelectric oxides to environment area. The main contents and results are summarized as follows:
     (1) Single-crystal Ba-doped pre-perovskite PT nanofibers (0-5mol%) with a diameter of100-600nm and a length of13-120μm have been synthesized by a PVA assisted hydrothermal method. The limited solubility of Ba in pre-perovskite PT was determined to be5-8mol%. During the reaction process. PVA molecule was possibly adsorbed on the Ba-doped pre-perovskite PT nanoparticle via hydrogen bonding or chemical interaction, which limited the growth of certain crystalline planes{110}, leading to the oriented growth of Ba-doped pre-perovskite PT nanofibers along [001] direction. Ba-doped perovskite PT nanofibers have been prepared via a phase transformation of the pre-perovskite ones. And the PFM results confirmed the piezoelectric and ferroelectric properties of5mol%Ba-doped perovskite nanofibers.
     (2) Fe-doped pre-perovskite PT single-crystal nanofibers have been synthesized by hydrothermal method, and the limited solubility of Fe in this structure was determined to be2-5mol%. These nanofibers can transform to Fe-doped perovskite PT single-crystal nanofibers. As Fe doping contents increased, M-H results indicated that the pre-perovskite PT nanofibers develop from diamagnetism (without Fe doping) to ferromagnetism(1mol%) and paramagnetism (2mol%). For the Fe-doped perovskite PT nanofibers, the magnetism of the samples developed from diamagnetism (0mol%) to ferromagnetism(1mol%). However, as Fe doping concentration increased to2mol%, the saturation magnetization changed slightly.
     (3) Single-crystal Zr-doped pre-perovskite PT nanofibers with a diameter of100-400nm and a length of5-30μm have been synthesized by a PVA assisted hydrothermal method. The limited solubility of Zr in pre-perovskite PT was determined to be15-20mol%. Moreover. these nanofibers can transform into single-crystal perovskite Pb(Zr, Ti)O3(PZT) nanofibers by annealing treatment in air. Zr-doped pre-perovskite PT nanofibers demonstrate strong green and near infrared (NIR) PL emission at room temperature. The green PL intensity is evidently decreased with the Zr doping concentration increased.
     (4) The phase transformation from pre-perovskite PT to perovskite PT, accompanied by the formation of the mesopores has been systematically investigated with in-situ XRD and in-situ TEM analysis. During the phase transformation process, ab plane of pre-perovskite PT crystal structure wasdestroyed firstly. accompanied with the appearance of a large number of amorphous regions. These amorphous regions could reduce the interface energy between pre-perovskite PT and perovskite PT, and stimulate the transformation process. In addition, the faceted mesoporeswith a size of5-10nm formed within the entire nanofiber when the amorphous crystallized into the structure of cubic perovskite PT, due to the density difference between pre-perovskite and perovskite PT. When the heating time is long enough, the porous aggregated and moved into the surface of the fibers, and disappeared in the end. accompanied with a complete phase transformation. Therefore, single-crystal mesoporous perovskite PT nanofibers could be obtained by a short time annealing treated and quickly quenched approach.
     (5) Pt-PT nanofibers were prepared by an impregnation-reduction method. The catalytic results suggested that pure PT nanofibers almost have no catalytic activity for the oxidation of CO up to250℃. For Pt/meso-PT, Pt/meso-PT-surf-block and Pt/PTsamples, the100%conversion of CO was achieved at-85℃,-85℃and-100℃, respectively. Additionally, the apparent activation energyof these three samples was decreased gradually, indicating that the Pt/meso-PT sample with open porous structure has an improved catalytic performance.
     (6) PT-TiO2composite nanomaterials were fabricated by a hydrothermal method. A crystallography epitaxial growth of TiO2on PT may be appeared. The PT-TiO2composite nanomaterials were used to photochemically degrade methylene blue (MB) under visible light(λ-420nm). After3h of irradiation, the degradation rate of MB was closed to100%. The first-order reaction rates of PT-TiO2samples were increased from0.0161to0.0203min-1as increasing the TiO2ratio in the composite materials.
     (7) Single-crystal a-FeOOH nanorods were successfully synthesized via a facile hydrothermal method. Mesoporous a-Fe2O3and Fe3O4single-crystal nanorods with a pore size of1-8nm and1-18nm, respectively, could be obtained by calcining these a-FeOOH precursors in different atmosphere. When tested as the anode materials for lithium ion batteries, a-FeOOH sample exhibited a poor electrochemical performance. In contrast, a-Fe2O3and Fe3O4nanorods with the unique mesoporous structure have excellent structural stability and large specific surface area, which could deliver the high reversible capacities of890and840mAhg-1after50cycles at0.1C respectively.
引文
[1]朱静等,纳米材料和纳米器件.北京,清华大学出版社,2003.
    [2]M. E. Lines, A. M. Glass, Principles and applications of ferroelectrics and related materials, Clarendon press, Oxford,1977.
    [3]J. G. Bednorz, A. K. Muller, Perovskite-type oxides-The new approach to high-Tc superconductivity, Rev. Mod. Phys.60,585-600(1988).
    [4]Y.Tokura, Colossal magnetoresistive oxides, Gordon and Breach Science, New York,2000.
    [5]钟维烈,铁电体物理学,科学出版社,北京,2000.
    [6]J. F. Scott. Ferroelectric memories.Springer-Verlag, Berlin Heidelberg,2000.
    [7]Y. Kim, H. Han, Y. Kim, W. Lee, M. Alexe, S. Baik, J.K. Kim. Ultrahigh density array of epitaxial ferroelectric nanoislands on conducting substrates. Nano Lett.,2010,10:2141-2146.
    [8]M. Alexe, D. Hesse. Self-assembled nanoscale ferroelectrics. J. Mater. Sci.,2006,41(1):1-11.
    [9]王永刚.钙钛矿氧化物纳米结构的水热合成、表征及性能研究[博士学位论文].杭州:浙江大学材料系,2009.
    [10]王中林,康振川.功能与智能材料结构演化与结构分析.北京:科学出版社,2002:106。
    [11]任清褒,谢潮涌,叶远平.钙钛矿型铁电体的宏观效应及其应用.丽水师范专科学校学报,2003,25(5):36-40.
    [12]J. F. Scott, F. D. Morrison, M. Miyake, P. Zubko, Nano-Ferroelectric Materials and Devices, Ferroelectrics,2006,336:237-245.
    [13]Ronald E. Cohen. Origin of ferroelectricity in perovskite oxides.Nature,1992,358:136-138.
    [14]汪春昌,朱静,铁电性、高温超导性和庞磁电阻(CMR)效应的共性探讨,材料导报,2002,16:16-18.
    [15]宋红章,李永祥,殷庆瑞,铁电体中相变临界尺寸的研究现状,无机材料学报,2007,22:583-589.
    [16]S.B. Ren, C.J. Lu, J.S. Liu, H.M. Shen, Y.N. Wang, Size-related ferroelectric-domain-structure transition in a polycrystalline PbTiO3 thin film, Phys. Rev. B, 1996,54,R14337-R14340.
    [17]W. L. Zhong, Y. X. Wang, C. L. Wang, B. Jiang, L. A. Bursill, Domain structure in ferroelectric particles, Ferroelectrics,2001,252:11-19.
    [18]R.A. Mckee, F.J. Walker, M.F. Chisholm. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science,2001,293(20):468-471.
    [19]S.M. Yang, J.G. Yool, T.W. Noh. Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors. Curr. Appl. Phys.,2011,11:1111-1125.
    [20]宋红章,李永祥,殷庆瑞.铁电体中相变临界尺寸的研究现状,无机材料学报,2007,22(4):583-589.
    [21]P. Ghosez, K. M. Rabe, Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl. Phys. Lett.,2000,76:2767-2769.
    [22]J. Junquera, Ph. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films, Nature,2003.422:506-509.
    [23]T, Tybell, C. H. Ahn, J.-M. Triscone, Ferroelectricity in thin perovskite films, Appl. Phys. Lett.,1999,75:856-858.
    [24]Y. Drezner, S. Berger. Nanoferroelectric domains in ultrathin BaTiO5 films, J. Appl. Phys., 2003,94(10):6774-6778.
    [25]D.D. Fong, G.B. Stephenson, S.K. Streiffer. Ferroelectricity in ultrathin perovskite films, Science,2004,304:1650-1653.
    [26]I.I. Naumov, L. Bellaiche, H.X. Fu. Unusual phase transitions in ferroelectric nanodisks and nanorods, Nature,2004,432:737-740.
    [27]N. Yanase, K. Abe, N. Fukushima, T. Kawakubo. Thickness dependence of ferroelectricity in heteropitaxial BaTiO3 thin film capacitors, Jpn. J. Appl. Phys.,1999,38(9B):5306-5308.
    [28]Y. Drezner. S. Berger. Thermodynamic stability of BaTiO3 nano-domains, Mater.Lett.,2005, 59(12):1598-1602.
    [29]S.K. Streiffer. J.A. Eastman, D.D. Fong, C. Thompson, A. Munkholm, M.V.R. Murty, O. Auciello, G.R. Bai. G.B. Stephenson. Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett.,2002.89(067601):1-4.
    [30]R. Castro-Rodriguez, M. Quadrelli. E. Vasco. F. Calderon, F. Leccabue, B.E. Watts. Effects of particle size on the phase transition in Pb(Zr,Ti)O3 grown by the sol-gel technique, Mater. Lett.,1998,34(3-6):326-331.
    [31]T. Maruyama. M. Saitoh, I. Sakai, T, Hidaka, Y. Yano, T. Noguchi. Growth and characterization of 10-nm-thick c-axis oriented epitaxial PbZr0.25Ti0.75O3 thin films on (100)Si substrate, Appl. Phys. Lett.,1998,73(24):3524-3526.
    [32]W. L. Zhong, Y. G. Wang, P. L. Zhang, B. D. Qu, Phenomenological study of the size effect on phase transitions in ferroelectric particles,Phys. Rev. B,1994 50:698-703.
    [33]Y.G. Wang, W.L. Zhong, P.L. Zhang. Size driven phase-transition in ferroelectric particles. Solid State Comm.,1994,90(5):329-332.
    [34]Y.G. Wang. W.L. Zhong, P.L. Zhang. Size effects on the curie-temperature of ferroelectric particles. Solid State Comm.,1994,92(6):519-523.
    [35]钟维烈,王渊旭,从表面能的观点讨论尺寸驱动的铁电-顺电相变,压电与声光,2003,25(1):46-48.
    [36]W.L. Zhong, Y.X. Wang. P.L. Zhang. Size drive ferroelectric-paraelectric phase transition from the surface energy viewpoint. Chin. Phys. Lett.,2003,20(7):1134-1136.
    [37]M. Anliker, H. R. Brugger, W. Kanzig. Helv. Phys. Acta,1954,27:99.
    [38]A. Jaccard. W. Kanzig, M. Peter, Helv. Phys. Acta,1953,26:521.
    [39]K. Uchino, E. Sadanaga. T. Hirose. Dependence of the crystal-structure on paticle-size in Barium-titanate. J.Am. Ceram. Soc,1989,72(8):1555-1558.
    [40]D. Szwarcman, D.Vestler, G. Markovich, The Size-Dependent Ferroelectric Phase Transition in BaTiO3 Nanocrystals Probed by Surface Plasmons. ACS NANO.2011,5(1):507-517.
    [41]K. Ishikawa, K. Yoshikawa, N. Okada. Size effect on the ferroelectric transition in PbTiO3 ultrafine particles. Phys. Rev. B,1988,37(10):5852-5855.
    [42]A. Roelofs, T. Schneller, K. Szot, R. Waser. Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity, Appl. Phys. Lett.,2002,81: 5231-5233.
    [43]E.K. Akdogan, C.J. Rawn, W.D. Porter, E.A. Payzant, A. Safari. Size effects in PbTiO3 nanocrystals:effect of particle size on spontaneous polarization and strains, J. Appl. Phys., 2005,97(084305):1-8.
    [44]T. Ohno, T. Mori, H. Suzuki, et al., Size Effect for Lead Zirconium Titanate Nanopowders with Pb(Zr0.3Tio.7)03 Composition, Jpn. J. Appl. Phys.,2002,41:6985-6988.
    [45]J.J. Urban; W.S. Yun, Q. Gu, H. Park. Synthesis of single-crystalline perovskite nanorods composed of Barium titanate and Strontium titanate, J. Am. Chem. Soc.,2002,124: 1186-1187.
    [46]J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, O.Y. Liao, W.S. Yun, A.M. Rappe, H. Park. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires, Nano Lett., 2006,6(4):735-739.
    [47]W.S. Yun, J.J. Urban, Q. Gu, H. Park. Ferroelectric properties of individual Barium titanate nanowires investigated by Scanned probe microscopy, Nano.Lett.,2002,2:447-450.
    [48]J.J. Urban, J.E. Spanier, O.Y. Liao, W.S. Yun, H. Park. Single-crystalline Barium titanate nanowires, Adv. Mater.,2003,15(5):423-426.
    [49]B.A. Hernandez-Sanchez, K.S. Chang, M.T. Scancella, J.L. Burris, S. Kohli, E.R. Fisher, P.K. Dorhout, Examination of Size-Induced Ferroelectric Phase Transitions in Template Synthesized PbTiO3 Nanotubes and Nanofibers, Chem. Mater.,2005,17:5909-5919.
    [50]T. Shimada, S. Tomoda, T. Kitamura, Ab initio study of ferroelectricity in edged PbTiO3 nanowires under axial tension, Phys.Rev. B,2009,79(024102):1-7.
    [51]H. X. Fu, L. Bellaiche, Ferroelectricity in Barium Titanate Quantum Dots and Wires, Phys. Rev. Lett.,2003,91(257601).
    [52]G. Genestea, E. Bousquet, J. Junquera, Ph. Ghosez, Finite-size effects in BaTiO3 nanowires, Appl. Phys. Lett.,2006,88(112906).
    [53]施尔畏,夏长泰,王步国,仲维卓,水热法的应用与发展,无机材料学报,1996,11(2):193-206.
    [54]S.W. Lu, B.I. Lee, Z.L. Wang, W.D. Samuels. Hydrothermal synthesis and structure characterization of BaTiO3 nanocrystals, J. Cryst. Growth,2000,219:269-276.
    [55]X. Wei, G. Xu, Z.H. Ren, Y.G. Wang, G. Shen, G.R. Han. Synthesis of highly dispersed barium titanate nanoparticles by a novel solvothermal method, J. Am. Ceram. Soc.,2008, 91(1):315-318.
    [56]H. Zhang, X.H. Wang, Z.B. Tian, C.F. Zhong, Y.C. Zhang, C.K. Sun, L.T. Li. Fabrication of monodispersed 5-nm BaTiO3 nanocrystals with narrow size distribution via one-step solvothermal route, J. Am. Ceram. Soc.,2011,94(10):3220-3222.
    [57]M. Niederberger, G. Garnweitner, N. Pinna, M. Antonietti. Nonaqueous and hadide-free route to crystalline BaTiO3, SrTiO3. and (Ba.Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation, J. Am. Chem. Soc.,2004,126(29):9120-9126.
    [58]M. Niederberger, N. Pinna, J. Polleux, M. Antonietti. A general soft-chemistry route to perovskite and related materials:Synthesis of BaTiO5, BaZrO3, and LiNbO3 nanoparticles, Angew. Chem. Int. Ed.,2004,43(17):2270-2273.
    [59]H.C. Du, S. Wohlrab, M. Weiss, S. Kaskel. Preparation of BaTiO3 nanocrystals using a two-phase solvothermal method, J. Mater. Chem.,2007,17(43):4605-4610.
    [60]S. Ray, Y.V. Kolen'ko, D.H. Fu, R. Gallage, N. Sakamoto, T. Watanabe, M. Yoshimura, M. Itoh. Direct observation of ferroelectricity in quasi-zero-dimensional barium titanate nanoparticles, Small,2006,2(12):1427-1431.
    [61]Y.V. Kolen'ko, K.A. Kovnir, I.S. Neira, T. Taniguchi, T. Ishigaki, T. Watanabe, N. Sakamoto, M. Yoshimura. A novel controlled, and high-yield solvothermal drying route to nanosized barium titanate powders, J. Phys. Chem. C,2007,111(20):7306-7318.
    [62]X.H. Zhu, J.Y. Wang, Z.H. Zhang, J.M. Zhu, S.H. Zhou, Z.G. Liu, N.B. Ming, Perovskite Nanoparticles and Nanowires:Microwave-Hydrothermal Synthesis and Structural Characterization by High-Resolution Transmission Electron Microscopy, J. Am. Ceram. Soc., 2008,91(8):2683-2689.
    [63]Y. Deng. L. Liu. C.W. Nan, S. Zhao. Hydrothermal synthesis and characterization of nanocrystalline PZT powders. Mater.Lett.,2003,57:1675-1678.
    [64]G. Garnweitner, J. Hentschel, M. Antonietti, M. Niederberger, Nonaqueous Synthesis of Amorphous Powder Precursors for Nanocrystalline PbTiO3. Pb(Zr,Ti)O3, and PbZrO3, Chem. Mater.,2005,17:4594-4599.
    [65]J. Wang, X.C. Pang, M. Akinc, Z.Q. Lin, Synthesis and characterization of perovskite PbTiO3 nanoparticles with solution processability, J. Mater. Chem.,2010,20:5945-5949.
    [66]K. C. Verma, R. K. Kotnala, N. S. Negi, Improved dielectric and ferromagnetic properties in Fe-doped PbTiO3 nanoparticles at room temperature, App.Phys.Lett.,2008,92(152902):1-4.
    [67]张立德,牟季美,纳米材料和纳米结构,科学出版社,北京,2002.
    [68]何万波,钛酸铅纳米结构的制备及生长机理研究,[硕士学位论文],杭州:浙江大学材料系,2011.
    [69]C. burda, X. B. Chen, R. Narayanan, et al., Chemistry and properties of nanocrystals of different shapes, Chem. Rev.,2005,105.1025-1102.
    [70]C. Liu, B. S. Zou, A. J. Rondinone, Z. J. Zhang, Sol-Gel Synthesis of Free-Standing FerroelectricLead Zirconate Titanate Nanoparticles, J. Am. Chem. Soc.,2001,123, 4344-4345.
    [71]S. O'Brien, L. Brus, C. B. Murray, Synthesis of Monodisperse Nanoparticles of Barium Titanate:Toward a Generalized Strategy of Oxide Nanoparticle Synthesis. J. Am. Chem. Soc., 2001,123:12085-12086.
    [72]G. Garnweitner. M. Niederberger. Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles, J. Am. Ceram. Soc.,2006.89:1801-1808.
    [73]H. Zhu, Z.J. Guo, W.D. Yang, W.F. Chang, C.C. Wang. Preparation and characterization of nanometer-sized (Pb1-x, Bax)TiO3 powders using acetylacetone as a chelating agent in a non-aqueous sol-gel process, Ceram. Int.,2011,37:3203-3209.
    [74]R.L. Brutchey, G.S. Cheng, Q. Gu, D.E. Morse. Positive temperature coefficient of resistivity in donor-doped BaTiO3 ceramics derived nanocrystals synthesized at low temperature, Adv. Mater.,2008,20(5):1029-1033.
    [75]R.L. Brutchey, D.E. Morse. Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions, Angew. Chem. Int. Ed.,2006,45(39): 6564-6566.
    [76]M.L. Calzada, M. Torres, L.E. Fuentes-Cobas, A. Mehta, J. Ricote, L. Pardo. Ferroelectric self-assembled PbTiO3 perovskite nanostructures onto(100)SrTiO3 substrates from a novel microemulsion aided sol-gel preparation method, Nanotechnology,2007,18(375603):1-8.
    [77]M.L. Calzada, M. Torres, J. Ricote, L. Pardo. Ferroelectric PbTiO3 nanostructures onto Si-based substrates with size and shape control, J. Nanopart Res.,2009,11:1227-1233.
    [78]T.V. Anuradha. Template-assisted sol-gel synthesis of nanocrystalline BaTiO3, E-J.Chem., 2010,7(3):894-898.
    [79]S. Kronholz, S. Rathgeber, S. Karthauser, H. Kohlstedt, S. Clemens, T. Schneller. Self-assembly of diblock-copolymer micelles for template-based praparation of PbTiO3 nanograins, Adv. Func.Mater.,2006,16(18):2346-2354.
    [80]C.Y. Chao, Z.H. Ren, Z.Y. Liu, Z. Xiao, G. Xu, X. Li, X. Wei, G. Shen, G.R. Han. Molecular-mediated crystal growth of PbTiO3 nanostructure on silicon substrate, Appl. Surf. Sci.,2011,257:9768-9772.
    [81]C.Y. Chao, Z.H. Ren, Z.Y. Liu, Z. Xiao, G. Xu, X. Wei, G. Shen, G.R. Han. Crystal growth of ferroelectric of PbTiO3 nanocrystals on silicon substrate via intermediates, Mater. Res. Bull., 2012,47:912-916.
    [82]T. Ohno, T. Mori, H. Suzuki, D. Fu, W. Wunderlich, M. Takahashi, K. Ishikawa. Size Effect for Lead Zirconium Titanate Nanopowders with Pb(Zr0.3Ti0.7)O3 Composition. Japanese J. Appl. Phys.,2002,41:6985-6988.
    [83]P.M. R(?)rvik, T. Grande, M.A. Einarsrud, One-Dimensional Nanostructures of Ferroelectric Perovskites, Adv. Mater.,2011,23:4007-034.
    [84]B.A. Hernandez-Sanchez, K.S. Chang, E.R. Fisher, P.K. Dorhout. Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater.,2002,14(2):480-482.
    [85]M.C. Hsu, I.C. Leu, Y.M. Sun, M.H. Hon, Templatesynthesis and characterization of PbTiO3 nanowire arrays from aqueous solution, J. solid state chem.,2006,179(5):1421-1425.
    [86]L.F. Liu, T.Y. Ning, Y. Ren, Z.H. Sun, E.F. Wang, W.Y. Zhou, S.S. Xie, L. Song, S.D. Luo, D. Liu, J. Shen, W. Ma, Y. Zhou, Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube arrays, Mater. Sci. Eng. B-Adv.,2008, 149(11):41-46.
    [87]Ming Liu, Xin Li, Hassan Imrane, Yajie Chen, Trevor Goodrich, Zhuhua Cai, Katherine S. Ziemer, Jian Y. Huang, Nian X. Sun, Synthesis of ordered arrays of multiferroic NiFe2O4-PbZr0.52Ti0.48O3 core-shell nanowires, Appl. Phys. Lett.,2007,90, (152501):1-3.
    [88]A. Nourmohammadi, M. A. Bahrevar, S. Schulze, M. Hietschold, Electrodeposition of lead zirconate titanate nanotubes. J. Mater. Sci.,2008,43:4753-759.
    [89]S. J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao, Electrophoretic Growth of Lead Zirconate Titanate Nanorods, Adv. Mater.,2001, 13(16):1269-1272.
    [90]J. F. Scott, H. J. Fan, S. Kawasaki, J. Banys, M. Ivanov, A. Krotkus, J. Macutkevic, R. Blinc, V. V. Laguta, P. Cevc, J. S. Liu, A. L. Kholkin, Terahertz Emission from Tubular Pb(Zr,Ti)O3 Nanostructures, Nano Lett.,2008,8(12):4404-4409.
    [91]M. Alexe, D. Hesse, V. Schmidt, S. Senz, H. J. Fan, M. Zacharias, U. Gosele, Ferroelectric nanotubes fabricated using nanowires as positive templates, Appl. Phys. Lett.,2006, 89(172907):1-3.
    [92]S. Han, C. Li, Z. Liu, B. Lei, D. Zhang, W. Jin, X. Liu, T. Tang, C. Zhou, Transition Metal Oxide Core-Shell Nanowires:Generic Synthesis and Transport Studies, Nano Lett.,2004, 4(7):1241-1246.
    [93]W.J. Dong, B.J. Li, Y. Li, X.B. Wang, L.N. An, C.R. Li, B.Y. Chen, G. Wang, Z. Shi. General approach to well-defined perovskite MTiO3(M=Ba, Sr, Ca, and Mg) nanostructures, J. Phys. Chem. C,2011,115:3918-3925.
    [94]Y.G. Wang, G. Xu, L.L. Yang, Z.H. Ren, X. Wei,W.J. Weng, P.Y. Du, G. Shen, G.R. Han, Preparation of single-crystal PbTiO3 nanorods by phase transformation from Pb2Ti2O6 nanorods, J. Alloy. Comp.,2009,481(1-2):L27-L30.
    [95]G. Xu. Z.H. Ren, P.Y. Du, W.J. Weng, G. Shen, G.R. Han. Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZro.52Tio 48O3 nanowires, Adv. Mater.. 2005,17(7):907-910.
    [96]Z.H. Ren, G. Xu, X. Wei, Y. Liu, G. Shen, G.R. Han. Shape evolution of Pb(Zr,Ti)O3 nanocrystals under hydrothermal condition, J. Am. Ceram. Soc.,2007,90(8):2645-2648.
    [97]U.A. Joshi, S.H. Yoon. S.G. Baik, J.S. Lee. Surfactant-free hydrothermal synthesis of high tetragonal barium titanate nanowires:A structure investigation, J. Phys. Chem. B,2006, 110(25):12249-12256.
    [98]U.A. Joshi, J.S. Lee. Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires, Small.2005,1(12):1172-1176.
    [99]Y. Jing, S. Jin, Y.Z. Jia. J.D. Han. J.H. Sun. Preparation of SrTiO3 nanofibers by hydrothermal method. J. Mater.Sci.,2005,40(23):6315-6317.
    [100]A. Magrez, E. Vasco, J.W. Seo, C. Dieker. N. Setter, L. Forro. Growth of single-crystalline KNbO3 nanostructures, J. Phys. Chem. B,2006,110(1):58-61.
    [101]X.F. Lu, D.L. Zhang, Q.D. Zhao, C. Wang, W.J. Zhang, Y. Wei. Large-Scale Synthesis of Necklace-Like Single-Crystalline PbTiO3Nanowires.Macromol. Rapid Comm.,2006,27(1): 76-80.
    [102]S.H. Xie, F.Y. Ma, Y.M. Liu, J.Y. Li, Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling, Nanoscale,2011,3:3152-3158.
    [103]J.F. Scott. Applications of modern ferroelectrics. Science,2007,315:954-959.
    [104]L.W. Chang, M. McMillen, F.D. Morrison, J.F. Scott, J.M. Gregg. Size effect on thin film ferroelectrics:Experiments on isolated single crystal sheets, Appl. Phys. Lett.,2008, 93(132904):1-3.
    [105]M.M. Saad, P. Baxter, R.M. Bowman, J.M. Gregg, F.D. Morrison, J.F. Scott. Intrinsic dielectric response in ferroelectric nano-capacitors, J. Phys.:Condens. Matter.,2004,16: L451-L456.
    [106]L.W. Chang, M. Alexe, J.F. Scott, J.M. Gregg.Settling the "Dead layer" debate in nanoscale capacitors, Adv. Mater.,2009,21:4911-4914.
    [107]李越,蔡伟平,孙丰强,张立德.二维胶体晶体刻蚀法及其应用,前沿进展,2003,32(3):153-158.
    [108]W. Ma, D. Hesse, U. Gosele. Formation of ferroelectric perovskite nanostructure patterns using latex sphere monolayers as masks:An ambient gas pressure effect during pulsed laser deposition, Small,2005,1(8-9):837-841.
    [109]W. Ma, D. Hesse, U. Gosele. Nanostructure patterns of piezoelectric and ferroelectric complex oxides with various shapes, obtained by natural lithography and pulsed laser deposition, Nanotechnology,2006,17:2536-2541.
    [110]H.J. Liu, C.H. Sow, C.K. Ong. Fabrication of quasi-one-dimensional oxide nanoconstriction array via nanosphere lithography:A simple approach to nanopatterns of multicomponents oxides,J. Appl. Phys.,2006,100(014306):1-3.
    [111]G.R. Blake, A.R. Armstrong, E. Sastre, W. Zhou, P.A. Wright. The preparation of a novel layered lead titanate and its conversion to the perovskite lead titanate PbTiO3, Mater. Res. Bull.,2001,36:1837-1845.
    [112]X.B. Fan, W.C. Peng, Y. Li, X.Y. Li, S.L. Wang, G.L. Zhang, F.B. Zhang. Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation, Adv. Mater.,2008,20:4490-4493.
    [113]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong. Large-scale pattern growth of grapheme films for stretchable transparent electrodes, Nature,2009,457:706-710.
    [114]R.J. Smith, P.J. King, et. al., Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solution, Adv. Mater.,2011,23:3944-3948.
    [115]J.N. Coleman, M. Lotya, et. al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science,2011,331(6017):568-571.
    [116]X.Y. Zhang, L. Bourgeois, J.F. Yao, H.T. Wang, P.A. Webley. Tuning the morphology of bismuth ferrite nano-and microcrystals:From sheets to fibers, Small,2007,3(9):1523-1528.
    [117]X.G. Han. Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc.,2009,131:3152-3153.
    [118]C. Schliehe, B.H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller. Ultrathin PbS sheets bu two-dimensional oriented attachment, Science,2010,329:550-553.
    [119]J.T. Jang, S. Jeong, J.W. Seo, M.C. Kim, E. Sim, Y.H. Oh, S. Nam, B. Park, J. Cheon. Ultrathin zirconium disulfide nanodiscs, J. Am. Chem. Soc.,2011,133:7636-7639.
    [120]C.Z. Wen, H.B. Jiang, S.Z. Qiao, H.G. Yang, G.Q. Lu. Synthesis of high-reactive facets dominated anatase TiO2, J. Mater. Chem.,2011,21:7052-7061.
    [121]C.Y. Chao, Z.H. Ren, Y.H. Zhu, Z. Xiao, Z.Y. Liu, G. Xu, J.Q. Mai, X. Li, G. Shen, G.R. Han, Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates, Angew. Chem. Int. Ed.,2012,51:9283-9287.
    [122]Z. H. Ren. G. Xu, X. Wei, Y. Liu, X. H. Hou, P. Y. Du, W. J. Weng, G. Shen, G. R. Han, Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals, Appl. Phys. Lett.,2007 91(063106).
    [123]G.Z. Wang, R. Saeterli, P. M. Rφrvik, A.T. J. van Helvoort, R. Holmestad, T. Grande, M.A. Einarsrud. Self-Assembled Growth of PbTiO3 Nanoparticles into Microspheres and Bur-like Structures. Chem. Mater.,2007,19(9):2213-2221.
    [124]C.X. Xu, X. Wei, Y.M. Guo, H. Wu, Z.H. Ren, G. Xu, G. Shen, G.R. Han,Surfactant-free synthesis of Bi2WO6 multilayered disks with visible-light-induced photocatalytic activity.Mater. Res. Bull.,2009,44:1635-1641.
    [125]Z.L. Wang, J.H. Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science,2006,312:242-246.
    [126]R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang.Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator, Nano Lett.,2009.9(3):1201-1205.
    [127]X. Chen, S.Y. Xu. N. Yao. Y. Shi,1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers, Nano Lett.,2010,10:2133-2137.
    [128]Y. Qi, N.T. Jafferis, K. Lyons, Jr.,Christine M. Lee, H. Ahmad, M.C. McAlpine,Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion, Nano Lett.,2010,10,524-528.
    [129]S. Xu, B.J. Hansen, Z.L.Wang, Piezoelectric-nanowire-enabled power source for driving wireless microelectronics, Nat.Comm., DOI:10.1038/ncomms1098.
    [130]S. H. Xie, Y. M. Liu, X. Y. Liu, Q. F. Zhou, K. K. Shung, Y. C. Zhou, J. Y. Li, Local two-way magnetoelectric couplings in multiferroic composites via scanning probe microscopy, J. Appl.Phys.,2010,108(054108).
    [131]魏晓,钙钛矿氧化物纳米结构的控制生长和性能研究[博士学位论文],杭州:浙江大学材料系:2008.
    [132]郑伟,钛酸钙纳米结构的制备、表征及紫外光催化性能[硕士学位论文],杭州:浙江大学材料系:2012.
    [133]傅希贤,桑丽霞.白树林等LaFe1-xCuxO3的光催化性能及正电子湮没研究,化学物理学报,2000,13(4):503-507.
    [134]T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light, Appl. Cataly. A:General,2005.288:74-79.
    [135]H. Kato, K. Asakura, A. Kudo,Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure.J. Am. Chem. Soc.,2003,125:3082-3089.
    [136]K. Unchino, Pieozelectric Actuators and Ultrasonic Motors, Kluwer Academic, Boston, 1996.
    [137]张福学,王丽坤,现代压电学(上、中、下),科学出版社,北京,2003.
    [138]S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites:an ab initio HF/DFT study, Comp. Mater. Sci.,2004, 29:165-178.
    [139]C.N. Berglund, H.J. Braun, Optical Absorption in Single-Domain Ferroelectric Barium Titanate,Phys. Rev.,1967,164(2):790-799.
    [140]L.G.J. De Haart, A.J. De Vires, G.Blasse, On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells, J. Solid State Chem.,1985,59(3):291-300.
    [141]H. F. Folkerts, G. Blasse,Luminescence of Pb2+in SrTiO3,Chem. Mater.,1994,6:969-972.
    [142]L. Grabnee,Photoluminescence in SrTiO3, Phys. Rev.,1969,177(3):1315-1323.
    [143]R I Eglitis, E A Kotomin, V A Trepakov, S E Kapphan, G Borstel,Quantum chemical modelling of electron polarons and "green" luminescence in PbTiO3 perovskite crystals, J. Phys.:Condens. Matter.,2002,14:L647-L653.
    [144]R. Leonelli, J.L. Brebner, Time-resolved spectroscopy of the visible emission band in strontium titanate, Phys. Rev. B,1986,33(12):8649-8656.
    [145]H. Mizoguchi, Patrick M. Woodward, Cheol-Hee Park, Douglas A. Keszler,Strong Near-Infrared Luminescence in BaSnO3,J. Am. Chem. Soc.,2004,126,9796-9800.
    [146]D. Kan, Takahito Terashima, Ryoko Kanda, et. al., Blue-light emission at room temperature from Ar-irradiated SrTiO3, Nat. Mater..2005,4:816-819.
    [147]Y. Shimizu, S. Sakagami, K. Goto, Y. Nakachi, K. Ueda,Tricolor luminescence in rare earth doped CaZrO3 perovskite oxides,Mater. Sci. Eng. B,2009,161:100-103.
    [148]E.Orhan, J.A. Varela,A. Zenatti,M.F.C. Gurgel, F.M. Pontes, E.R. Leite, E.Longo,P.S Pizani,A.Beltran, J. Andres, Room-temperature photoluminescence of BaTiO3:Joint experimental and theoretical study,Phys. Rev. B,2005,71(085113):1-7.
    [149]E.R. Leite, E.C. Paris, F.M. Pontes, C.A. Paskocimas, E. Longo, F. Sensato,C.D. Pinheiro, J.A. Varela, P.S. Pizai, C.E.M. Campos, F.Lanciotti JR.,The origin of photoluminescence in amorphous lead titanate,J.Mater.Sci.,2003,38:1175-1178.
    [150]Z.H. Ren, G.Y. Jing, Y. Liu, J.Y. Gao, Z. Xiao, Z.Y. Liu, S.M. Yin, S.F. Zhou, G. Xu, X. Li, G. Shen, G.R. Han,Pre-perovskite nanofiber:a new direct-band gap semiconductor with green and near infrared photoluminescence, RSC Adv.,2013.3:5453-5458.
    [151]Y. Inoue, I. Yoshioka, K. Sato, Polarization Effects upon Adsorptive and Catalytic Properties. l.CO Oxidation over Pd Deposited on LiNbO3 Ferroelectrics, J. Phys. Chem., 1984,88:1148-1151.
    [152]Y. Inoue. K. Sato, S. Suzuki, Polarization Effects upon Adsorptive and Catalytic Properties. 2. Surface Electrical Conductivity of NiO Deposited on LiNbO3 and Its Changes upon Gas Adsorption,J. Phys. Chem.,1985,89:2827-2831.
    [153]A.M. Kolpak. I. Grinberg, A.M. Rappe.Polarization Effects on the Surface Chemistry of PbTiO3-Supported Pt Films. Phys. Rev. Lett.,2007,98(166101):1-4.
    [155]K. Garrity, A. M. Kolpak, S. Ismail-Beigi, E. I. Altman, Chemistry of Ferroelectric Surfaces,Adv. Mater.,2010,22:2969-2973.
    [156]S. Kim, M.R. Schoenberg, A.M. Rappe,Polarization Dependence of Palladium Deposition on Ferroelectric Lithium Niobate (0001)Surfaces, Phys. Rev. Lett.,2011,107(076102):1-5.
    [157]G. Shirane, S. Hoshino, K. Suzuki, X-ray study of the phase transition in lead titanate. Phys. Rev.,1950.80:1105-1106.
    [158]G. Xu, W.B. He, Y. Zhao, Y. Liu, Z.H. Ren, G. Shen, G.R. Han, Hydrothermal synthesis, characterization and growth mechanism of single crystal lead titanate pyrochlore dendrites, CrystEngComm,2011,13(5):1498-1503.
    [159]任召辉.钙钛矿和前钙钛矿氧化物纳米材料的制备、结构与性能研究[博士学位论文].杭州:浙江大学材料系,2008.
    [160]刘涌,硅系薄膜和新结构钛酸铅的生长、结构与性能的计算和模拟研究[博士学位论文],杭州:浙江大学材料系,2006.
    [161]Z.H. Ren, G. Xu, Y. Liu, X. Wei, Y.H. Zhu, X.B. Zhang, G.L. Lv, Y.W. Wang, Y.W. Zeng, P.Y. Du, W.J. Weng, G. Shen, J.Z. Jiang, G.R. Han. PbTiO3 nanofibers with edge-shared TiO6 octahedra. J. Am. Chem. Soc.,2010,132 (16):5571-5573.
    [162]L.H. Ni, Y. Liu, Z.H. Ren, X. Li, G. Xu, C.L. Song, G.R. Han. Theoretical and experimental study of Raman spectra of pre-perovskite PbTiO3. J. Appl. Phys.,2011,110 (063506):1-5.
    [163]Z.Y. Liu, Z.H. Ren, Z. Xiao, C.Y. Chao, X. Wei, Y. Liu, X. Li, G. Xu, G. Shen, G.R. Han, Size-controlled single-crystal perovskite PbTiO3 nanofibers from edge-shared TiO6 octahedron columns, Small.2012,8(19):2959-2963.
    [164]B. Jaffe, W.R. Cook, H. Jaffe, Editors, Piezoelectric ceramics, Academic Press, London, 1971.
    [165]殷之文.电介质物理学.北京:科学出版社,2003。
    [166]J. Ju, D.J. Wang, J.H. Lin, G.B. Li, J. Chen, L.P. You, F.H. Liao, N.Z. Wu, H.Z. Huang, G.Q. Yao, Hydrothermal Synthesis and Structure of Lead Titanate Pyrochlore Compounds. Chem. Mater.,2003,15(18):3530-3536.
    [167]E.R. Camargo, E. Longo, E.R. Leite, V.R. Mastelarob. Phase evolution of lead titanate from its amorphous precursor synthesized by the OPM wet-chemical route.2004. J. Solid State Chem.,177(6):1994-2001.
    [168]C. Lee, N. Tai, H. Sheu, H. Chiu, S. Hsieh.The formation of perovskite PbTiO3 powders by sol-gel process. Mater. Chem. Phys.,2006,97(2-3):468-471.
    [169]Y.F. Liu, Y.N. Lu, S.H. Dai, S.Z. Shi.Synthesis and growth mechanism of donut-like lead titanate particles by hydrothermal method. Powder Technol.,2009,198(1):1-5.
    [170]S. Uedaira, M. Suzuki, H. Yamanoi, H. Tamura, Method for Manufacturing Fine Lead Titanate Powders. Eur. Pat.Appl.,1986, No.EP 186199.
    [171]H.M. Cheng, J.M. Ma, Z.G. Zhao, D. Qiang,Hydrothermal Synthesis of Acicular Lead Titanate Fine Powders, J. Am. Ceram. Soc.,1992,75(5):1123-1128.
    [172]C. M. Foster, G.-R. Bai, R. Csencsits, et al., Single-crystal Pb(ZrxTi1-X)O3 thin films prepared by metal-organic chemical vapor deposition:Systematic compositional variation of electronic and optical properties, J.Appl. Phys.,1997,81:2349-2357.
    [173]H. D. Chen, K.R. Udayakumar, C. J. Gaskey and L.E. Cross, Electrical properties'maxima in thin films of the lead zirconate-lead titanate solid solution system, Appl. Phys. Lett.,1995, 67:3411-3413.
    [174]B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross et al.,A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution, Appl. Phys. Lett.,1999, 74(14):2059-2061.
    [175]M.J. Haun, E. Furman, S.J. Jang and L.E. Cross, Thermodynamic theory of the lead zirconate-titanate solid solution system, Part I-V, Ferroelectrics,1989,99:13-62.
    [176]K. Kakegawa, J. Mohri, T. Takahashi, et al.,A compositional fluctuation and properties of Pb(Zr, Ti)O3, Solid State Commun.,1977,24:769-772.
    [177]V.A. Isupov, Comments on the paper "X-ray study of the PZT solid solutions near the morphotropic phase transition", Solid State Commun.,1975,17:1331-1333.
    [178]W. Cao, L. E. Cross, Theoretical model for the morphotropic phase boundary in lead zirconate-lead titanate solid solution, Phys. Rev. B,1993,47:4825-4830.
    [179]B. Noheda, A. Gonzalo, L. E. Cross, et al., Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite:The structure of PbZr0.52Tio.48O3, Phys. Rev. B.,2000,67:8687-8695.
    [180]B. Noheda, D. E. Cox, G. Shirane, et al., A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution, Appl. Phys. Lett.,1999,74:2059-2061.
    [181]R. Guo, L. E. Cross, S-E. Park, et al., Origin of the High Piezoelectric Response in PbZr1.xTixO3, Phys. Rev. Lett.,2000,84:5423-5426.
    [182]D. Damjanovic, Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics, J. Am. Ceram. Soc.,2005,88:2663-2676.
    [183]A. J. Bell, Factors influencing the piezoelectric behaviour of PZT and other "morphotropic phase boundary"ferroelectrics, J. Mater. Sci.,2006,41:13-25.
    [184]W.D. Yang, S.M. Haile, Influences of water content on synthesis of (Pb0.5,Ba0.5)TiO3 materials using acetylacetone as chelating agent in a sol-gel process, J. Eur. Ceram. Soc., 2006,26:3203-3210.
    [185]N.V. Giridharan, R. Jayavel, Fabrication of ferroelectric (Pb,Ba)TiO3 thin films by sol-gel technique and their characterization, Mater.Lett.,2002,52:57-61.
    [186]J.F. Meng, R.S. Katiyar, G.T. Zou, Grain size effect on ferroelectric phase transition in Pbl-xBaxTiO3 ceramics, J. Phys. Chem. Solids,1998,59(6-7):1161-1167.
    [187]N.A. Hill. Why are there so few magnetic ferroelectrics. J. Phys.Chem.B,2000,104: 6694-6709.
    [188]V. J. Suchtelen. Product properties:A new application of composite materials. Philips. Res. Rapts.,1972,27:28-30.
    [189]Z.H. Ren, Z. Xiao, S. Yin, J.Q. Mai, Z.Y. Liu, G. Xu, X. Li, G. Shen, G.R. Han, Preparation and characterization of single-crystal multiferroic nanofiber composites, J. Alloy. Compd., 2013,552:518-523.
    [190]R. Schmidt, W. Eerenstein, T. Winiecki, F. D. Morrison, and P. A. Midgley.Impedance spectroscopy of epitaxial multiferroic thin films. Phys. Rev. B.,2007,75 (245111):1-8.
    [191]M. Li, M. Ning, Y. Ma, Q. Wu, and C. K. Ong. Room temperature ferroelectric, ferromagnetic and magnetoelectric properties of Ba-doped BiFeO3 thin films.J. Phys. D., 2007,40:1603-1607.
    [192]Z.Y. Liu, Z.H. Ren, X. Wei. Z. Xiao, X.H. Hou, G. Shen, G. Xu, G.R. Han, Improved room-temperature ferromagnetism in self-assembled disk-like superstructures of Fe-doped PbTiO3 nanocrystals. J. Am. Ceram. Soc.,2010,93(11):3610-3613.
    [193]B.G. Kim, S.M. Cho, T.Y. Kim, H.M. Jang, Giant Dielectric Permittivity Observed in Pb-Based Perovskite Ferroelectrics, Phys. Rev. B.,2001,86(15):3404-3406.
    [194]X.H. Zhu, Z.G. Liu, N.B. Ming, Perovskite oxide nanotubes:synthesis, structural characterization, properties and applications, J. Mater. Chem.,2010.20:4015-4030.
    [195]Y.B. Mao, T.J. Park. S.S. Wong, Synthesis of classes of ternary metal oxide nanostructures, Chem. Commun.,2005.5721-5735.
    [196]L. Liu, B. Li, D.H. Yu, Y.M. Cui, X.F. Zhou, W.P. Ding, Temperature-induced solid-phase oriented rearrangement route to the fabrication of NaNbO3 nanowires, Chem. Commun., 2010.46:427-29.
    [197]M.T. Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet, P. Nanni, Ferroelectric BaTiO3 Nanowires by a Topochemical Solid-State Reaction, Chem. Mater., 2009,21:5058-5065.
    [198]R.I. Walton, F. Millange, R.I. Smith, T.C. Hansen, D. O'Hare, Real Time Observation of the Hydrothermal Crystallization of Barium Titanate Using in Situ Neutron Powder Diffraction, J. Am. Chem. Soc.,2001,123:12547-12555.
    [199]M.M. Lencka, R.E. Riman, Synthesis of Lead Titanate:Thermodynamic Modeling and Experimental Verification, J. Am.Ceram.Soc.,1993,76(10):2649-2659.
    [200]M.M. Lencka, A. Anderko, R.E. Riman. Hydrothermal precipitation of lead zirconate titanate solid solutions:thermodynamic modeling and experimental synthesis, J. Am. Ceram. Soc.,1995,78(10):2609-2618.
    [201]M.M. Lencka, R.E. Riman. Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders, Chem. Mater.,1993,5:61-70.
    [202]H. Takasu, The Ferroelectric Memory and its Applications, J. Electroceram.,2000, 4:327-338.
    [203]H. Deng, Y.C. Qiu, S.H. Yang. General surfactant-free synthesis of MTiO3(M = Ba,Sr,Pb) perovskite nanostrips, J. Mater. Chem.,2009,19:976-982.
    [204]刘振亚,前钙钛矿、钙钛矿氧化物纳米结构的可控制备、微结构和性能研究[博士学位论文],杭州:淅江大学材料系,2013.
    [205]D. Kan, T. Terashima, R. Kanda, A. Masuno. K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, M. Takano. Blue-light emission at room temperature from Ar-irradiated SrTiO3. Nat. Mater.,2005,4:816-819.
    [206]L. G. J. De Haart, A. J. Vries, G. Glasse. On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells. J. Solid. State Chem.,1985,59:291-300.
    [207]任召辉,一维柱状结构钛酸铅纳米管的铁电和光学性能研究[博士后论文],杭州:浙江大学材料系,2010.
    [208]T. R. N. Kutty, P. Padmini, A method for the preparation of high purity lead titanat zirconate solid solutions by carbonate-gel composite powder precipitation,J. Mater. Chem.,1997,7: 521-526.
    [209]陈永,多孔材料制备与表征,中国科学技术大学出版社,第一版,2010.
    [210]E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A.A. Webber, H.J. Snaith, Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance, Nature,2013,495:215-220.
    [211]C. N. R. Rao, K. J. Rao. Phase transitions in solids, McGraw-Hill, New York,1978.
    [212]B. Xiang, Q. X. Wang, Z. Wang.Synthesis and field emission properties of TiSi2 nanowires. Appl. Phys. Lett.,2005,86 (243103):1-5.
    [213]V. I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, G. Han.Crystal-crystal phase transformation via surface-induced virtual premelting. Phys. Rev. B.,2012,85 (220104):1-5.
    [214]M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Low-temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and CO1O4, J. Catal.,1993,144:175-192.
    [215]X.W. Xie, Y. Li, Z.Q. Liu, M. Haruta, W.J. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods, Nature,2009,458:746-749.
    [216]Q. Fu, H. Saltsburg, M. F. Stephanopoulos, Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts, Science,2003,301:935-938.
    [217]H.P. Zhou, H.S. Wu, J. Shen, A.X. Yin, L.D. Sun, C.H. Yan. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity, Am. Chem. Soc.,2010,132(14): 4998-4999.
    [218]王倩,毛东森,方珍妮,俞俊,杨志强,铜铈钛复合氧化物的制备及其催化一氧化碳氧化反应的性能,上海应用技术学院学报(自然科学版),2010,10(2):124-127.
    [219]J.A. Enterkin, W. Setthapun, J.W. Elam, S.T. Christensen, F.A. Rabuffetti, L.D. Marks, P.C. Stair, K.P. Poeppelmeier, C.L. Marshall. Propane oxidation over Pt/SrTiO3 nanocuboids, ACS Catal.,2011,1(6):629-635.
    [220]R.N.S.H. Magalhaes, F.S. Toniolo, V.T. da Silva, M. Schmal.Selective CO oxidation reaction (SELOX) over cerium-dopped LaCoO3 perovskite catalysts, Appl. Catal. A-Gen.,2010, 388(1-2):216-224.
    [221]S. K. Kurtz, T. T. Perry,A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys.1968,39(8):3798-3813.
    [222]C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev.,2010,39:4206-4219.
    [223]A.L. Linsebigler, G.Q. Lu, J.T. Yates, Jr.,Photocatalysis on Tio2 Surfaces:Principles, Mechanisms, and Selected Results, Chem. Rev.,1995,95,735-758.
    [224]F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment:A review, Appl. Catal. A:General,2009,359(1-2):25-40.
    [225]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science,2001.293:269-271.
    [226]S. Livraghi, M.C. Paganini, E.Giamello, A. Selloni, C.D. Valentin, G. Pacchioni, Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light, J. Am. Chem. Soc. 2006,128:15666-15671.
    [227]N.D. Feng, Q. Wang, A.M. Zheng, Z.F. Zhang, J. Fan, S.B. Liu, J.P. Amoureux, F. Deng, Understanding the High Photocatalytic Activity of (B,Ag)-Codoped TiO2 under Solar-Light Irradiation with XPS, Solid-State NMR, and DFT Calculations, J. Am. Chem. Soc.,2013, 135:1607-1616.
    [228]J. Premkumar, Development of Super-Hydrophilicity on Nitrogen-Doped TiO2 Thin Film Surface by Photoelectrochemical Method under Visible Light, Chem. Mater.,2004, 16:3980-3981.
    [229]Y.L. Zhang, A.M. Schultz, P.A. Salvador. G.S. Rohrer, Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures, J. Mater. Chem.,2011, 21:4168-4174.
    [230]Y.J. Kim, B.F. Gao, S.Y. Han, M.H. Jung, A.K.Chakraborty, T. Ko, C. Lee. W.I. Lee, Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst, J. Phys. Chem. C 2009,113:19179-19184.
    [231]B.F. Gao, Y.J. Kim, A.K. Chakraborty, W.I. Lee, Efficient decomposition of organic compounds with FeTiO3/TiO2 heteroj unction under visible light irradiation. Appl. Catal. B:Environ.,2008,83(3-4):202-207.
    [232]L. Li, G. S. Rohrer, P. A. Salvador, Heterostructured Ceramic Powders for Photocatalytic Hydrogen Production:Nanostructured TiO2 Shells Surrounding Microcrystalline(Ba,Sr)TiO3 Cores, J. Am. Ceram. Soc.,2012,95:1414-1420.
    [233]P.S. Brody. Large polarization-dependent photovoltages in ceramic BaTiO3+5 wt.%CaTiO3, Solid State Commun.,1973.12(7):673-676.
    [234]P.S. Brody, High voltage photovoltaic effect in barium titanate and lead titanate-lead zirconate ceramics. J.Solid State Chem.,1975,12(3-4):193-200.
    [235]V.M. Fridkin, Review of recent work on the bulk photovoltaic effect in ferro and piezoelectrics. Ferroelectrics,1984,53:169-187.
    [236]S. R. Morrison. Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York,1980.
    [237]A. J. Nozik, Annu.Photoelectrochemistry:Applications to solar energy conversion, Rev. Phys. Chem.,1978,29:189-222.
    [238]Y. Inoue, M. Okamura, K. Sato, A Thin-Film Semiconducting TiO2 Combined with Ferroelectrics for Photoassisted Water Decomposition, J. Phys. Chem.,1985,89:5184-5187.
    [239]Y. Inoue, K. Sato, H. Miyama, Photoassisted Water Decomposition by Ferroelectric Lead Zirconate Titanate Ceramics with Anomalous Photovoltatic Effect, J. Phys. Chem.,1986, 90:2809-2810.
    [240]J. L. Giocondi, G. S. Rohrer, Spatial Separation of Photochemical Oxidation and Reduction Reactions on the Surface of Ferroelectric BaTiO3, J. Phys. Chem. B,2001,105:8275-8277.
    [241]N. V. Burbure, P. A. Salvador, G. S. Rohrer, Photochemical Reactivity of Titania Films on BaTiO3 Substrates:Influence of Titania Phase and Orientation, Chem. Mater.,2010, 22:5831-5837.
    [242]N. V. Burbure, P. A. Salvador, G. S. Rohrer, Photochemical Reactivity of Titania Films on BaTiO3 Substrates:Origin of Spatial Selectivity, Chem. Mater.,2010,22:5823-5830.
    [243]D. Tiwari and S. Dunn, Photochemistry on a polarisable semi-conductor:what do we understand today? J. Mater. Sci.,2009,44:5063-5079.
    [244]D. Arney,T. Watkins, P.A.Maggard, Effects of Particle Surface Areas and Microstructures on Photocatalytic H2 and O2 Production over PbTiO3, J. Am. Ceram. Soc.,2011, 94(5):1483-1489.
    [245]L. Li, Y.L. Zhang, A.M. Schultz, X. Liu, P.A. Salvador, G.S. Rohrer, Visible light photochemical activity of heterostructured PbTiO3-TiO2 core-shell particles, Catal. Sci. Technol.,2012,2:1945-1952.
    [246]F. A. Grant, Properties of rutile. Rev. Mod. Phys.,1959,31:646-674.
    [247]M. A. Butler, D. S. Ginley,Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities, J. Electrochem. Soc.,1978,125:228-232.
    [248]P. S. Rao, E. Hayon, Reduction of Dyes by Free Radicals in Solution. Correlation between Reaction Rate Constants and Redox Potentials,J Phys. Chem.,1973,77:2753-2756.
    [249]W.J. Albery, P.N. Bartlett, The Transport and Kinetics of Photogenerated Carriers inColloidal Semiconductor Electrode Particles, J. Electrochem. Soc.,1984,131(2):315-325.
    [250]刘恩彩,朱秉升,罗晋生,半导体物理学,电子工业出版社,第7版,北京,2012.
    [251]E. K. Akdogan. C. J. Rawn, W. D. Porter, E. A. Payzant, A. Safari, Size effects in PbTiO3nanocrystals:Effect of particle size on spontaneouspolarization and strains, J. Appl. Phys.,2005,97(084305):1-9.
    [252]X. Zhang, L. Z. Zhang, T. F. Xie, D. J. Wang, Low-Temperature Synthesis and HighVisible-Light-Induced Photocatalytic Activity ofBiOI/TiO2 Heterostructures, J. Phys. Chem.C,2009,113:7371-7378.
    [253]W. Zhao, C.C. Chen, X.Z. Li, J.C. Zhao, Photodegradation of sulforhodamine-Bdye in platinized titania dispersions under visible light irradiation:influence ofplatinum as a functional co-catalyst, J. Phys. Chem. B,2002,106:5022-5028.
    [254]A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal., B,2001,31:145-157.
    [255]X.L. Mou, B.S. Zhang, Y. Li, L.D. Yao, X.J. Wei, D.S. Su, W.J. Shen, Rod-Shaped Fe2O3 as an Efficient Catalyst for the Selective Reduction of Nitrogen Oxide by Ammonia, Angew. Chem. Int. Ed.,2012,51:2989-2993.
    [256]X.L. Hu, J.C. Yu, Continuous Aspect-Ratio Tuning and Fine Shape Control of Monodisperse α-Fe2O3 Nanocrystals by a Programmed Microwave-Hydrothermal Method, Adv. Funct. Mater.2008,18:880-887.
    [257]Y. F. Yu, J. Zhang, X. Wu, W. W. Zhao, B. Zhang, Nanoporous Single-Crystal-Like CdxZn1-xS Nanosheets Fabricated by the Cation-Exchange Reaction of Inorganic-Organic Hybrid ZnS-Amine with Cadmium Ions, Angew. Chem., Int. Ed.,2012,51:897-900.
    [258]L. Tian, H. L. Zou, J. X. Fu, X. F. Yang, Y. Wang, H. L. Guo, X. H. Fu, C. L. Liang, M. M. Wu, P. K. Shen, Q. M. Gao, Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline CO3O4 Nanobelts with Optimizable Electrochemical Performance Adv. Funct. Mater.,2010,20:617-623.
    [259]C. J. Jia, L. D. Sun, Z. G. Yan, L. P. You, F. Luo, X. D. Han, Y. C. Pang, Z. Zhang, C. H. Yan, Single-Crystalline Iron Oxide Nanotubes, Angew. Chem., Int. Ed.,2005,44:4328-333.
    [260]Y. J. Xiong, Z. Q. Li. X. X. Li, B. Hu.Y. Xie. Thermally Stable Hematite Hollow Nanowires, Inorg. Chem.,2004,43:6540-6542.
    [261]J. Kong, N. R. Franklin, C. W. Zhou. M. G. Chapline, S. Peng, K. Cho, H. J. Dai, Nanotube Molecular Wires as Chemical Sensors, Science,2000,287:622-625.
    [262]G. X. Wang, X. L. Gou, J. Horvat, J. Park, Facile Synthesis and Characterization of Iron Oxide Semiconductor Nanowires for Gas Sensing Application, J. Phys. Chem. C,2008, 112:15220-15225.
    [263]S. J. Ding, J. S. Chen, X. W. Lou, One-Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Storage Properties, Adv. Funct. Mater.,2011,21:4120-4125.
    [264]C.T. Cherian, J. Sundaramurthy, M. Kalaivani, P. Ragupathy, P.S. Kumar, V. Thavasi, M.V. Reddy, C.H. Sow, S. G. Mhaisalkar, S. Ramakrishna, B. V. R. Chowdari, Electrospun α-Fe2O3 nanorods as stable, high capacity anode material for Li-ion batteries, J. Mater. Chem., 2012.22:12198-12204.
    [265]X. Y. Yao. C. L. Tang. G. X. Yuan. P. Cui. X. X. Xu. Z. P. Liu. Porous hematite(α-Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries, Electrochem. Commun.,2011,13:1439-1442.
    [266]X. L. Hu, J. C. Yu, J. M. Gong, Q. Li and G. S. Li, a-Fe2O3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing PropertiesAdv. Mater.,2007, 19:2324-2329.
    [267]F. Y. Cao, C. L. Chen, Q. Wang, Q. W. Chen, Synthesis of carbon-Fe3O4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide. Carbon,2007,45:727-731.
    [268]G. M. Zhou, D. W. Wang, F. Li, L. L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, H. M. Cheng, Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries, Chem. Mater.,2010,22:5306-5313.
    [269]R. Rajendran, R. Muralidharan, R.S. Gopalakrishnan, M. Chellamuthu, S.U. Ponnusamy, E. Manikandan, Controllable Synthesis of Single-Crystalline Fe3O4 Nanorice by a One-Pot, Surfactant-Assisted Hydrothermal Method and Its Properties, Eur. J. Inorg. Chem., 2011:5384-5389.
    [270]Z. S. Wu, W. C. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li, H. M. Cheng, Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ions Batteries with Enhanced Reversible Capacity and Cyclic Performance, ACS Nano,2010,4:3187-3194.
    [271]B. Varghese, M. V. Reddy, Y. W. Zhu, S. L. Chang, C. H. Teo, G. V. Subba Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim, C. H. Sow, Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery, Chem. Mater.,2008,20:3360-3367.
    [272]G. M. Zhou, D. W. Wang, L. C. Yin, N. Li, F. Li, H. M. Cheng, Oxygen Bridges between NiO Nanosheets and Graphene for Improvement of Lithium Storage, ACS Nano,2012, 6:3214-3223.
    [273]Y. Xia, W. K. Zhang, Z. Xiao, H. Huang, H. J. Zeng, X. R. Chen, F. Chen, Y. P. Gan, X. Y. Tao, Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries, J. Mater. Chem.,2012,22:9209-9215.
    [274]Z. Y. Wang, Z. C. Wang, S. Madhavi, X. W. Lou, α-Fe2O3-mediated growth and carbon nanocoating of ultrafine SnO2 nanorods as anode materials for Li-ion batteries, J. Mater. Chem.,2012,22:2526-2531.
    [275]J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, X. W. Lou, Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties, J. Am. Chem. Soc.,2010,132:13162-13164.
    [276]S. M. Yuan, J. X. Li, L. T. Yang, L. W. Su, L. Liu, Z. Zhou, Preparation and Lithium Storage Performances of Mesoporous Fe3O4@C Microcapsules, ACS Appl. Mater. Interfaces,2011, 3:705-709.
    [277]T. Yoon, C. Chae, Y. K. Sun, X. Zhao, H. H. Kungc, J. K. Lee, Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes, J. Mater. Chem.,2011,21:17325-17330.
    [278]J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan, Synthesis of Hierarchically Structured Metal Oxides and their Application in Heavy Metal Ion Removal, Adv. Mater.,2008, 20:2977-2982.
    [279]Z. Y. Wang, D. Y. Luan, S. Madhavi, Y. Hu, X. W. Lou, Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability, Energy Environ. Sci.,2012,5:5252-5256.
    [280]W. Zhou, L. J. Lin, W. J. Wang, L. L. Zhang, Q. Wu, J. H. Li, L. Guo, Hierarchial Mesoporous Hematite with "Electron-Transport Channels" and Its Improved Performances in Photocatalysis and Lithium Ion Batteries,J. Phys. Chem. C,2011,115:7126-7133.
    [281]C. M. Zhang, J. X. Zhu, X. H. Rui, J. Chen, D. H. Sim, W. H. Shi, H. H. Hng, T. M. Lim, Q. Y. Yan, Synthesis of hexagonal-symmetry α-iron oxyhydroxide crystals using reduced graphene oxide as a surfactant and their Li storage properties, CrystEngComm,2012, 14:147-153.
    [282]X. M. Lou, X. Z. Wu and Y. X. Zhang, Goethite nanorods as anode electrode materials for rechargeable Li-ion batteries, Electrochem. Commun.,2009,11:1696-1699.
    [283]S. Xiong, J. Xu, D. Chen, R. M. Wang, X. L. Hu, G. Z. Shen, Z. L. Wang, Controlled synthesis of monodispersed hematite microcubes and their Properties, CrystEngComm,2011, 13:7114-7120.
    [284]Y. X. Chen, L. H. He, P. J. Shang, Q. L. Tang, Z. Q. Liu, H. B. Liu, L. P. Zhou, Micro-sized and Nano-sized Fe3O4 Particles as Anode Materials for Lithium-ion Batteries. J. Mater. Sci. Technol.,2011,27:41-45.
    [285]D. W. Su, H. S. Kim, W. S. Kim, G. X. Wang, Synthesis of tuneable porous hematites (a-Fe2O3) for gas sensing and lithium storage in lithium ion batteries, Microporous Mesoporous Mater.,2012,149:36-45.
    [286]S. M. Yuan, Z. Zhou, G. Li, Structural evolution from mesoporous a-Fe2O3 to Fe3O4@C and y-Fe2O6 nanospheres and their lithium storage performances, CrystEngComm,2011, 13:4709-4713.
    [287]L. W. Ji, Z. K. Tan, T. R. Kuykendall, S. Aloni. S. D.Xun, E. Lin, V. Battaglia, Y. G. Zhang, Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells, Phys. Chem. Chem. Phys.,2011,13:7170-7177.
    [288]J. Liu, Y. C. Zhou, F. Liu. J. B. Wang, Y. Pan, D. F. Xue, One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Adv.,2012,2:2262-2265.
    [289]S. K. Behera. Facile synthesis and electrochemical properties of Fe3O4 nanoparticles for Li ion battery anode, J. Power Sources,2011,19:8669-8674.
    [290]J. Z. Wang, C. Zhong, D. Wexler, N.H. Idris, Z. X. Wang, L. Q. Chen, H. K. Liu, Graphene-Encapsulated Fe3O4 Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries, Chem.Eur. J.,2011,17:661-667.
    [291]M. Zhang, B. H. Qu, D. N. Lei, Y. J. Chen, X. Z. Yu, L. B. Chen, Q. H. Li, Y. G. Wang, T. H. Wang, A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties, J.Mater. Chem.,2012,22:3868-3874.
    [292]Y. Ma, C. Zhang, G. Ji. J. Y. Lee, Nitrogen-doped carbon-encapsulation of Fe3O4 for increased reversibility in Li storage by the conversion reaction, J. Mater. Chem.,2012, 22:7845-7850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700