shRNA抑制小鼠肝癌细胞株JNK表达及与淋巴道转移关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:恶性肿瘤区别于良性肿瘤的根本特征是其转移潜能。转移是导致恶性肿瘤患者死亡率高、预后差的根本原因,目前其发生机制尚不清楚,已成为当今研究的重要课题。对于上皮来源的恶性肿瘤,其早期转移的主要方式是淋巴道转移,是影响患者预后的重要因素。因此,对于淋巴道转移机制进行研究,并在此基础上建立起相应的干预手段,将对恶性肿瘤患者具有重要的现实意义。原发性肝细胞癌( primary hepatocellular carcinoma )是常见的恶性肿瘤之一,在我国具有较高的发病率。尽管进行了大量的研究与探讨,但是肝癌转移的分子基础和机制尚不清楚。
     Hca-F和Hca-P是一对来源于同一亲本细胞,而且淋巴道转移潜能显著不同的小鼠肝癌腹水型细胞株。其中Hca-F是具有高转移潜能的细胞株,淋巴结转移率高于70%,Hca-P是低转移潜能的细胞株,淋巴结转移率低于30%。这为我们研究淋巴道转移机制提供了较为理想的细胞模型。
     本实验组前期致力于小鼠肝癌淋巴道转移机制的研究。在对Hca-F细胞和Hca-P细胞的一系列研究中,利用抑制性消减杂交技术及高通量基因芯片技术筛选出了在Hca-F细胞和Hca-P细胞的差异表达基因;并采用定量蛋白质组学技术建立了高低淋巴道转移力小鼠肝癌细胞荧光差异蛋白表达图谱。其中在基因水平上,JNK在Hca-F细胞中的表达显著高于Hca-P细胞,提示JNK可能与小鼠肝癌的淋巴道转移潜能相关。由于在人类组织细胞中具有JNK同源蛋白,因此,研究小鼠肝癌细胞株JNK与淋巴道转移的关系,对人类肝癌淋巴道转移的的防治具有重要意义。
     c-Jun N端激酶( c-Jun N-terminal kinase, JNK )是一种能够特异性磷酸化c-Jun的蛋白激酶,位于重要的细胞信号传导通路-粘着斑(focal adhesion)通路上,是丝裂原活化蛋白激酶( mitogen-activated proteinkinase pathway,MAPK )家族的主要成员之一。MAPK是广泛存在于哺乳动物细胞内的一类丝氨酸/苏氨酸蛋白激酶,对于调节蛋白质的功能起着非常重要的作用,其本身及其介导的信号转导通路与肿瘤有着密切的关系。JNK对于细胞发育,形态形成和分化是必需的。JNK信号通路参与了多种生理过程,同时近来的研究表明JNK信号途径也参与某些疾病和肿瘤的发生发展过程,使JNK在临床上可做为一个潜在的分子治疗靶点。本研究以JNK为研究对象,探索其在Hca-F细胞株淋巴道转移过程中的作用。经检索,目前国内外尚无JNK与肝癌淋巴道转移关系的研究报道。
     目的:1.从蛋白质水平上比较JNK在淋巴道转移潜能不同小鼠肝癌细胞系中的表达,为进一步研究肝癌淋巴道转移的机制奠定基础。2.构建pSilencer -shRNA表达载体,稳定转染Hca-F细胞获得JNK的表达水平显著下调的Hca-F细胞株。3.研究JNK表达水平的下降对小鼠肝癌细胞株Hca-F在细胞增殖、细胞迁移和侵袭能力等方面的影响,由此确定JNK表达水平与小鼠肝癌细胞淋巴道转移潜能间的关系。
     方法:1.采用蛋白免疫印迹方法检测磷酸化JNK(p-JNK)在Hca-F、Hca-P细胞株中表达有无差异。2.由上海之江生物公司依据Gene Bank中小鼠JNK基因序列(序列登录号:NM_016700.3)设计shRNA靶序列,合成3条shRNA的DNA模板的两条单链,分别命名为shRNA-1、shRNA-2、shRNA-3,同时设计shRNA-无关序列。获取pSilencer? 3.1-H1 neo质粒,然后对质粒进行双酶切,shRNA合成序列退火,T4 DNA ligase连接质粒与三条shRNA的DNA模板和无关序列的退火后产物,连接产物分别命名为pSilencer-shRNA-1、pSilencer-shRNA-2、pSilencer- shRNA-3、pSilencer-shRNA-无关序列。pSilencer -shRNA质粒抽提获得表达载体,对三条pSilencer-shRNA表达载体经测序鉴定(引物为5'-GTTTTCCCA GTCACGAC-3'),结果与我们设计的三条shRNA靶序列和Gene Bank中序列比对。确定序列无误后,将三条pSilencer-shRNA表达载体和无关序列分别以脂质体法稳定转染Hca-F细胞,用含400ug/ml G418的完全培养基筛选,获得pSilencer- shRNA表达载体稳定转染的Hca-F细胞和无关序列对照组细胞。在mRNA和蛋白质水平检测三条shRNA对JNK的表达的抑制作用,同时设RNAi阴性对照组(稳定转染pSilencer- shRNA-无关序列的Hca-F细胞株)以及阳性对照组(正常的Hca-F细胞株),以筛选出RNAi效果最好的shRNA,用于后续实验。3.以三组细胞(分别为Hca-F细胞株、稳定转染pSilencer- shRNA-无关序列的Hca-F细胞株、经筛选的稳定转染pSilencer-shRNA表达载体的Hca-F细胞株)为实验对象。以CCK-8法检测三组细胞的细胞活力和分裂增殖能力;Transwell实验检测pSilencer-shRNA转染Hca-F细胞后对细胞迁移能力和侵袭能力的影响。
     结果:1. p-JNK在小鼠腹水型肝癌细胞系Hca-F和Hca-P均有表达,在Hca-F细胞株中的表达显著高于Hca-P,二者间有显著性差异(P<0.01)。2.成功构建pSilencer-shRNA表达载体并稳定转染Hca-F细胞,3个表达载体中所含3条shRNA序列被正确检测出,靶序列与GenBank中序列一致。经筛选pSilencer-shRNA-2对JNK表达抑制的效果最好,转染后细胞株中JNK在mRNA和蛋白质水平的表达远低于其他2组及无关序列组和Hca-F细胞组( P<0.01,P<0.05 ), pSilencer -shRNA-2被选择作为后续实验的JNK稳定下调的细胞株。3. CCK-8实验结果表明JNK有促进细胞增殖的作用;体外迁移实验结果表明,JNK下调组的穿膜细胞数明显低于阳性和阴性对照组(17.89±1.65 vs 35.10±1.27, 31.83±1.69, P<0.05);体外侵袭实验结果表明,JNK下调组穿过人工基底膜的细胞数明显低于阳性和阴性对照组( 10.03±2.81vs19.73±1.60,19.23±1.24 ,P<0.05)。说明在Hca-F中下调JNK表达之后,其迁移能力、侵袭能力均显著下降。
     结论:1. p-JNK在小鼠腹水型肝癌细胞系Hca-F和Hca-P均有表达,在Hca-F细胞株中的表达显著高于Hca-P,二者间有显著性差异。2.利用pSilencer? 3.1-H1 neo质粒和shRNA成功构建了三个pSilencer -shRNA表达载体,并稳定转染Hca-F细胞株,获得JNK表达稳定下调的Hca-F细胞株,经过筛选pSilencer -shRNA-2对Hca-F细胞中JNK抑制效果最明显,可作为后续研究的细胞株,为通过下调JNK在Hca-F的表达以研究JNK与肝癌淋巴道转移的关系打下了基础。3. JNK作为小鼠肝癌Hca-F和Hca-P细胞株的差异表达蛋白质,降低其表达水平可抑制小鼠肝癌细胞的增殖,降低小鼠肝癌细胞的迁移和侵袭能力,提示JNK可能是决定Hca-F淋巴道转移潜能的重要基因之一,在肝癌淋巴道转移中起着重要作用,其可能机制是JNK在粘着斑通路内通过调节paxillin、c-Jun、AP-1及由AP-1所调节的各种与肿瘤转移有关的基因所致。
Background: The most important difference between malignant and benign tumors is metastasis. Metastasis is the fundamental cause of high mortality and poor prognosis of the patients who suffer from malignant tumors. The mechanism is not clear until now and it is an important project for discussion. To epithelial malignant tumors, the early metastatic mode is lymphatic metastasis which is an important factor which affects prognosis of the patients. Therefore, it is very important to investigate the molecular mechanism of lymphatic metastasis and find new approaches of intervention . Primary hepatocellular carcinoma is one of the most common malignant tumor with high incidence of a disease in our country. Although a mass of researches have been done, its mechanism is not clear.
     Hca-P and Hca-F is a pair of syngenetic mouse hepatocarcinoma ascites cell lines which has the different rates of lymphatic metastasis . Hca-F is the cell lines whose metastatic rate is more than 70% and Hca-P less than 30%. They are the ideal models for the researches of mechanism of lymphatic metastasis .
     Our experimental group has engaged in the research work for the mechanism of lymphatic metastasis. We have screened out the lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines by using suppressive subtractive hybridization and gene chip assays respectively and obtained the lymphatic metastasis-associated proteins by using quantitative proteomics technique. The expressing level of JNK was much higher in Hca-F than that in Hca-P cell lines in both gene and protein levels which showed that JNK maybe play an important role in lymphatic metastasis of mouse hepatocarcinoma. In the tissue of human being, there is JNK protein of the same origin with mouse.So it is very important to study the relationship between JNK and lymphatic metastasis of mouse hepatocarcinoma.
     c-Jun N-terminal kinase ( JNK )is the kinase which can phosphates c-Jun in a specific way. INK is an important member of mitogen-activated protein kinase pathway( MAPK ) and is located in focal adhesion which is the important cellular signal transduction. MAPK is a Ser/Thr kinase which is widely present in mammal cells. It has a close relation with tumors. JNK is necessary to growth, morphogenesis and differentiation of cells. JNK signal transduction participates in many physiological process. The recent studies showed that JNK signal transduction also has a close relation with certain diseases and tumors. And it is regarded as a potential target for treatment in clinical practice.
     In this study, JNK was being as the subject to discuss the role it played in process of lymphatic metastasis of Hca-F celllines. There was not such reports home and abroad by retrieval.
     Objective: 1.To observe the expression levels of p-JNK in mouse hepatocarcinoma ascites cell lines Hca-F and Hca-P for further study of its function and mechanism in lymphatic metastasis of hepatocarcinoma. 2.To build expression vector of pSilencer-shRNA and obtain cellline Hca-F of markedly decreased expression of JNK by stable transfection. 3. To study the influence on proliferation, migration and invasion of mouse hepatocellular carcinoma Hca-F celllines after inhibition of JNK expression by shRNA and discuss the correlation between expressing level of JNK and lymphatic metastasis of mouse hepatocarcinoma.
     Methods: 1. The expression of p-JNK protein was detected in Hca-F and Hca-P cells by Western Blot. 2. Three shRNAs (shRNA-1、shRNA-2、shRNA-3) and unrelated sequence were designed according to the gene sequence of JNK ( NM_016700.3 ). pSilencer? 3.1-H1 neo vector was obtained and BamH I and EcoR I enzymes were used to digest.The annealing of shRNA compositive sequence was performed and T4 DNA ligase was used to connect the pSilencer vector with three shRNAs and unrelated sequence after annealing. The connecting products was named pSilencer-shRNA-1,pSilencer-shRNA-2, pSilencer-shRNA-3 and pSilencer- shRNA-unrelated sequence. The expressing vector was obtained by extraction of vectors. The sequence of expressing vectors was identified by sequencing and the result was compared to that in gene bank. The three pSilencer 3.1-shRNA expressing vectors were transfected into Hca-F cells respectively and the most effective pSilencer-shRNA vector was selected according to the results of RT-PCR and Western blotting. The unrelated shRNA transfected Hca-F celllines and normal Hca-F celllines were negative control group and positive control group respectively. 3. The cell viability was evaluated by CCK-8. The cell migration and invasion capability was evaluated by transwell assays.
     Results: 1. The expreesion of p-JNK in Hca-F was significantly higher than that in Hca-P (P<0.01). 2. The expression vector of pSilencer-shRNA was built and transfected to Hca-F cells successfully. The sequence of three shRNAs in expressing vectors was identified by sequencing and the result was identical to that in gene bank.The most effective shRNA was pSilencer-shRNA-2 which inhibited JNK expression. The expressions of mRNA and protein of JNK in Hca-F cells after transfection of shRNA-2 were markedly decreased compared with the other groups ( P<0.01, P<0.05 ). pSilencer-shRNA-2 was chosen as the cellline for further study. 3. The result of CCK-8 showed that JNK could promote cell proliferation. Ttranswell assays showed that migration capability was decreased after knock-down of JNK expression in Hca-F cell lines (17.89±1.65 vs 35.10±1.27, 31.83±1.69, P<0.05 ). Invasion capability was decreased after knock-down of JNK expression in Hca-F cell lines(10.03±2.81 vs19.73±1.60 ,19.23±1.24,P<0.05 ).
     Conclusions: 1. The expreesion of p-JNK in Hca-F was significantly higher than that in Hca-P . 2. The Hca-F cell lines of markedly knock-down of JNK expression by stable transfection was obtained and the most effective shRNA was pSilencer-shRNA-2 which inhibited JNK expression. And pSilencer-shRNA-2 was chosen as the cellline for further study which provided a solid foundation for further studies of relationship between JNK and lymphatic metastasis of hepatocellular carcinoma. 3. Being as the different protein between Hca-F and Hca-P cell lines, the knock-down of JNK expression could inhibit proliferation, decrease migration and invasion capability of mouse hepatocellular carcinoma celllines. JNK maybe play an important role in lymphatic metastasis of hepatocellular carcinoma.The possible mechanism is that JNK located in focal adhesion can regulate paxillin, c-Jun, AP-1 and the genes in connection with tumor metastasis regulated by AP-1.
引文
1. Boulton TG, Cobb MH. Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul, 1991, 2(5): 357-371
    2. Hibi M, Lin A, Smeal T, et al. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev, 1993, 7(11): 2135-2148
    3. Han J, Lee JD, Bibbs L, et a1. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994, 265(5173):808-811
    4. Zhou G, Bao ZQ, Dixon JE. Components of a new human protein kinase signal transduction pathway. J Biol Chem, 1995, 270(21):12665-12669
    5. Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated protein kinases: Conservation of a three-kinase module from yeast to human. Physiol Rev, 2000, 79(1): 143-180
    6. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions . Biochem J ,2000, 351 Pt 2 :289-305
    7. Wang S , Shi X. Mechanisms of Cr(VI)-induced p53 activation: the role of phosphorylation, mdm2 and ERK . Carcinogenesis ,2001 ,22(5) :757-762
    8. Squires MS , Nixon PM, Cook SJ, et al. Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1. Biochem J , 2002, 366 (Pt 2): :673-680
    9.董春燕,刘铁夫,李兆申,等.细胞外信号调节激酶Erkl/Erk2对胰腺癌生长的影响.哈尔滨医科大学学报,2005, 39 (2):163-165
    10. Xia Y, Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol, 2004,14(2):94-101
    11. Heasley E Lynn, Han SY. JNK regulation of oncogenesis.Mol.Cells,2006, 21(2):167-173
    12. Dunn C, Wiltshire C, MacLaren A , et al. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cellular Signalling, 2002,14(7):585-593
    13. Buschmann T, Potapova O, Bar-Shira A , et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol, 2001,21(8) : 2743-2754
    14. Tournier C, Hess P , Yang DD , et al. Requirement of JNK for stress -induced activation of the cytochrome c - mediated death pathway . Science, 2000, 288(5467) : 870-874
    15. Noguchi K, Kitanaka C, Yamana H, et al. Regulation of c-Myc through phosphorylation at Ser - 62 and Ser -71 by c-Jun N-termjinal kinase . J Biol Chem, 1999 , 274 (46) : 32580-32587
    16. Tournier C, Whitmarsh AJ, Cavanagh J, et al. Mitogen-activated protein kinase 7 is an activator of thr c-Jun N-terminal kinase. Proc Natl Acad Sci USA, 2001, 94(14): 7337
    17. Lawler S, Fleming Y, Goedert M, et al. Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr Biol, 1998, 8(25):1387-1390
    18. Tournier C, Dong C, Turner TK, et al. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev, 2001, 15(11):1419-1426
    19. Davis RJ. Signal transduction by the JNK group of MAP kinases.Cell, 2000, 103(2):239-252
    20. Tanoue T, Nishda E. Docking interaction in the mitogen-activated protein kinase cascades. Pharmacol and Ther, 2002, 93(2-3): 193-202
    21. Dunn C, Wiltshire C, MacLaren A, et al. Molecular mechanism and biological functions of c - Jun N - terminal kinase signalling via the c - Jun transcription factor. Cell Signal ,2002 , 14(5) :585-593
    22. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Genet Dev, 2002,12(1):14-21
    23. Levresse V ,Marek L ,Blumberg D , et al .Regulation of platinum-compound cytotoxicity by the c-Jun N-terminal kinase and c-Jun signaling pathway in small-cell lung cancer cells. Mol Pharmacol , 2002, 62(3) : 689-697
    24. Mansouri A ,Ridgway LD , Korapati AL ,et al . Sustained activation of JNK/ p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem ,2003, 278(21) :19245-19256
    25. Lamb JA ,Ventura JJ , Hess P ,et al . JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell, 2003 , 11(6) :1479-1489
    26. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol, 2007,19(2):142-149
    27. Liu J, Lin A. Role of JNK activation in apoptosis: a double-edged sword. Cell Res,2005,15(1): 36-42
    28. Tsuruta F, Sunayama J, Mori Y, et al. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J,2004, 23(8), 1889-1899
    29. Chang L, Kamata H, Solinas G, et al. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell, 2006, 124(3), 601-613
    30. Sabapathy K, Hochedlinger K, Nam SY, et al. Distinct roles for JNKl and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell, 2004, 15(5): 713-725
    31. Lamb JA, Ventura JJ, Hess P, et al. JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell, 2003, 11(6): 1479-1489
    32. Jaeschke A, Karasarides M, Ventura JJ, et al. JNK2 is a positive regulator of the cJun transcription factor. Mol Cell, 2006, 23(6): 899-911
    33. Zapata HJ, Nakatsugawa M, Moffat JF. Varicella-zoster virus infection of human fibroblast cells activates the c-Jun N-terminal kinase pathway. J Virol, 2007, 81(2): 977-990
    34. Himes SR, Sester DP, Ravasi T, et al. The JNK are important for development and survival of macrophages. J Immunol, 2006 , 176(4): 2219-2228
    35. Constant SL, Dong C, Yang DD,et al. JNK1 is required for T cell-mediated immunity against Leischmania major infection. J Immunol, 2000, 165(5): 2671-2676
    36. Martin P, Parkhurst SM. Parallels between tissue repair and embryo morphogenesis. Development, 2004,131(13):3021-3034
    37. Noselli S, Agnès F . Roles of the JNK signaling pathwayin Drosophila morphogenesis.Curr Opin Genet Dev,1999, 9(4):466-472
    38. Weston CR,Wong A,Hall JP,et al.The c-Jun NH2-terminal kinase is essential for epidermal growth factor expression during epidermal morphogenesis. Proc Natl Acad Sci USA, 2004, 101(39): 14114-14119
    39. Kuan CY, Yang DD, Samanta Roy DR, et al.The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development.Neuron, 1999,22(4):667-676
    40. Sabapathy K, Jochum W, Hochedlinger K, et al. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2.Mech Dev, 1999, 89(1-2):115-124
    41. Yoshida S, Fukino K, Harada H, et al. The c-Jun NH2-terminal kinase3 (JNK3) gene:genomic structure,chromosomal assignment, and loss of expression in brain tumors. J Hum Genet,2001, 46(4):182-187
    42. Dong C, Davis RJ, Flavell RA, et al. MAP kinases in the immune response. Annu Rev Immunol, 2002, 20: 55-72
    43. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol ,2007,19(2):142-149
    44. Gupta S, Campbell D, Dérijard B, et al. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 2005, 267(5196): 389-393
    45. Zhang JY, Adams AE, Ridky TW,et al. Tumor necrosis factor receptor 1 /c-jun-NH2-kinase signaling promotes human neoplasia. Cancer Res, 2007, 67(8): 3827-3834
    46. Bost F, McKay R, Bost M, et al. The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol.Cell.Biol, 1999, 19(3):1938-1949
    47. Yang YM, Bost F, Charbono W, et al. C-Jun NH(2)-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma. Clin.Cancer Res, 2003,9(1):391-401
    48. MacCorkle RA, Tan TH. Inhibition of JNK2 disrupts anaphase and produces aneuploidy in mammalian cells. J.Biol.Chem, 2004, 279(38):40112-40121
    49. Shin E, Hong SW, Kim SH ,et al. Expression of down stream molecules of RET(P-ERK,P-P38 MAPK,P-JNK and p-AKT)in papillary thyroid carcinomas. Yonsei Med J,2004, 45(2):306-313
    50. Yeh YT, Hou MF, Chung YF,et al. Decreased expression of phosphorylated JNK in breast infiltrating ductal carcinoma is associated with a better overall survival. Int J Cancer, 2006 ,118(11):2678-2684
    51. Licato LL, Brenner DA. Analysis of signaling protein kinases in human colon or colorectal carcinomas.Digestive Diseases and Sciences,1998, 43(7):1454-1464
    52. Luedde T, Beraza N, Kotsikoris V, et al. Deletion of NEMO/IKKgamma in liver arenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell, 2007, 11(2):119-132
    53. Maeda S, Kamata H, Luo JL, et al. IKKbeta couples hepatocyte death to cytokine- driven compensatory proliferation that promotes chemical hepatocarcinogenesis.Cell, 2005, 121(7): 977-990
    54. Sakurai T, Maeda S, Chang L, et al. Loss of hepatic NF kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci USA , 2006, 103(28): 10544-10551
    55. Eferl R, Ricci R, Kenner L,et al. Liver tumor development.c-Jun antagonizes the proapoptotic activity of p53. 2003, cell, 112(2) :181-192
    56. Hui L, Bakiri L, Mairhorfer A, et al. p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet, 2007, 39(6): 741–749
    57. Sakurai T, He G, Matsuzawa A, et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell, 2008, 14(2) :156-165
    58. Sakurai T, Maeda S, Chang L,et al. Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci USA, 2006, 103(28):10544-10551
    59. Guo L, Guo Y, Xiao S, et al. Protein kinase p-JNK is correlated with the activation of AP-1 and its associated Jun family proteins in hepatocellular carcinoma. Life Sci, 2005, 77(15):1869-1878
    60. Li JH, Zatloukal K, Scheuch H, et al. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest, 2008,118 (12), 3943-3953
    61. Chang QS, Zhang YD, Beezhold KJ, et al. Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer. J Hepatol,2008, [Epub ahead of print]
    62. Lee H J, Wang C J, Kuo H C, et al.Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicol Appl Pharmacol, 2005, 203(2):124-131
    63. Suzuki T, Tsukamoto I. Manganese-induced apoptosis in hepatocytes after partial hepatectomy. Eur J Pharmaco1, 2005, 525(1-3):48-53
    64. Soichi K, Takashi K, Shigeyuki K,et al. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci, 2007, 98(5): 726-733
    65. Syuichi M, Keiji S, Mitsutoshi N, et al. Bcl-2 phosphorylation has pathological significance in human breast cancer. Pathobiology, 2006, 73(4): 205-212
    66. Ryoko O, Junji M, Tomoki Y, et al. M-RIP, a novel target of JNK signaling and a requirement for human cancer cell invasion. Int J Mol Med, 2008, 22(2): 199-203
    67. Ching YP, Leong VY, Lee MF, et al. P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res, 2007,67(8): 3601-3608
    68. Huang Z, Yan DP, Ge BX. JNK regulates cell migration through promotion of tyrosine phosphorylation of paxillin. Cell Signal, 2008, 20(11): 2002-2012
    69. Han J, Lee J D, Bibbs L, et a1.A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science,1994, 265(5173):808-811
    70. Abe J, Kusuhara M, Ulevitch R J, et al. Big mitogen-activated protein kinase 1(BMK1)is a redox-sensitive kinase. J Biol Chem,1996,271(28): 16586-16590
    71. Cameron S J, Abe J, Malik S, et a1. Differential role of MEK5alpha and MEK5beta in BMK1/ERK5 activation. J Biol Chem,2004, 279(2): 1506-1512
    72. Kato Y, Tapping R I, Huang S, et al.Bmkl/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature,1998, 395(6703): 713-716
    73. Paine E, Palmantier R, Akiyama SK, et al. Arachidonic acid activatesmitogen- activated protein(MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen typeⅣthrough a p38 MAP kinase-dependent pathway. J Biol Chem, 2000,274 (15) :11284-11290
    74. Huang C, Jacobson K, Schaller M D.MAP kinases and cell migration. J Cell Sci, 2004, 117(R 20):4619-4628
    75. Nguyen DH, Catling AD, Webb DJ, et al. Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. J Cell Biol, 1999, 146(1):149-164
    76. Hunger-Glaser 1, Salazar EP, Sinnett-Smith J,et a1.Bombesin lysophosphatidic acid and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910: requirement for ERK activation. J Biol Chem, 2003, 278(25):22631-22643
    77. Liu ZX, Yu CF, Nickel C, et a1.Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. J Biol Chem, 2002, 277(12):10452-10458
    78. Bancroft CC , Chen Z , Dong G, et al. Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-kappaB signal pathways . Clin Cancer Res, 2001, 7 (2) : 435-442
    79. Okajima E , Thorgeirsson UP. Different regulation of vascular endothelial growth factor expression by the ERKand p38 kinase path ways in v-ras , v- raf , and v-myc transformed cells. Biochem Biophys Res Commun, 2000, 270 (1) :108-111
    80. Harris VK, Coticchia CM , Kagan BL , et al. Induction of the angiogenic modulator fibroblast growth factor-binding protein by epidermal growth factor is mediated through both MEK/ ERKand p38signal transduction pathways . J Biol Chem,2000,275 ( 15) :10802-10811
    81. Talarmin H, Rescan C, Cariou S, et al. The mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade activation is a key signalling pathway involved in the regulation of G(1) phase progression in proliferating hepatocytes. Mol Cell Biol, 1999, 19(9):6003-6011
    82. Huynh H, Nguyen TT, Chow KH, et al. Over-expression of the mitogen-activated protein kinase(MAPK)kinase(MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroentero1, 2003, 3: 19
    83. Fong CW, Chua MS, McKie AB, et al. Sprouty 2, an inhibitor of mitogen- activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res, 2006, 66(4):2048-2058
    84.冯德云,郑晖,蒋海鹰,等.肝细胞癌及其癌旁肝组织中MAPK磷酸化与c-fos和c-jun蛋白表达的关系.临床与实验病理学杂志,2000 (6): 441-443
    85.殷飞,姚树坤,吴新满,等. TGF-a对肝癌细胞Smmc-7721增殖和erk蛋白的影响.中国组织化学与细胞化学杂志,2005, 14 (2) : 201-204
    1. Tang ZY, Yu YQ, Zhou XD, et al. Progress and Prospects in hepatocellular carcinoma surgery. Ann Chir, 1998, 529(6): 558-559
    2.宋波,唐建武,王波,等.基因芯片筛选小鼠肝癌淋巴道转移相关基因.癌症,2005,24(7):774-780
    3. Bober J, Samek P.Surgery of the tumors of the liver. Bratisl Lek Listy, 2002, 103(11):403-407
    4. Benevento A,Boni L,Frediali L,et al.Result of liver resection as treatment for metastases from noncolorectal cancer.J Surg Oncol,2000,74(1):24-29
    5.凌茂英,刘希凤,龙翔,等.小鼠肝癌不同转移力克隆的分离及其特性的研究[J].中华医学杂志,1990,70(6):315-318
    6. Sivaraman VS, Wang H, Nuovo GJ, et a1.Hyperexpression of mitogen-activated protein kinase in human breast cancer. J Clin Invest, 1997, 99 (7):1478-1483
    7. Gupta S , Barrett T, Whitmarsh AJ , et al. Selective interaction of JNK protein kinase isoforms with transcription factors . EMBO J, 1996 ,15(11):2760-2770
    8. Suzuki T, Tsukamoto I. Manganese-induced apoptosis in hepatocytes after partial hepatectomy. Eur J Pharmaco1, 2005, 525(1-3): 48-53
    9. Eferl R, Ricci R, Kenner L, et a1.Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cel1, 2003, 112 (2):181-192
    10. Hassan M, Ghozlan H, Abdel-Kader O. Activation of c-Jun NH2-terminal kinase(JNK)signaling pathway is essential for the stimulation of hepatitis C virus(HCV)non-structural protein 3(NS3)-mediated cell growth. Virology, 2005, 333(2):324-336
    11. Guo L, Guo Y, Xiao S, et al. Protein kinase p-JNK is correlated with the activation of AP-1 and its associated Jun family proteins in hepatocellular carcinoma[J]. Life Sci, 2005, 77(15):1869-1878
    12.周长春,刘芝华,齐军. AP-1和肿瘤的关系研究进展.世界华人消化杂志,2006,14(1):1-5
    1. Bober J, Samek P.Surgery of the tumors of the liver. Bratisl Lek Listy,2002, 103(11):403-407
    2. Benevento A,Boni L,Frediali L, et al.Result of liver resection as treatment for metastases from noncolorectal cancer.J Surg Oncol,2000,74(1):24-29
    3. Tang ZY,Yu YQ,Zhou XD, et al.Progress and Prospects in hepatocellular carcinoma surgery[J].Ann Chir,1998,529(6):558-559
    4.凌茂英,王明辉,郭伶伶,等. HCa/16A3-F及HCa/A2-P两株小鼠淋巴道转移肝癌细胞系的特性研究.中华医学杂志,1995,(03): 170-171
    5. Cui XN, Tang JW, Hou L, et al. Identification of differentially expressed genes in mouse hepatocarcinoma ascites cell line with low potential of lymphogenous metastasis. World J Gastroenterol. 2006,12(42):6893-6897
    6. Song B, Tang JW, Wang B, et al. Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip. World J Gastroenterol,2005; 11(10):1463-1472
    7.孙成荣,唐建武,孙明忠,等.采用定量蛋白质组学技术筛选小鼠肝癌淋巴道转移相关蛋白.生物化学与生物物理进展,2007:856-864
    8.王志强,唐建武,王绍青,等. pCDNA3. 1 - Annexin A7载体的构建及在Hca - p细胞中的表达.大连医科大学学报,2008,30(4):305-309
    9.王志强,唐建武,王绍青,等.膜联蛋白A7表达稳定下调的小鼠肝癌Hca2F细胞株的建立.第二军医大学学报,2008,29(9):1029-1033
    10. Fire A , Xu S ,Montgomery MK , et al . Potent and specific genetic interference by double-stranded RNA in Caenorhabdits elegans. Nature ,1998 , 391 (6669) :744
    11. Bernstein E, Caudy AA, Hammond SM,et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001 , 409(6818):363-366
    12. Zeng Y, Cullen BR. RNA interference in human cells is restricted to the cytoplasm. RNA, 2002 , 8(7): 855-860
    13. Hannon GJ. RNA interference. Nature, 2002 , 418(6894):244-51
    14. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25-33
    15. Zamore PD. RNA interference: listening to the sound of silence. Nat Struct Biol, 2001 , 8(9):746-750
    16. Tang T ,Kmet M ,Corral L , et al . Testisin ,a lycosyl-phosphatidylinositol-linked serine protease , promotes malignant transformation in vitro and vivo . Cancer Res ,2005 ,65 (3):868-878
    17. Ma P C , Jagadeeswaran R , Jagadeesh S , et al . Functional expression and mutations of c-met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res ,2005 ,65 (4):1479 - 1488
    18. Sun B ,Nishihira J ,Yoshiki T ,et al. Macrophage migration inhibitory factor promotes tumor invasion and metastasis via the Rho-dependent pathway . Clin Cancer Res,2005 ,11(3):1050-1058
    19. Onodera Y, Hashimoto S , Hashimoto A , et al . Expression of AMAP1 , an Arf GAP , provides novel targets to inhibit breast cancer invasive activities . EMBO J ,2005, 24 (5):963-973
    20. Aleku M, Schulz P, Keil O, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res, 2008, 68(23):9788-9798
    21. Chen Z, Varney ML, Backora MW, et al. Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res, 2005,65 (19):9004-9011
    22. .Jia L, Wang S, Cao J, et al. siRNA targeted against matrix metalloproteinase 11 inhibits the metastatic capability of murine hepatocarcinoma cell Hca-F to lymph nodes. Int J Biochem Cell Biol, 2007,39:2049-2062
    23. Paddison PG, Caudy AA, Bernstein E, et al. short hairpins RNAs (shRNAs) induce sequence-specific silencing in mammalian cell. Genes Dev, 2002, 16(8): 948-958
    24. Brummelkamp TR ,Bernards R ,Agami RA. A system for stable expression of short interfering RNAs in mammalian cells. Science ,2002 ,296 (5567) :550-553
    25. Paul CP , Good PD ,Winer I ,et al . Effective expression of small interfering RNA in human cells. Nat Biotechnol , 2002 ,20 (5) :505-508
    26. Schubert S, Grunweller A, Erdmann VA, et al. Local RNA target structure influences siRNA efficacy: Systematic analysis of intentionally designed bindingregions. J Mol Biol, 2005, 348 ( 4 ) :883 - 893
    27. Miyagishi M, Taira K, et al. U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol, 2002, 20(5): 497-500
    28. Zhang L, Yang N, Mohamed-Hadley A, et al. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun, 2003 , 303 (4):1169-1178
    1. Sun B ,Nishihira J ,Yoshiki T,et al. Macrophage migration inhibitory factor promotes tumor invasion and metastasis via the Rho-dependent pathway . Clin Cancer Res,2005 ,11(3) :1050-1058
    2. Aleku M, Schulz P, Keil O, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res, 2008 : 68(23):9788-9798
    3. Chen Z, Varney ML, Backora MW, et al. Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res, 2005,65 (19) : 9004-9011
    4. Jia L, Wang S, Cao J, et al. siRNA targeted against matrix metalloproteinase 11 inhibits the metastatic capability of murine hepatocarcinoma cell Hca-F to lymph nodes. Int J Biochem Cell Biol,2007, 39:2049-2062
    5.凌茂英,刘希凤,龙翔,等.小鼠肝癌不同转移力克隆的分离及其特性的研究. a)中华医学杂志,1990,70(6):315-318.
    6. Cui XN, Tang JW, Hou L, et al. Identification of differentially expressed genes in mouse hepatocarcinoma ascites cell line with low potential of lymphogenous metastasis. World J Gastroenterol,2006,12(42):6893-6897
    7. Song B, Tang JW, Wang B, et al. Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip.World J Gastroenterol, 2005,11(10):1463-1472
    8.孙成荣,唐建武,孙明忠,等.采用定量蛋白质组学技术筛选小鼠肝癌淋巴道转移相关蛋白.生物化学与生物物理进展.2007,08:856-864
    9. Tournier C, Whitmarsh AJ, Cavanagh J, et al. Mitogen-activated protein kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc Natl Acad Sci USA, 2001, 94(14): 7337-7342
    10. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell,2000, 103(2):239-252
    11. Dong C, Davis RJ, Flavell RA, et al. MAP kinases in the immune response. Annu Rev Immunol, 2002, 20: 55-72
    12. Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell b) Biol ,2007,19(2):142-149
    13. Gupta S, Campbell D, Dérijard B, et al. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 2005, 267(5196): 389-393
    14. Zhang JY, Adams AE, Ridky TW, et al. Tumor necrosis factor receptor 1 /c-jun-NH2-kinase signaling promotes human neoplasia. Cancer Res, 2007 , 67(8): 3827-3834
    15. Shin E, Hong SW, Kim SH, et al. Expression of down stream molecules of RET(P-ERK,P-P38 MAPK,P-JNK and p-AKT)in papillary thyroid carcinomas. Yonsei Med J,2004,45(2):306-313
    16. Yeh YT, Hou MF, Chung YF,et al. Decreased expression of phosphorylated JNK in breast infiltrating ductal carcinoma is associated with a better overall survival. Int J Cancer, 2006 ,118(11):2678-2684
    17. Sabapathy K, Hochedlinger K, Nam SY, et al. Distinct roles for JNKl and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell, 2004, 15(5): 713-725
    18. Lamb JA, Ventura JJ, Hess P, et al. JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell, 2003, 11(6): 1479-1489
    19. Jaeschke A, Karasarides M, Ventura JJ, et al. JNK2 is a positive regulator of the c-Jun transcription factor. Mol Cell, 2006, 23(6): 899-911
    20. Zapata HJ, Nakatsugawa M, Moffat JF. Varicella-zoster virus infection of human fibroblast cells activates the c-Jun N-terminal kinase pathway. J Virol, 2007,81(2):977-990
    21. Himes SR, Sester DP, Ravasi T, et al. The JNK are important for development and survival of macrophages. J Immunol. 2006, 176(4): 2219-2228
    22. Luedde T, Beraza N, Kotsikoris V, et al. Deletion of NEMO/IKKgamma in liver arenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell, 2007, 11(2):119-132
    23. Maeda S, Kamata H, Luo JL, et al. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell, 2005, 121(7): 977-990
    24. Sakurai T, Maeda S, Chang L, et al. Loss of hepatic NF kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci USA, 2006, 103(28): 10544-10551
    25. Li JH, Zatloukal K, Scheuch H, et al. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21downregulation. J Clin Invest, 2008,118 (12), 3943–3953
    26. Xia Y, Makris C, Su B, et al. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci USA, 2000, 97(10):5243-5248
    27. Huang C, Rajfur Z, Borchers C, et al. JNK phosphorylates paxillin and regulates cell migration . Nature 2003, 424(6945):219-223
    28. Javelaud D, Laboureau J, Gabison E, et al. Disruption of basal JNK activity differentially affects key fibroblast functions important for wound healing. J Biol Chem , 2003, 278(27) : 24624-24628
    29. Kavurma MM, Khachigian LM. ERK, JNK, and p38 MAP kinases differentially regulate proliferation and migration of phenotypically distinct smooth muscle cell subtypes. J Cell Biochem, 2003, 89(2):289-300
    30. Didier C, Broday L, Bhoumik A, et al. RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol Cell Biol, 2003, 23(15):5331-5345
    31.李卫东. AP-1信号转导通路与肿瘤转移.天津医科大学学报, 2005 ,11(2):331-333
    32. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell- proliferation and transformation. Biochim Biophys Acta, 1991, 1072(2-3): 129-157
    33. Hong IK, Kim YM, Jeoung DI, et al. Tetraspanin CD9 induces MMP-2 expression by activating p38 MAPK, JNK and c-Jun pathways in human melanoma cells. Exp Mol Med,2005,373(3): 230-239
    34. Ried S , Jager C , Jeffers M, et al . Activation mechanisms of the urokinase-type plasminogen activator promoter by hepatocyte growth factor/ scatter factor. J Biol Chem, 1999, 274(23) : 16377-16386
    35. Lamb RF, Hennigan RF, Turnbull K,et al. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44. Mol Cell Biol 1997,17(2): 963-976
    36. Mann B, Gelos M, Siedow A,et al. Target genes of beta-catenin-T cell- factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A, 1999,96(4):1603-1608
    37. Webster KA, Discher DJ, Bishopric NH. Induction and nuclear accumulation of fos and jun proto-oncogenes in hypoxic cardiac myocytes. J Biol Chem,1993,268(22):16852-16858
    38. Seiter BS , Arch R , Reber S , et al. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med, 1993,177 (2):443-455
    39. Herrlich P , Zoller M , Pals ST , et al. CD44 splice variants: metastases meet lymphocytes. Immunol Today ,1993,14 (8) :395-399
    40.王凯峰,叶胜龙,宋丽杰,等.不同转移潜能的小鼠肝癌淋巴道转移和淋巴管生成的研究.中华肝脏病杂志,2006,14(3):187-191
    41. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF- C promotes breast cancer metastasis.Nat Med, 2001, 7 (2) : 192-198
    42. Stacker SA, Caesar C,Baldwin ME, et al. VEGF-D promotes the metastatic sp read of tumor cells via the lymphatics. Nat Med, 2001, 7(2) : 186-191
    43. Padera TP, Kadambi A, Tomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 2002, 296(5574) : 1883-1886
    44. Franchi A, Gallo O,Massi D, et al. Tumor lymphangiogenesis in headand neck squamous cell carcinoma: a morphometric study with clinical correlations. Cancer, 2004, 101 (5) : 973-978
    45.赵恩阳,李玉兰,杨慧科,等.小鼠肝癌移植瘤及其淋巴管的研究.黑龙江医学,2007,31(12):119-121
    46. Soichi K, Takashi K, Shigeyuki K,et al. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci, 2007, 98(5): 726-733

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700