电励磁同步电动机直接转矩控制理论研究及实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电励磁同步电机(ESM)具有功率因数可调、效率高等优点,无论在航空工业还是地面工业大功率场合均获得了广泛应用,所以研究和开发高性能的ESM驱动系统具有重大的经济价值和社会效应。目前开发高性能ESM驱动系统所采用的控制方案主要有两种:一种是磁场定向矢量控制(FOC);另一种是直接转矩控制(DTC)。FOC ESM系统动态性能明显较标量控制系统性能提高了很多,但ESM转子凸极结构和较大的转子回路时间常数使得ESM FOC系统无法实现真正意义上的解耦控制。DTC思想把电机和逆变器作为一个整体,在定子静止坐标系中利用逆变器输出电压矢量直接控制定子磁链和转矩,获得了快速的转矩响应。若在ESM上采用DTC恰恰可以弥补FOC的缺陷,达到转矩的直接而快速控制。在国外,1998年前后瑞士ABB公司和芬兰拉彭兰塔理工大学合作研究了ESM DTC的部分内容。出于商业保密考虑,他们没有详细给出实现的细节,甚至没有给出最优开关表的具体构成。从他们所公开的不完整资料中我们无法获知ESM DTC的完整理论构架。在国内,1997年至2001年南京航空航天大学针对无阻尼绕组ESM DTC也开展了初步的理论研究,但没有进行详细的实践研究。因此,无论在国内还是在国外,ESM DTC系统的研究还缺乏全面深入的理论研究,还没有建造起ESM DTC系统的理论体系构架。本文的主要任务和目的就是比较全面和深入地完成这一理论构架,为以后更深入地、广泛地研究ESM DTC技术,打好一个坚实的理论基础。本论文主要内容如下:
     对交流电机低转矩磁链脉动型DTC策略进行了综述,指出低转矩磁链脉动型DTC控制策略有:运用空间矢量调制(SVM)技术输出多个电压矢量、采用新型逆变器输出多个电压矢量、用多相逆变器控制多相电机、引入现代控制理论等。对交流同步电机无位置速度传感器运行及转子初始位置估计技术进行了综述,结果指出目前无位置速度传感器技术主要有两大类:基于基波量的检测法和基于外加信号激励法。对于初始转子位置估计法有:基于定子电感检测法、高频交替磁化法、高频信号注入法、基于磁路饱和特性等,电励磁同步电机转子初始位置估计研究还很少。
     分析研究了有阻尼绕组电励磁同步电机气隙磁链性质,结果指出气隙磁链为一个时间常数较大的惯性环节,ESM DTC正是基于此,利用定子侧的电压矢量迅速控制定子磁链矢量的模、旋转方向及旋转角度,迅速改变定子磁链矢量和气隙磁链矢量之间的夹角(定义为转矩角),实现对电磁转矩的迅速控制。仿真和实验证明了上述分析的正确性。
     从转矩角控制转矩入手,详细推导并分析了有阻尼绕组ESM电磁转矩。运用仿真手段研究了DTC控制ESM中直/交轴阻尼绕组对电机动态行为的影响,研究结果表明:交轴阻尼绕组有利于电机动态性能的改善;直轴方向上定子绕组、阻尼绕组及转子励磁绕组相互耦合,会形成振荡,导致直轴阻尼绕组对电机动态性能的改善不明显,甚至有危害;对于电动运行的ESM不宜采用直轴阻尼绕组;主转矩角与主转矩在主转矩角零点附近变化趋势始终一致。
     分析了ESM DTC系统弱磁控制原理,从提高ESM DTC系统全速度范围内综合指标出发,针对DTC控制ESM提出一种全速度范围内转子励磁电流控制策略。指出在恒转矩区宜采用转子电流内控法,实现电机内功率因数等于1;在弱磁恒功率区宜采用转子电流外控法,实现电机外功率因数等于1;转子电流内控法和外控法在额定转速点处直接转换,不需要插入过渡区。仿真和实验结果表明无论恒转矩区或弱磁恒功率区,电机功率因数均较高;由恒转矩区到弱磁恒功率区过渡很平滑。
     针对ESM提出一种基于定子磁链误差矢量补偿的SVM-DTC结构。运用仿真和实验手段对基本DTC和SVM-DTC两种ESM驱动系统进行了详细对比研究,结果表明:SVM-DTC具有基本DTC系统简洁结构的同时大幅度减小了转矩、磁链、电流的脉动;降低了起动电流的冲击幅度;功率管开关频率基本恒定;弱磁方法依然适用。
     针对无阻尼绕组ESM SVM-DTC系统转矩角控制转矩特点,提出并设计了一种变比例系数转矩PI调节器,旨在实现SVM-DTC系统转矩的快速而准确控制。仿真及实验结果表明系统起动转矩快速而准确地跟踪上给定值,系统稳态运行平稳。这种变比例系数的调节方法对永磁电机也特别适用。
     一般ESM DTC系统中没有直接检测定子端电压传感器,但有定子绕组和转子励磁绕组电流传感器。本文基于转子励磁绕组通入直流脉动电流,在三相短路的定子绕组中感应出电流的原理,提出基于定子感应电流和转子励磁电流检测的两种初始转子位置估计方法-闭环法和开环法。实验结果表明转子初始位置机械角度估计误差在±2度范围内;SVM-DTC系统能够以给定的最大转矩顺利起动。
     分析研究了基于两电平逆变器供电ESM基本DTC和SVM-DTC中影响起动冲击电流的因数。基于基本DTC结构提出一种约束矢量作用时间的改进型基本DTC,基于补偿定子磁链误差矢量的SVM-DTC结构提出一种电流主动控制的SVM-DTC。仿真和实验结果证明了上述两种新型DTC系统对降低起动冲击电流幅度的有效性。仿真研究了基于多电平逆变器供电ESM SVM-DTC系统对起动冲击电流的抑制效果,结果表明,由于多电平逆变器输出电压矢量幅值能随电机转速自动调整,因而有效地抑制了起动冲击电流幅度。
Electrically excited synchronous motor (ESM) has been widely applied in industry because of its advantages of adjustable power factor and high efficiency, and so it deserves researching high performance ESM drives. Recently, there are mainly two control schemes used by developing performance ESM drive systems: one is field orientation control (FOC), and the other is direct torque control (DTC). Although the ESM drive systems controlled by FOC have many advantages over the scalar controlled ESM systems in dynamic performance, the decoupling control in FOC ESM could not come true because of the salient pole of rotor structure and the large time constant of rotor winding circuit. The DTC considers the motor and inverter as a whole, and controls the stator flux linkage vector and electromagnetic torque directly by applying an optimal space voltage vector during each sampling period in the stator reference frame. If the DTC is implemented on ESM, the response time of torque can be much shorter. Although the ESM DTC was partly researched by ABB and Lappeenranta University of Switzerland in about 1998, the whole theory structure of ESM DTC could not be obtained from their few published papers. At home, the no-damper windings ESM DTC had been investigated by Nanjing University of Aeronautics and Astronautics partly from 1997 to 2001. So the ESM DTC lacks full and in-depth study, and the theory for ESM DTC has not been constructed. The main purpose of this thesis is to build up the theory construction as follows:
     After reviewing the DTC scheme with low torque and low flux linkage ripples for AC motors, the control methods of reducing the torque and flux linkage ripples are given as: improving the output of voltage vector in software, applying new inverter with multi-vector output, applying multi-phase motor, and applying modern control theory et. After reviewing the sensorless schemes of AC synchronous motors, the sensorless technologies are grouped under two kinds. One is based on the fundamental variables, and the other is based on external exciting signal. The estimation method of the initial rotor position can be classified as: basing on the calculation of stator inductance, alternative magnetize using high signal, high frequency signal injection, and the saturate effect of motor magnetic circuit et. There are few papers investigating the ESM initial rotor position estimation.
     The feature of air-gap flux linkage in ESM with damper windings has been analyzed, and the results show that the time constant of air-gap flux linkage is very large. The quick response of torque in ESM DTC can be gained by controlling the torque angular between the stator flux linkage vector and the air-gap flux linkage vector using the optimal space voltage vectors. The results of simulation and experiment show that the above analysis is correct.
     In this thesis the relationship between torque and torque angle in ESM of DTC has been deduced in detail, and the effect of damper windings on the dynamic performance of ESM based on DTC has been presented by digital simulation. The results of simulation show that the derivative of the main torque near the zero cross is positive with respect to the main torque angle. The q-axis damper winding can reduce the oscillation amplitude of the torque and speed significantly, and the d-axis damper winding improves the dynamic performance of the motor slightly and decreases the system’s stability. So the d-axis damper winding of ESM operating at motor is unnecessary.
     The weakening control principle of ESM DTC systems has been analyzed and an optimal excitation control method for DTC-controlled ESM drives in the whole speed rang has been investigated in this thesis. The inner control method for excitation should been applied in the constant torque range, and the unit inner power factor is gained. The outer control method for excitation should been applied in the weakening range, and the unit outer power factor is achieved. The conversation between the two excitation methods can directly happens at the rated speed without transition. The results of simulation and experiment show the power factor of ESM is very high both in constant torque range and in field weakening range, and the conversation between the two excitation control methods is very smooth. A DTC scheme with space vector modulation (SVM) for ESM has been investigated in this thesis. It is based on the compensation of the stator flux linkage vector error using the space vector modulation in order to decrease the torque and flux linkage ripples. Compared with the basic DTC, the results of simulation and experiment show that the torque and flux linkage ripples are all much reduced, the maximum current value is decreased during the startup and the current distortion of steady state is much small in the SVM-DTC system. The SVM-DTC system is also simple and the switching frequency of inverter is approximately constant. The field-weakening control is incorporated into the SVM-DTC successfully.
     In this work, a proportional-plus-integral (PI) torque controller with variable proportion for direct torque controlled ESM drive based on the torque angle controlling the torque is proposed in order to ensure exact and quick control of torque. The experimental results verify the feasibility and effectiveness of the proposed PI torque controller. This PI torque controller is also suitable for the permanent synchronous motor drive system based on DTC.
     This thesis has proposed two methods of the initial rotor position estimation, i.e. closed loop estimation and open loop estimation, for ESM drives based on DTC without stator voltage sensors. The stator currents and rotor excitation current should be sensed under the condition of three-phase short-circuit and AC rotor current or DC pulsation rotor current in the two strategies. The results of simulation and experiment show that the estimated value error of initial rotor mechanical angle is less than±20, and SVM-DTC system can start up with given torque smoothly with the estimated initial rotor position.
     The effect of DC-link voltage, sampling period, and inductance of stator on the maximum start-up current has been analyzed on conventional DTC(CDTC) and SVM-DTC drive based on the two-level inverter. A modified CDTC scheme with time-controlled vectors has been proposed using torque and stator flux linkage hysteresis controller and switching table. A stator current-controlled SVM-DTC has been proposed based on the principle of stator flux linkage vector error compensation. The results of simulation and experiment show that the two proposed DTC schemes are effective to reduce the start-up current. The effect of multi-level inverter on decreasing the start-up current of ESM SVM-DTC has been researched by means of simulation. The results of simulation show that multi-level inverter can reduce the value of start-up current effectively because the magnitude of output voltage vector in multi-level inverter can be changed automatically according to the rotor speed.
引文
[1] R.Hamann, AC cycloconverter drives for cold and hot rolling mill applications[C], IEEE IAS Annu. Meet. Conf. Rec., 1991:1134-1140.
    [2] 胡育文,航空电源系统的新发展[C], 第五届电力电子与运动控制学术年会APSC’2004:8-9.
    [3] I.Takahashi,T.Noguchi, A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Transaction on Industry Applications,1986,22(5):820-827.
    [4] Pekka Tiitnen, The next generation motor control method, DTC direct torque control[C], Power Electronics, Drives and Energy Systems for Industrial Growth, 1996(1):37-43.
    [5] Zhong L, Rahman M F, Hu Y W, et al. Analysis of direct torque control in permanent magnet synchronous motor drives[J], IEEE Transaction on Power Electronics,1997,12(3):528-535.
    [6] Pyrhonen O., Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives[D], Switzerland, Lappeenranta University of Technology,1998.
    [7] Pyrhonen J, Niemela M, Test results with the direct flux linkage control of synchronous motors[J], IEEE AES Systems Magazine,1998(4):23-27.
    [8] Medium voltage AC drives for speed and torque control of 3-27MW motors, ABB,ACS_6000_Brochure_RevB,2005.
    [9] 田淳,胡育文,一种新颖的电励磁同步电机直接力矩控制方案[J], 南京航空航天大学学报,2001,33(2):108-112.
    [10] 田淳,无位置传感器同步电机直接转矩控制理论研究与实践,[博士学位论文],南京,南京航空航天大学,2001.
    [11] 李志民,张遇杰, 同步电机调速系统[M], 北京,机械工业出版社,1996.
    [12] Bimal K.Bose(著),王聪,赵金,于庆广,程红,等译. 现代电力电子学与交流传动[M], 北京, 机械工业出版社,2005.
    [13] 李崇坚, 交流同步电机调速系统[M], 北京, 科学出版社,2006.
    [14] Blaschke F., Das prinzip der feldorientierung, die Grundlage f ü r die Transvektor-Regelung vo Drehfeldmachinen, Siemens-zeitschrift, 1971(45):757.
    [15] Bayer, Field-oriented close-loop control of a synchronous machine with new transverter control system, Siemens Review, 1972(5).
    [16] 张波, PWM 逆变器供电的同步电动机矢量控制系统研究,[博士学位论文],南京,南京航空航天大学,1994,4.
    [17] 周扬忠,胡育文,黄文新,基于直接转矩控制电励磁同步电机转子励磁电流控制策略研究, 南京航空航天大学学报录用待发表,2006.
    [18] Vanja Ambrozic,Giuseppe S., Bujia, et al. Band-constrained technique for direct torque control of induction motor[J], IEEE Transactions on industrial electronics,2004,51(4):776-784.
    [19] 孙笑辉, 基于直接转矩控制的感应电动机转矩脉动最小化方法研究[J], 中国电机工程学报,2002,22(8):109-112.
    [20] Nik Rumzi Nik Idris,Abdul Halim Mohamed Yatim, Direct torque control of induction machines with constant switching frequency and reduced torque ripple[J], IEEE Transaction on power electronics,2004,51(4):758-767.
    [21] Yen-Shin Lai,Wen-Ke Wang and Yen-Chang Chen, Novel switching techniques for reducing the speed ripple of AC drives with direct torque control[J], IEEE Transactions on industrial electronics,2004,51(4):768-775.
    [22] D.Casadei, Improvement of direct torque control performance by using a discrete SVM technique[C], PESC’98, 1998:997-1003.
    [23] D.Casadei, Implementation of a direct torque control algorithm for induction motors based on discrete space vector modulation[J], IEEE Transactions on power electronics, 2000,15(4):769-777.
    [24] Li Liang-bing, A variable-voltage direct torque control based on DSP in PM synchronous motor drives[C], TENCON’02, Proceedings. 2002 IEEE Region 10 Conference on Computers,Communication,Control and Power Engineering, 2002:2065-2068.
    [25] D.Casadei, FOC and DTC: Two viable schemes for induction motors torque control[J], IEEE Transactions on power electronics, 2002,17(5):779-787.
    [26] Kyo-Beum Lee, Torque ripple reduction in DTC of induction motor driven by three-level inverter with low switching frequency[J], IEEE Transactions on power electronics,2002,17(2):255-263.
    [27] Jose Rodriguez, Direct torque control with imposed switching frequency in an 11-level cascaded inverter[J], IEEE Transactions on industrial electronics, 2004,51(4):827-833.
    [28] Domenico Casadei, The use of matrix converters in direct torque control of induction machines[C], IECON’98. Proceedings of 24th annual conference of the IEEE, 744-749.
    [29] Domenico Casadei, The use of matrix converters in direct torque control of induction machines[J], IEEE Transactions on industrial electronics, 2001,48(6):1057-1064.
    [30] Casadei D, Serra G, and Tani A., Constant frequency operation of a DTC induction motor drive for electric vehicle[C], Proc.ICEM’96,1996(3):224-229.
    [31] Giuseppe S. Buja, Direct torque control of PWM inverter-Fed AC motors-A survey[J], IEEE Transactions on industrial electronics, 2004,51(4):744-757.
    [32] Domenico Casadei, Giovanni Serra,Angelo Tani, et al. Performance analysis of a speed-sensorless induction motor drive based on a constant-switching-frequency DTC scheme[J], IEEE Transactions on industry applications,2003,39(2):476-484.
    [33] Minghua Fu, Longya Xu, A sensorless direct torque control technique for permanent magnet synchronous motors[C], IEEE-IAS Annu. Meeting,1999:159-164.
    [34] Minghua Fu, Ling Xu, A sensorless direct torque control technique for permanent magnet synchronous motors[C], Power Electronics in Transportation, 1998:21-28.
    [35] Lixin Tang and M.F.Rahman, A new direct torque control strategy for flux and torque ripple reduction for induction motors drive by using space vector modulation[C], IEEE PESC’2001,2001:1440-1445.
    [36] L. Tang, L.zhong, M.F.Raman and Y.Hu, A novel direct torque control scheme for interior permanent magnet synchronous machine drive system with low ripple in torque and flux, and fixed switching frequency[C], IEEE PESC’2002,2002:529-534.
    [37] L. Tang, L. Zhong, M.F.Rahman and Y.Hu, An investigation of a modified direct torque control strategy for flux and torque ripple reduction for induction machine drive system with fixed switching frequency[C], IEEE IAS’2002,2002:837-844.
    [38] L. Tang, L.Zhong, M.F.Rahman and Y.Hu, A novel direct torque control for interior permanent magnet synchronous machine drive system with low ripple in torque and flux-a speed sensorless approach[C], IEEE IAS’2002,2002:104-111.
    [39] Tang L X, Zhong L M, Rahman M F and Hu Y W., A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency[J],IEEE Transactions on power electronics,2004,19(2):346-354.
    [40] 周扬忠,胡育文,黄文新,等 阻尼绕组对直接转矩控制同步电机动态行为的影响[J],航空学报,2005,26(4):476-481.
    [41] 周扬忠,胡育文,黄文新, 低转矩磁链脉动型电励磁同步电机直接转矩驱动系统的研究[J], 中国电机工程学报,2006,26(7):152-157.
    [42] Liu Qinghua, Ashwin M. Khambadkone and M.A.Jabbar, Direct flux control of interior permanent magnet synchronous motor drives for wide-speed operation[C], Power Electronics and Drive Systems, 2003. PEDS 2003:1680-1685.
    [43] Anshuman Tripathi, Ashwin M Khambadkone, Space-vector based, constant frequency, direct torque control and dead beat stator flux control of AC machine[C], IECON’2001:1219-1224.
    [44] Cristian Lascu, Ion Boldea, A modified direct torque control for induction motor sensorless drive[J], IEEE Transactions on industry applications,2000,36(1):122-130.
    [45] Yen Shin Lai, Jian Ho Chen, A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction[J], IEEE Transactions on energy conversion,2001,16(3):220-227.
    [46] U.Baader, High dynamic torque control of induction motor in stator flux oriented coordinates[J], ETZ Arch.,1998,11(1):11-17.
    [47] T.G.Habetler,F.Profumo,M.Pastorelli,et al. Direct torque control of induction machines using space vector modulation[J],IEEE Trans. Ind.Appl., 1992,28(5):1045-1053.
    [48] Hyeoun-Dong Lee,Seog-Joo Kang, Efficiency-optimized direct torque control of synchronous reluctance motor using feedback linearization[J], IEEE Transactions on industrial electronics,1999,46(1):192-198.
    [49] Damien Grenier, Sam Yala, Direct torque control of PM AC motor with non-sinusoidal flux distribution using state-feedback linearization techniques[C], IEEE IECON’98:1515-1520.
    [50] Damien Grenier, L.-A.Dessaint, Experimental nonlinear torque control of a permanent-magnet synchronous motor using saliency [J], IEEE Transactions on industrial electronics, 1997, 44(5):680-687.
    [51] V.Utkin,J.Guldner,and J.Shi, Sliding mode control in electromechanical systems[M], New York, Taylor & Francis,1999.
    [52] Cristian Lascu and Andrzej M. Trzynadlowski, Combining the principles of sliding mode,direct torque control, and space-vector modulation in a high-performance sensorless AC drive[J], IEEE Transations on industry application,2004,40(1):170-177.
    [53] Cristian Lascu, Ion Boldea and Frede Blaabjerg, Variable-structure direct torque control—a class of fast and robust controllers for inductance machine drives[J], IEEE Transactions on industry electronics, 2004,51(4):785-792.
    [54] Cristian Lascu,Ion Boldea and Frede Blaabjerg, Direct torque control of sensorless induction motor drives: a sliding-mode approach[J], IEEE Transactions on industry applications,2004,40(2):582-590.
    [55] Zhuang Xu and M.F.Rahman, A variable structure torque and flux controller for a DTC IPM synchronous motor drive[C],2004 35th Annual IEEE Power Electronics Specialists Conference(Aachen,Germany):445-450.
    [56] C.-H.Fang,C.-M.Hunag and S.-K.Lin, Adaptive sliding-mode torque control of a PM synchronous motor[C], IEE Proc.-Electr. Power,2002,149(3):228-236.
    [57] 王焕钢,徐文立, 一种新型的感应电动机直接转矩控制[J],中国电机工程学报,2004,24(1):107-111.
    [58] 孙丹,基于模糊逻辑的永磁同步电动机直接转矩控制[J],电工技术学报,2003,18(1):33-38.
    [59] Yang Xia, Oghanna W., Fuzzy direct torque control of induction motor with stator flux estimation compensation[C], IECON’97:505-510.
    [60] P.Z.Grabowski, M.P.Kazmierkowski, B.K.Bose, et al. A simple direct-torque neuro-fuzzy control of PWM-inverter-Fed induction motor drive[J], IEEE Transactions on industrial electronics,2004,51(4):863-870.
    [61] Leila Parsa and Hamid A. Toliyat, Sensorless direct torque control of five-phase interior permanent magnet motor drives[C], IAS 2004:992-999.
    [62] Ruhe Shi, Hamid A.Toliyat and Ahmed EI-Antably, A DSP-based direct torque control of five-phase synchronous reluctance motor drive[C], IEEE APEC’2001:1077-1082.
    [63] Lin Chen and Kang-Ling fang, A novel direct torque control for dual-three-phase induction motor[C], IEEE Proceedings of the second international conference on machine learning and cybernetics,Xi’an,2003:876-881.
    [64] R. Wu and P. Slemon, A permanent magnet motor drive without a shaft sensor[J], IEEE Trans. Ind. Applicat., 1991,vol.27, Sept./Oct.:1005-1011.
    [65] N.Ertugrul and P. Acarnley, A new algorithm for sensorless operation of permanent magnet motors[J]. IEEE Trans. Ind. Applicat., 1994,Vol.30, Jan./Feb.:126-133.
    [66] Zhiqian Chen, Mutuwo Tomita and Shigeru Okuma, An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors[J], IEEE Transactions on industrial electronics, 2003,50(2):288-295.
    [67] Shigeo Morimoto, Keisuke Kawamoto, Masayuki Sanada, et al. Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame[J], IEEE Transactions on industry applications, 2002, 38(4):1054-1061.
    [68] Tomonobu Senjyu, Tsuyoshi Shimabukuro and Katsumi Uezato, Vector control of permanent magnet synchronous motors without position and speed sensors[C], PESC '95, 1995(2):759-765.
    [69] Joohn-Sheok Kim and Seung-Ki Sul, New approach for high-performance PMSM drives without rotational position sensors[J], IEEE Transactions on power electronics, 1997, 12(5):904-911.
    [70] Han-Woong Park, Sang-Hoon Lee, Tae-Hyun Won, et al. Position sensorless speed control scheme for permanent magnet synchronous motor drives[C], ISIE ‘2001, 2001(1):632-636.
    [71] Shinji Ichikawa, Zhiqian Chen, Mutuwo Tomita, et al. Sensorless control of an interior permanent magnet synchronous motor on the rotating coordinate using an extended electromotive force[C], IECON '01,2001(3):1667-1672.
    [72] Hen Geul Yen, Real-time implementation of a narrow-band kalman filter with a floating-point processor DSP32[J], IEEE Transactions on industrial electronics, 1990,37(1):13-18.
    [73] Y. Liu, Z.Q.Zhu, Sensorless direct torque control of a permanent magnet brushless AC drive via an extended kalman filter[C], PEMD 2004(1):303-307.
    [74] Miha Cernat, Vasile Comnac, Sensorless control of interior permanent magnet synchronous machine using a kalman filter[C], ISIE 2000(2):401-406.
    [75] I.El Hassan, E.v.Westerholt, X.Roboam, et al. Original direct torque control strategy for speed-sensorless induction motors using extended kalman filtering[C], Power Electronic Drives and Energy Systems for Industrial Growth, 1998:32-37.
    [76] Vasile COMNAC, Marcian N.CIRSTEA, Florin MOLDOVEANU,et al. Sensorless speed and direct torque control of interior permanent magnet synchronous machine based on extended kalman filter[C], ISIE 2002 (4):1142-1147.
    [77] S.Bolognani, L.Tubiana and M.Zigliotto, EKF-based sensorless IPM synchronous motor drive for flux-weakening applications[C], IEEE Transactions on industry applications,2003,39(3):768-775.
    [78] G.Terorde, K.Hameyer and R.belmans, Sensorless control of a permanent magnet synchronous motor for PV-powered water pump systems using the extended kalman filter[C], Electrical Machines and Drives, Ninth InternationalConference,1999:366-370.
    [79] Francesco Parasiliti, Roberto Petrella and Marco Tursini, Sensorless speed control of a PM synchronous motor based on sliding mode observer and extended kalman filter[C], Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE, 2001(1):533-540.
    [80] Rached Dhaouadi, Ned Mohan and Lars Norum, Design and implementation of an extended kalman filter for the state estimation of a permanent magnet synchronous motor[J], IEEE Transactions on power electronics,1991,6(3):491-497.
    [81] S.Bolognani, R.Oboe and M.Zigliotto, DSP-based extended kalman filter estimation of speed and rotor position of a PM synchronous motor[C], Industrial Electronics, Control and Instrumentation, 1994. IECON '94., 20th International Conference,1994(3):2097-2102.
    [82] C. Bruguier, G. Champenois and J. P. Rognon, ID_Model control of a synchronous motor without position and speed sensor[C], Applied Power Electronics Conference and Exposition, APEC '95. Conference Proceedings 1995(1):387-391.
    [83] C. Bruguier, G. Champenois and J. P. Rognon, A new control of a synchronous motor without position and speed sensors: the current-model[C],IEEE Power Electronics Congress, 1995. Technical Proceedings. CIEP 95., IV IEEE International,97-100.
    [84] F. Parasiliti, R. Petrella, M. Tursini, Sensorless speed control of a PM synchronous motor by sliding mode observer[C], ISIE’97-Guimaraes, Portugal,1106-1111.
    [85] J. Hu, D. Zhu, Yongdong Li,et al. Application of sliding observer to sensorless permanent magnet synchronous motor drive system[C], IEEE IAS Aunn. Meeting,1994:532-536.
    [86] Lawrence A.Jones and Jeffrey H. Lang, A state observer for the permanent-magnet synchronous motor[J], IEEE Transactions on industrial electronics,1989,36(3):374-382.
    [87] G.Zhu, L.A.Dessaint and O.Akhrif, Observer-based speed tracking control of a permanent magnet synchronous motor[C], Industrial Electronics, Control and Instrumentation, 1997. IECON 97. 23rd International Conference on,1997(1):114-119.
    [88] Jorge Solsona, Maria I.Valla and Carlos Muravchik, A nonlinear reduced order observer for permanent magnet synchronous motors[J], IEEE Transactions on industrial electronics, 1996,43(4):492-497.
    [89] Gheorghe Daniel, Nonlinear observer for position and speed sensorless control of permanent magnet synchronous motor drives[C], Optimization of Electrical and Electronic Equipments, 1998. OPTIM '98. Proceedings of the 6th International Conference on,1998:473-478.
    [90] 李鸿儒,顾树生, 基于神经网络的 PMSM 速度和位置自适应观测器的设计[J], 中国电机工程学报,2002,22(12):32-35.
    [91] Satoshi Ogasawara and Hirofumi Akagi, An approach to real-time position estimationat zero and low speed for a PM motor based on saliency[J], IEEE Transactions industry application, 1998,34(1):163-168.
    [92] Chuan Yang Wang and Long Ya Xu, A novel approach for sensorless control of PM machines down to zero speed without signal injection or special PWM technique[C], Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE, 2001(2):857-864.
    [93] Chuan Yang Wang and Long Ya Xu, A novel approach for sensorless control of PM machines down to zero speed without signal injection or special PWM technique[J], IEEE Transactions on power electronics, 2004, 19(6):1601-1607.
    [94] Ashok B.Kulkarni and Mehrdad Ehsani, A novel position sensor elimination technique for the interior permanent-magnet synchronous motor drive[J], IEEE Transactions on industry applications,1992,28(1):144-150.
    [95] Ashok B.Kulkarni and Mehrdad Ehsani, A novel position sensor elimination technique for the interior permanent-magnet synchronous motor drive[C], Industry Applications Society Annual Meeting, Conference Record of the 1989 IEEE,1989(1):773-779.
    [96] Takashi Aihara, Akio Toba, Takao Yanase, et al. Sensorless torque control of salient-pole synchronous motor at zero-speed operation[J], IEEE Transactions on power electronics, 1999, 14(1):202-208.
    [97] Matthew J. Corley, Robert D. Lorenz, Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds[J], IEEE Transactions on industry applications, 1998,34(4):784-789.
    [98] Oskar Wallmark, Lennart Harnefors and Ola Carlson, An improved speed and position estimation for salient permanent-magnet synchronous motors[J], IEEE Transactions on industrial electronics, 2005, 52(1):255-261.
    [99] Lennart Harnefors and Hans-Peter Nee, A general algorithm for speed and position estimation of AC motors[J], IEEE Transactions industrial electronics, 2000, 47(1):77-83.
    [100] Juan Manuel Guerrero, Michael Leetmaa, Fernando Briz, et al. Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods[J], IEEE Transactions on industry applications, 2005, 41(2):618-626.
    [101] Robert D. Lorenz, Practical issues and research opportunities when implementing zero speed sensorless control[C], Electrical Machines and Systems, ICEMS 2001. Proceedings of the Fifth International Conference on, 2001(1):1-10.
    [102] Md. Enamul Haque, Limin Zhong and Muhammed Fazlur Rahman, A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive[J], IEEE Transactions on power electronics, 2003,18(6):1376-1383.
    [103] Md. Enamul Haque, Limin Zhong and Muhammed Fazlur Rahman, A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanentmagnet synchronous motor drive[C], Applied Power Electronics Conference and Exposition, APEC 2001. Sixteenth Annual IEEE, 2001(2):879-884.
    [104] M.E.Haque, L.Zhong and M.F.Rahman, The initial rotor position estimation of an interior permanent magnet synchronous motor without a mechanical sensor[J], Journal of Electrical & Electronics Engineering, Australia, 2001, 21(1):33-39.
    [105] Joohn Sheok Kim and Seung Ki Sul, New stand-still position detection strategy for PMSM drive without rotational transducers[C], Applied Power Electronics Conference and Exposition, 1994. APEC '94(1):363-369.
    [106] Jang-Mok Kim, Seog-Joo Kang and Seung-Ki Sul, Vector control of interior permanent magnet synchronous motor without a shaft sensor[C], Applied Power Electronics Conference and Exposition, 1997. APEC '97(2):743-748.
    [107] Alfio Consoli, Giuseppe Scarcella and Antonio Testa, Industry application of zero-speed sensorless control techniques for PM synchronous motors[J], IEEE Transactions on industry applications, 2001, 37(2):513-521.
    [108] Fernando Briz, Michael W. Degner, Comparison of saliency-based sensorless control techniques for AC machines[J], IEEE Transactions on industry applications, 2004, 40(4):1107-1115.
    [109] Hyunbae Kim, Kum-Kang Huh, A novel method for initial rotor position estimation for IPM synchronous machine drives[J], IEEE Transactions on industry applications,2004,40(5):1369-1378.
    [110] Juan W.Dixon and Jose N.Rivarola, Induction motor speed estimator and synchronous motor position estimator based on a fixed carrier frequency signal[J], IEEE Transactions on industrial electronics,1996,43(4):505-509.
    [111] Michael W.Degner and Robert D.Lorenz, Using multiple saliencies for the estimation of flux,position,and velocity in AC machines[J],IEEE Transactions on industry applications,1998,34(5):1097-1104.
    [112] Alfio Consoli, Giuseppe Scarcella and Antonio Testa,A new zero-frequency flux-position detection approach for direct-field-oriented-control drives[J], IEEE Transactions on industry applications,2000,36(3):797-804.
    [113] Fernando Briz, Alberto Diez and Michael W.Degner, Dynamic operation of carrier-signal-injection-based sensorless direct-field-oriented ac drives[J], IEEE Transactions on industry applications,2000,36(5):1360-1368.
    [114] Limei Wang and Robert D.Lorenz, Rotor position estimation for permanent magnet synchronous motor using saliency-tracking self-sensing method[C], Industry Applications Conference, 2000. Conference Record of the 2000 IEEE,2000(1):445-450.
    [115] Alfio Consoli, Giuseppe Scarcella and Antonio Testa, Sensorless control of PM synchronous motors at zero speed[C], Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting,Conference Record of the 1999IEEE,1999(2):1033-1040.
    [116] Jung-Ik Ha and Seung-Ki Sul, Sensorless field-orientation control of an induction machine by high-frequency signal injection[J], IEEE Transactions on industry applications,1999,35(1):45-51.
    [117] Ryoso Masaki, Satoru Kaneko, Mitsuyuki Hombu, et al. Development of a position sensorless control system on an electric vehicle driven by a permanent magnet synchronous motor[C], Power Conversion Conference, 2002. PCC-Osaka 2002. Proceedings of the IEEE ,2002(2):571-576.
    [118] Daigo Kaneko, Yoshitaka Lwaji,Kiyoshi Sakamoto and Tsunehiro Endo, Initial rotor position estimation of the interior permanent magnet synchronous motor[C], Power Conversion Conference, 2002. PCC-Osaka 2002. Proceedings of the,2002(1):259-264.
    [119] Wang Limei, Guo Qingding and Robert D.Lorenz, Sensorless control of permanent magnet synchronous motor[C], Power Electronics and Motion Control Conference, 2000. Proceedings. PIEMC 2000. The Third International,2000(1):186-190.
    [120] Seiji Kondo, Akihiko Takahashi and Toshihiro Nishida, Armature current locus based estimation method of rotor position of permanent magnet synchronous motor without mechanical sensor[C], Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS '95., Conference Record of the 1995 IEEE,1995(1):55-60.
    [121] Toshihiko Noguchi, Kazunori Yamada, Seiji Kondo and Isao Takahashi, Initial rotor position estimation method of sensorless PM synchronous motor with no sensitivity to armature resistance[J],IEEE Transactions on industrial electronics,1998,45(1):118-125.
    [122] P.L.Jansen and R.D.Lorenz, Transducerless position and velocity estimation in induction and salient AC machines[C], Industry Applications Society Annual Meeting, 1994., Conference Record of the 1994 IEEE,1994(1):488-495.
    [123] P.L.Jansen and R.D.Lorenz, Transducerless position and velocity estimation in induction and salient AC machines[J], IEEE Transactions on industry applications,1995,31(2):240-247.
    [124] Kim JS, Sul SK, High performance PMSM drives without rotational position sensors using reduced order observers[C], IEEE IAS,Annual Meeting, 1995:75-82.
    [125] Kim JS, Sul SK, New standstill position detection strategy for PMSM drive without rotational transducers[C], Conf. Record of IEEE, APEC,1994:363-369.
    [126] M.E.Haque, L.Zhong and M.F.Rahman, The initial rotor position estimation of an interior permanent magnet synchronous motor without a mechanical sensor[J], Journal of electrical & electronics engineering, Australia, 2001, 21(1):33-39.
    [127] Joohn Sheok Kim and Seung Ki Sul, New stand-still position detection strategy for PMSM drive without rotational transducers[C], IEEE APEC’94, 363-369.
    [128] M.E.Haque, L.Zhong and M.F.Rhman, A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive[C], APEC’2001(2):879-884.
    [129] Shin Nakashima, Yuya Inagaki and Ichiro Miki, Sensorless initial rotor position estimation of surface permanent-magnet synchronous motor[J], IEEE Transactions on industry applications,2000,36(6):1598-1603.
    [130] Stefan Ostlund and Michael Brokemper, Sensorless rotor-position detection from zero to rated speed for an integrated PM synchronous motor drive[J], IEEE Transactions on industry applications,1996,32(5):1158-1165.
    [131] 马小亮,魏学森, 数字矢量控制和直接力矩控制调速系统中的电压模型[J], 电工技术学报, 2004,19(3):65-69.
    [132] 交流发电机设计(上)[M],南京航空学院,303 教研室,1987:115.
    [133] 王瑾,飞机无刷发电机及电压调整技术研究,[博士学位论文],南京,南京航空航天大学,2000.
    [134] 朱震莲,现代交流调速系统[M], 西安,西北工业大学出版社,1994.
    [135] 许大中,交流电机调速理论[M], 浙江,浙江大学出版社,1997.
    [136] 黄进,许大中,同步电动机变频调速系统中阻尼绕组的作用[J],电工技术学报,1991(4):1-6.
    [137] 李崇坚,王祥珩,李发海,等 阻尼绕组对磁场定向控制交-交变频同步电机动态行为的影响[J],电工技术学报,1995(4):1-4 转 10.
    [138] Yamamoto H, Kurosawa R, Nakamura R. Novel vector controller for synchronous motor via inverse dynamics modeling[C], IEEE IAS Annual Meeting,1993(1):544-550.
    [139] Pyrhonen O,Niemela M,Pyrhonen J, et al. Salient pole synchronous motor excitation control in direct flux linkage control based drives[C]. Proceedings of the European Power Electronocs Conference ,Trondheim ,Norway,1997:678-682.
    [140] 周扬忠,胡育文,田蕉,永磁同步电机控制系统中变比例系数转矩调节器设计研究[J],中国电机工程学报,2004,24(9):204-208.
    [141] J.Luukko,J.Pyrh?nen. Selection of the flux linkage reference in a direct torque controlled permanent magnet synchronous motor drive[C], IEEE AMC’98-COIMBRA:198-203.
    [142] 林利华. 零速/极低速磁链位置观测仿真及高性能数字控制平台设计,[硕士学位论文],南京,南京航空航天大学,2004,3.
    [143] Federico Caricchi, Fabio Crescimbini and Onorato Honorati, et al. Performance of coreless-winding axial-flux permanent-magnet generator with power output at 400Hz, 3000r/min[J], IEEE Transactions on industry applications, 1998,34(6):1263-1269.
    [144] Isao Takahashi, Takehisa Koganezawa and Guijia Su, et al. A super high speed PM motor drive system by a quasi-current source inverter[J], IEEE Transactions on industry applications, 1994, 30(3):683-690.
    [145] Philip Carne,Tommy Kjellqvist and Charles Delaloye, Estimation of field current in vector-controlled synchronous machine variable-speed drives employing brushless asynchronous exciters[J], IEEE Transactions on industry applications,2005,41(3):834-840.
    [146] 顾毅康,胡育文, 电磁式无刷交流同步发电机的 MATLAB/PSB 建模[J], 航空学报, 2002,23,06: 583~586.
    [147] P.M.Bhagwat and V.R.Stefanovic, Generalized structure of a multilevel PWM inverter[J], IEEE Trans. Ind. Applicat.,Nov./Dec. 1983(19):1057-1069.
    [148] A.Nabae, I.Takahashi, and H.Agaki, A new neural-point-clamped PWM inverter[J], IEEE Trans. Ind. Applicat., 1981,17(5):518-523.
    [149] T.A.Meynard and H.Poch, Multi-level choppers for high voltage applications[J], EPE, 1992,2(1):45-50.
    [150] J.-S.Lai and F.Z.Peng, Multilevel converters-A new bread of power converters[J], IEEE Trans. Ind. Applicat., May/June 1996,32:509-517.
    [151] Xiao Q.Wu and Andreas Steimel,Direct self control of induction machines fed by a double three-level inverter[J], IEEE Transactions on industrial electronics,1997,44(4):519-527.
    [152] Kyo-Beum Lee, Joong-Ho Song and Ick Choy, et al. Improvement of low-speed operation performance of DTC for three-level inverter-fed induction motors[J], IEEE Transactions on industrial electronics,2001,48(5):1006-1014.
    [153] Kyo-Beum Lee, Sung-Hoe and Ji-Yoo,et al. Performance improvement of DTC for induction motor-fed by three-level inverter with an uncertainty observer using RBFN[J],IEEE Transactions on energy conversion,2005,20(2):276-283.
    [154] Carlos A.Martins, Xavier Roboam and Thierry A.Meynard, et al. Switching frequency imposition and ripple reduction in DTC drives by using a multilevel converter[J],2002,17(2):286-297.
    [155] M.Cosan, H.Mao, D.Borojevic, et al. Space vector modulation of three-level voltage source inverter[C], Proc. VPEC Seminar, 1996:123-128.
    [156] Dengming Peng, Fred C. Lee, and Dushan Boroyevich, A novel SVM algorithm for multilevel three-phase converters[C], IEEE Power Electronics Specialists Conference, 2002,2:509-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700