内孤立波对海洋平台作用及其运动响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界上许多海域中尤其是在陆架、海峡等地形变化剧烈的海区观测到了内孤立波的存在。其中,我国南海北部、台湾东北海域及巴士海峡是内孤立波的多发区,而且常常具有较大的振幅。与表面波相比,内孤立波的恢复力较小,但内孤立波有较大的振幅和较低的频率。本文计算了内孤立波对海上结构物的作用及海上结构物的运动响应,并将此结果与表面波作用下的数值结果进行了比较。
     首先,在Kdv方程的基础上,模拟了内孤立波的波面,并计算和分析了内孤立波流场中水质点速度和任意点动压强的变化规律。
     建立了内孤立波对运动结构物作用的时域模型。为了增加本模型的适应性,海上结构物被分解为杆单元和面单元。杆单元上的内孤立波力应用Morison公式求解,面单元上的内孤立波力通过动压强在面单元上积分求得。本文在Kdv型内孤立波理论的基础上求解了运动Spar平台上的内孤立波力和浮力;在悬链线理论的基础上应用迭代方法计算了分段式锚泊系统的锚链力,得到了锚链力与位移之间的非线性关系;利用4阶Runge-Kutta方法求解了结构物的运动方程,得到了结构物在内孤立波作用下的运动响应。应用以上数值模型详细分析了内孤立波对Spar平台的作用、Spar平台的运动响应和锚泊系统锚链力的变化。
     应用频域边界元方法计算了表面波对Spar平台的作用及其运动响应。对比了内孤立波和表面波对Spar平台的作用,证实了内孤立波对海上结构物的作用是不可忽略的。在内孤立波作用下,Spar平台产生了很大的水平位移。内孤立波对Spar平台的低频作用是Spar平台产生很大水平位移的主要因素。当Spar平台上最大水平内波力是最大水平表面波力的5%左右时,Spar平台在内孤立波作用下最大水平位移是表面波作用下最大位移的3倍左右。可见,内孤立波对海上结构物的影响不仅体现在较大的内波作用力上,更体现在内孤立波对海上结构物的低频运动响应上。
Internal solitary waves can be observed in many sea areas around the world, especially in domains with rapidly changing topography, such as near continental shelves and straits. It is estimated that there are more internal solitons whose amplitude is often larger in the northern South China Sea, the sea of northeastern Taiwan and Bashi Channel than other sea areas. Compared with surface wave, the resilience of internal soliton is smaller, while the amplitude is larger and the frequent is lower. In this paper, the action of internal solitons on offshore structures and motion respondences of these structures are both computed; and the numerical results are compared with effects of surface wave, respectively.
     First of all, the internal solitary wave surface is simulated through the Kdv equation, and the velocity of water particle and the pressure of any point in the flow field of internal soliton is calculated and analyzed.
     Then, a numerical model to compute the effect on moving structure of internal solitary wave is established. In order to increase the adaptability of this model, marine structures are decomposed into pole elements and face elements. The forces of internal soliton on the pole elements are computed by Morison equation, on the face elements by the integral of dynamic pressure. The solitary wave force and buoyancy are solved through Kdv internal soliton theory. Based on the catenary theory, this paper calculates the force of the sectional anchor mooring system and the nonlinear relationship between anchor force and displacement. The motion respondences of the Spar platform under influence of internal solitary wave are also simulated by making use of the fourth order Runge-kutta method. With these results, the paper detailedly presents the actions of internal solitary wave on the Spar platform, its responses and changes of the anchor force.
     The boundary element method in frequency domain is applied to compute the action of internal solitary wave on the Spar platform and its response. It is proved that the action of internal soliton on offshore structure can not be ignored by comparing the action of internal solitary wave and surface wave on the Spar platform. Under the force of the internal soliton, the Spar platform produces a great horizontal displacement. Therefore, the low-frequency effect of internal solitary wave plays a significant role in the horizontal displacement of the Spar platform. It is simulated that when the maximum horizontal force on the Spar platform of the internal soliton is about 5%of that of the surface wave, the maximum horizontal displacement of Spar platform under internal solitary wave is about 3 times of that under surface wave. It can be concluded that the influence of internal soliton on marine structure is represented by great forces as well as the low-frequency effect.
引文
[1]李家春.水面下的波浪--海洋内波[J].力学与实践,2005,27(2):1-5.
    [2]富永政英.海洋波动--基础理论和观测成果[M].北京:科学出版社,1976:423-456.
    [3]杜涛,吴巍,方欣华.海洋内波的产生与分布[J].海洋科学,2001,25(4):25-28.
    [4]陈景辉.南海流花11-1深海油田开发工程[J].中国海洋平台,1996,11(1):43-45.
    [5]Bole J B, Ebbesmeyer C C, Romea R D. Soliton currents in the South China sea: measurements and theoretical model ing[A]. The 16th Offshore Technology-Conference in Houston[C]. Texas, USA,1994:367-376.
    [6]沈国光,叶春生.内波孤立子的非波导载荷计算[J].天津大学学报.2005,38(12):1043-1050.
    [7]Cheng Y L, Li J C, Liu Y F. The induced flow field by internal solitary wave and its action on cylindrical piples in the stratified ocean[C]. In:Zhuang FG, Li JC, Eda. Recent Advances in fluid Mechanics, Qinghua-Apringer,2004, 296-299.
    [8]Cai S Q, Long X M, Gan Z J. A method to estimate the forces exerted by internal solitons on cylinder piles[J]. Ocean Engineering.2003,30:673-689.
    [9]Cai S Q, Long X M, Wang S G. Force and torques exerted by internal solitions in shear flows on cylinder piles[J]. Applied Ocean Research.2008,30:72-77.
    [10]Jeffery A, Ramollo M P. Reflection and transmission of internal solitary waves across a barrier [J]. Wave Motion.1995,22:325-333.
    [11]程友良.分层流体中内孤波的研究进展[J].力学进展,1998,28(3):383-391.
    [12]Gerkema T, Zimmerman J T F, Generation of nonlinear internal tides and solitary waves [J]. J. Phys. Oceanogr.,1995,25:1081-1094
    [13]Baines P G. The generation of internal tides by flat-bump topography. Deep-Sea Research [J],1973,20:179-205.
    [14]Baines P G. On internal tide generation models [J]. Deep-Sea Res,1982,29(3A): 307-338.
    [15]Keulegan G H. Characteristics of internal solitary waves [J]. J Res Natl Bur Stand,1953,51:133-140.
    [16]Long R R. Solitary waves in one-and two-fluid systems[J]. Tellus,1956,8: 460-471.
    [17]Kakutani T, Yamasaki N. Solitary waves on a two layer fluid [J]. J Phys Soc Japan,1978,45:674-679.
    [18]戴世强.两层流体界面上的孤立波[J].应用数学和力学,1982,3(6):721-731.
    [19]Djordjevic V C, Redekopp L G. The fission and disintegration of internal solitary waves moving over two dimensional topography [J]. J. Phys. Oceanogr., 1978,8:1016-1024.
    [20]Grimshaw R. Evolution equations for long nonlinear waves in stratified shear flows [J]. Studies Appl Math,1981,65:159-188.
    [21]朱勇.分层流体中孤立波的生成,演化和相互作用[D].上海:上海工业大学,1990.
    [22]颜家壬,钟建新.具有基本流动的两层流体界面和表面孤波[J].物理学报,1990,39(9):1393~1399.
    [23]朱勇.基本流动对强分层流体中非线性永形波的作用[J].上海工业大学学报,1989,7(1):9~15.
    [24]Gear J, Grimshaw R. A second order theory for solitary waves in shallow fluids [J]. Phys Fluids,1983,26:14-29.
    [25]Miles J W. On internal solitary waves [J]. Tellus,1979,31:456-462.
    [26]戴世强.两个界面孤立波之间的迎撞[J].力学学报,1983,6:623-632.
    [27]戴世强.一个两流体系统中两对孤立波的相互作用[J].中国科学(A),1983,11:1007~1017.
    [28]钱伟长.奇异摄动理论及其在力学中的应用[M].北京:科学出版社,1981.33~79.
    [29]戴世强.约化摄动法和非线性波远场分析[J].力学进展,1982,12(1):2-23.
    [30]戴世强,张社光.分层流体中凸孤立波与凹孤立波的相互作用[J].科学通报,1986,5(4):499~509.
    [31]张社光,戴世强.分层流体中相同模式孤立波的追撞[J].应用数学与计算数学学报,1987,8(1):23~32.
    [32]Koop C G, Bulter G. An investigation of internal solitary waves in a two-fluid system [J]. J Fluid Mech,1982,112:225-251.
    [33]Joseph R I. Muti-soliton-like solutions to the Benjamin-Ono equation [J]. J Math Phys,1977,18(12):2251-2258.
    [34]Segur H, Hammack J. Solution models of long internal waves[J]. J Fluid Mech, 1982,118:285-304.
    [35]Benjamin T B. Internal waves of permanent form in fluids of great depth [J]. J Fluid Mech,1967,29(3):559-592.
    [36]Davis R E, Acrivos A. Solitary internal waves in deep water [J]. J Fluid Mech, 1967,29(3):593-607.
    [37]Grimshaw R. Evolution equation for weakly nonlinear, long internal waves in a rotating fluid[J]. Stud Appl Math,1985,73:1-33.
    [38]Grimshaw R H J. Long nonlinear internal waves in channels of arbitrary cross-section [J]. J Fluid Mech,1978,86:415-431.
    [39]颜家壬,黄国翔,黄念宁.矩形波导中两层流体界面上的非传播孤立波[J].物理学报,1988,37(5):874-880.
    [40]Matsuno Y. A unified theory of nonlinear wave propagation in two-layer fluid system[J]. J Phys Soc Japan,1993c,62:1902-1916.
    [41]Benney D J. Long non-linear waves in fluid flows[J]. J Mathematical Phys, 1966,45:52-63.
    [42]Benjamin T B. Internal waves of finite amplitude and permanent form[J]. J Fluid Mech,1966,25:244-270.
    [43]Maslowe S A, Redekopp L G. Long nonlinear waves in stratified shear flows [J]. J Fluid Mech,1980,101:321-348.
    [44]Tung K-K, Ko D R S, Chang J J. Weakly nonlinear internal waves in shear[J]. Studies Appl Math,1981,65:189-221.
    [45]Gear J, Grimshaw R. Weak and strong interaction between internal solitary waves [J]. Studies Appl Math,1984,68:253-258.
    [46]Grimshaw R, Zhu Y. Oblique interactions between internal solitary waves [J]. Studies Appl Math,1994,92:249-270.
    [47]Redekopp L G. Nonlinear waves in geophysics:long internal waves. In: Lectures in Applied Mathematics [J], American Math Soc,1983,20.59-78.
    [48]周显初.分层流体中孤立波的分裂[J].中国科学(A),1987,(10):1071~1081.
    [49]Nonaka Y. Internal solitary waves moving over the low slope of topographies [J]. Fluid Dynamics Research,1996,17:329-349.
    [50]Kubota T, Ko D R S, Dobbs L. Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth [J]. J Hydronautics,1978,.12:157-
    165.
    [51]Ono H. Algebraic solitary waves in stratified fluids[J]. J Phys Soc Japan, 1975,39(4):1082-1091.
    [52]Grimshaw R. A second-order theory for solitary waves in deep fluids [J]. Phys Fluids,1981,24:1611-1618.
    [53]Derzho O G. Solitary waves of permanent form in a deep fluid with weak shear [J]. Phys Fluids,1995,7(6):1357-1362.
    [54]朱勇.深分层流体中内孤立波的相互作用——Ⅰ.弱相互作用[J].中国科学(A),1996,26(6):550-557.
    [55]蔡树群,甘子钧,尤小敏.南海北部孤立子内波的一些特征和演变[J].科学通报,2001,46(15):1245-1250.
    [56]Cai S Q, Gan Z J, Long X M. Some characteristics and evolution of the internal soliton in the northern South China Sea[J].Chinese Science Bulletin,2002, 47(1):21-26.
    [57]Ziegenbein J. Short internal waves in the Strait of Gibraltar[J]. Deep Sea Res.,1969,16:479-487.
    [58]Lacombe H, Richez C. The regime of the Strait of Gibraltar [A]. Hydrodynamics of Semi-Enclosed Seas [C], J. C. J. Nihoul, Ed., Elsivier,1982:13-74.
    [59]Osborne A R, Burch T L, Scarlet R I. The influence of internal waves on deep water drill ing [J]. J. Petroleum Tech.,1978,30:1497-1509.
    [60]Osborn A R, Burch T L. Internal solitons in the Andaman Sea[J]. Science, 1980,208:451-460.
    [61]Apel J R, etal. The Sulu Sea internal soliton experiment [J]. J. Phys. Oceanogr.,1985,15:1625-1651.
    [62]Holloway P E, Pelinovasky E, Talipova T. et al. A nonlinear model of internal tide transformation on the Australian North West Shelf [J]. J. Phys. Oceangr. 1997,27:871-896.
    [63]Pinkel R, Internal solitary waves in the warm pool of the Western Equatorial Pacific [J]. J. Phys. Oceanogr.,2001,30,2906-2926.
    [64]Walker S A, Martin A J and Easson W J. et al. Comparison of laboratory and theoretical internal solitary wave kinematics [J]. Journal of Waterway, Port, Coastal and Ocean Engineering.2003,129(5):210-218.
    [65]Kao T W, Pan F-S and Renouard D. Internal solitons on the pycnocline:
    generation, propagation, and shoaling and breaking over a slope[J]. J. Fluid Mech,1985,159:19-53.
    [66]Wessels F, Hutter K. Interaction of internal waves with a topographic sill in a two-layered fluid [J]. J. Phys. Oceanogr.,1996,26(1):5-20.
    [67]蔡树群,龙小敏,甘子钧.孤立子内波对小直径圆柱形桩柱的作用力初探[J].水动力学研究与进展:A辑,2002,17(4):497-506.
    [68]叶春生,沈国光.海洋内波对小尺度圆柱体作用力的分析与计算[J].天津大学学报,2005,38(2):102~108.
    [69]Du T, Sun L, Zhang Y J, et al. An estimation of internal soliton forces on a pile in the ocean[J]. Journal of Ocean University of China.2007,16(2): 101-106.
    [70]Kistovich Y V, Chashchkin Y D. Mass transport and the force of a beam of two-dimensional periodic internal waves[J]. Appl Mech,2001,65(2):237-242.
    [71]尤学一,李占.密度层化流体波动场中小尺度水平圆柱体受力模拟[J].天津大学学报,2008,41(7):854-858.
    [72]Teng B, Gou Y. A Time-domain Model of Internal Wave Diffraction from a 3D Body in a Two-layer Fluid[A]. International Workshop on Water Waves and Floating Bodies[C]. Zelenogorsk, Russia,2009.
    [73]陈旭.分层流体中内波对物体的作用力[D].青岛:中国海洋大学海洋环境学院,2006.
    [74]徐肇廷,陈旭,吕红民等.内波场中水平桩柱波阻的实验研究[J].中国海洋大学学报,2007,37(1):1~6.
    [75]Ermanyuk E V, Gavrilov N V. Force on a body in a continuously stratified fluid(I):Circular cylinder [J]. Fluid Mech.2002,451(2):421-443.
    [76]Lai R Y S, Lee C M. Added mass of a spheroid oscillating in a linearly stratified fluid[J]. Intl J Engng Sci,1981,19(11):1411-1420.
    [77]Ermanyuk E V. The use of impulse response for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid[J]. Exp Fluids,2000,28(2):152-159.
    [78]Maxworth T. A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge [J]. J. Geophys Res.1979,84C:338-346.
    [79]Michallet M, Barthelemy E. Experimental study of interfacial solitary waves[J]. Journal of Fluid Mech.1998,336:159-177.
    [80]Gear J A, Grimshaw R. A second-order theory for solitary waves in shallow fluids[J].Phys. Fluids.1983,26(1):14-29.
    [81]LIU A K. Analysis of nonlinear internal waves in the New York Bight[J]. J.Geophys Res.1988,93(10):12317-12329.
    [82]LIU A K, HOLBROOK J R, APEL J R. Nonlinear internal wave evolution in the Sulu Sea[J]. J. Phys. Oceanogr.1985,15:1613-1624.
    [83]XU Z T, YAO F C, WANG M. Generetion of nonlinear internal waves on continental shelf [J]. Journal of Hydrodynamics,2001,13(3):127-132.
    [84]Osborne A R, Burch T L. Internal Solitons in the Andaman Sea[J]. Science, 1980,208:451-460.
    [85]Agarwal A K, Jain A K. Dynamic behavior of offshore spar platforms under regular sea waves [J]. Ocean Engineering.2003,30:487-516.
    [86]李玉成,滕斌.波浪对海上建筑物的作用[M].北京:海洋出版社,2002:50~82.
    [87]Chen S H, Wu L X, Zhang R H, et al. The characteristics of the internal wave sea and induced sound field undulation in the South China. Progress in Natural Science,2004; 14(10):1163-1170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700