深海钢悬链立管动力分析及触地点疲劳特性评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国加快开发南海资源的脚步,因此研发具有自主核心技术的深海工程装备已成为优先任务。钢悬链立管(SCR)是进行深海资源开发的关键设备,它具有复杂的非线性动力特性,其独特的结构形式为设计、制造、安装和安全服役提出了新挑战。
     触地点(TDP)是钢悬链立管最初接触到海床的部位,也是结构分析的特征点。该位置是悬垂段与流线段的连接点,易发生疲劳破坏,进而危及整个采油系统的安全。该区域有部分初始悬空的立管会浸入海底,与土壤发生相互作用,同时涉及到大变形与非线性。所以,触地点是钢悬链立管数值分析的难点,需要展开针对性的研究。
     本文针对深海钢悬链立管的动力分析及触地点的疲劳特性问题进行深入研究,主要工作如下:
     1、考虑海洋环境,建立基于非线性弹簧的钢悬链立管Lumped-Mass有限元耦合模型。
     探讨了钢悬链立管的发展及数值分析、疲劳分析的研究进展,在此基础上明确了研究方法,确立触地点为立管整体分析过程中需要重点关注的区域。借助P-y曲线考虑土壤的三维非线性反力,用修正后的Morison方程仿真海洋环境载荷,最终成功构造立管数值模型,并通过实验分析验证了该模型的合理性。
     2、展开多工况非线性动力分析,得到立管的动力特性,重点研究触地点的动力响应。
     相对于频域动力分析,时域分析能更好的处理立管强非线性问题,其计算精度更高。结构整体分析的结果表明:在不同工况下,上端点均是刚性立管疲劳分析的特征点,而钢悬链立管疲劳分析的特征点位于触地点区域。通过比较多工况下的触地点响应时程,展示各因素的影响程度:浮体运动与制造材料变化的作用较大,而波浪改变对触地点动力特性的影响有限。此外,讨论的其它环境载荷与设计参数也具有一定影响。
     3、参数敏感性分析立管工作寿命,着重探讨触地点疲劳特性,提出改善疲劳寿命的建议。
     基于立管动力研究,展开S-N曲线法疲劳分析,对比计算结果可知:触地点的疲劳寿命最小,定期变换该区域,可缓解疲劳累积;合理采用S-N曲线、改良制造工艺,能优化特征点应力集中;浮体垂荡对立管疲劳寿命影响较大,适当选择浮体有利于缓和耦合运动;借助浮力装置或混合形式,可以改善土壤非线性反力作用;在特征位置使用保护外层或钛合金等材料,有助于拓展立管适用空间。
Nowadays, China has accelerated the exploitation in the South China Sea. The development of deep-sea engineering equipments with core technology has become a priority. The steel catenary riser (SCR) is the key apparatus in ultra-deep water work. Since the complex nonlinear dynamic behaviors, the SCR brings new challenges in design, manufacture, installation and security application.
     The touchdown point (TDP) is the characteristic point in structure analysis, also the combined point of sag bend and flow line. The most vulnerable location to fatigue damage exists at the TDP, where the riser first touches the seafloor. Furthermore, the SCR fatigue damage will endanger the whole oil production system. The SCR-Seabed interaction relates to the large deformation and nonlinear reaction. Parts of the riser interact with the soil significantly near the touchdown zone, which above the seabed at the beginning. Therefore, the TDP is the principal region to be focused in numerical analysis.
     Dynamic analysis of deepwater steel catenary risers and fatigue characteristic assessment at the touchdown point are studied in this work, the main tasks are given as follows:
     1. Based on nonlinear springs, a Lumped-Mass SCR coupling model is established in marine environment.
     On the basis of discussions in the SCR comprehensive development, numerical research and fatigue analysis, the study methodology is brought. The TDP is defined as the principal objective during the whole investigation. Due to P-y Curve and Morison Equation, three-dimensional seabed reactions and marine-ambient excitations are simulated respectively. Above all, the SCR model is proved successfully through reasonable analysis.
     2. Acquire nonlinear dynamic features of the SCR in different operating conditions, and focus on dynamic responses at the TDP.
     Comparing with frequency domain dynamic analysis, it’s better and more accurate to solve the strong nonlinear problems of SCR in time domain. The overall structure research indicates: in fatigue assessment, top end is the key location of rigid riser in different cases, and the TDP is the characteristic point of SCR. By studying dynamic responses in multi-operating conditions, the impacts of various factors to the TDP are discussed: The vessel motion and construction material are significant influences. On the contrary, the wave load couldn’t change dynamic features at the TDP directly. In addition, other environment loads and design parameters have some effects as well.
     3. The TDP is investigated as a key position in the SCR fatigue study, meanwhile, some fatigue life enhancements are stated.
     Through dynamic analysis and S-N Curve Method, the results of fatigue assessment are shown: The TDP appears the shortest fatigue life, and the fatigue accumulation can be alleviated by transforming the touchdown zone regularly. Selecting S-N curves carefully or optimizing manufacturing crafts are helpful to control the stress concentration in the feature point. The SCR fatigue life is highly sensitive to vessel heave, so an excellent vessel could relieve coupling movement notably. Use of the buoyancy device or hybrid form is an available approach to better the soil nonlinear reaction. Besides, the employment of protective coating and titanium in characteristic locations could expand the SCR application.
引文
[1]宋儒鑫.深水开发中的海底管道和海洋立管[J].船舶工业技术经济信息. 2003(218): 31-42.
    [2]黄维平,李华军.深水开发的新型立管系统-钢悬链线立管(Scr)[J].中国海洋大学学报. 2006, 36(5): 775-780.
    [3] Phifer E.H., Kopp F., Swanson R.C., et al. Design and Installation of Auger Steel Catenary Risers[C].In: The 1994 Offshore Techonlogy Conference. Houston, U.S.A., 1994: OTC7620
    [4] Serta O.B., Mourelle M.M., Grealish F.W., et al. Steel Catenary Riser for the Marlim Field Fps P-Xviii[C].In: The 1996 Offshore Technology Conference. Houston, U.S.A., 1996: OTC8069
    [5] Chaudhury G., Kennefick J. Design, Testing, and Installation of Steel Catenary Risers[C].In: The 1999 Offshore Technology Conference. Houston, U.S.A., 1999: OTC10980
    [6] Gore C.T., Mekha B.B. Common Sense Requirements (Csrs) for Steel Catenary Risers (Scr)[C].In: The 2002 Offshore Techonlogy Conference. Houston, U.S.A., 2002: OTC14153
    [7] Korth D.R., Chou B.S.J., McCullough G.D. Design and Implementation of the First Buoyed Steel Catenary Risers[C].In: The 2002 Offshore Techonlogy Conference. Houston, U.S.A., 2002: OTC14152
    [8] Thompson H.M., Grealish F.W., Young R.D., et al. Typhoon Steel Catenary Risers: As-Built Design and Verification[C].In: The 2002 Offshore Technology Conference. Houston, U.S.A., 2002: OTC14126
    [9] Bai Y., Bai Q. Subsea Pipelines and Risers[M]. Amsterdam: Elsevier Ltd., 2005.
    [10] Kopp F., Light B.D., Preli T.S., et al. Design and Installation of the Na Kika Export Pipelines, Flowlines and Risers[C].In: The 2004 Offshore Techonlogy Conference. Houston, U.S.A., 2004: OTC16703
    [11] Bai Y., Tang A., OSullivan E., et al. Steel Catenary Riser Fatigue Due to Vortex Induced Spar Motions[C].In: The 2004 Offshore Techonlogy Conference. Houston, U.S.A., 2004: OTC16629
    [12] Patel M.H., Seyed F.B. Review of Flexible Riser Modelling and Analysis Techniques[J]. Engineering Structure. 1995, 17(4): 293-304.
    [13]傅俊杰,杨和振.深海钢悬链立管触地点动力响应分析[J].海洋工程. 2009, 27(2): 36-45.
    [14] API. API-RP-2RD. Design of Risers for Floating Production Systems and Tension-Leg Platforms[S]. U.S.A.: API, 1998.
    [15] DNV. DNV-OS-F201. Dynamic Risers[S]. Hфvik, Norway: DNV, 2001.
    [16] Burke B.G. An Analysis of Marine Risers for Deep Water[J]. Journal of Petroleum Technology. 1974, 5(4): 123-131.
    [17] Garner T., Kotch M. Dynamic Analysis of Risers and Caissons by the Element Method[C].In: The 8th Offshore Technology Conference. Houston, U.S.A., 1976: OTC2651
    [18] Nordgren R.P. On Computation of Motion of Elastic Rods[J]. J.Appl.Mech.Trans. 1974: 777-780.
    [19] Garrett D.L. Dynamic Analysis of Slender Rods[J]. Journal of Energy Resources Technology. 1982(104): 302-307.
    [20] de Oliveira, Goto Y., Okarmoto T. Theoretical and Methodological Approaches to Flexible Pipe Design and Application[C].In: The 17th Offshore Technology Conference. Houston, U.S.A., 1985: OTC5004
    [21] Rijken O.R. Dynamic Response of Marine Risers and Tendons[D]. Houston, U.S.A.: Texas A&M University, 1997.
    [22] Chen X., Zhang J., Johnson P., et al. Dynamic Anslysis of Mooring Lines by Using Three Different Methods[C].In: The 11th International Offshore and Polar Engineering Conference. Stavanger, Norway, 2001: 635-642
    [23]郭小刚,张立人,金星, et al.深海采矿流-固耦合软管系统的非线性动力学模型[J].工程力学. 2000, 17(3): 93-104.
    [24] Chai Y.T., Varyani K.S., Barltrop N.D. Three-Dimensional Lump-Mass Formulation of a Catenary Riser with Bending, Torsion and Irregular Seabed Interaction Effect[J]. Ocean Engineering. 2002, 29(12): 1503-1525.
    [25] Chen J.J., Wang D.J. Nonlinear Dynamic Analysis of Flexible Marine-Risers[J]. China Ocean Engineering. 1991, 5(4): 373-384.
    [26] Matlock H. Correlation for Design of Laterally Loaded Piles in Soft Clay[J]. OTC. 1970, 25(1): 577-594.
    [27]王惠初,武冬青,田平.粘土中横向静载桩P-Y曲线的一种新的统一法[J].河海大学学报. 1991, 19(1): 9-17.
    [28] Sullivan W.R., Reese L.C.粘土中水平受载桩的统一分析法[J].水运工程. 1980: 110-121.
    [29] Stevens J.B.M., Audibert J.M.E. Re-Examination of P-Y Curve Formulations[J]. OTC. 1979, 34(2): 261-269.
    [30] Pesce C.P., Aranha J.A.P., Martins C.A. Dynamic Curvature in Catenary Risers at theTouch-Down Point Region: An Experimental Study and the Analytical Boundary-Layer Solution[J]. International Journal of Offshore and Polar Engineering. 1998, 8(4): 302-310.
    [31] You J.H., Aubeny C.P., Biscontin G. Seafloor Interaction with Steel Catenary Risers[C].In: The 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, U.S.A., 2007: 10-15
    [32] Aubeny C.P., Biscontin G., Zhang J. Seafloor-Riser Interaction Model[C].In: The 2007 International Workshop on Constitutive Modelling-Development, Implementation, Evaluation, and Application. Hong Kong, China, 2007: 12-13
    [33] Bridge C., Laver K., Clukey E., et al. Steel Catenary Riser Touchdown Point Vertical Interaction Models[C].In: The 2004 Offshore Techonlogy Conference. Houston, U.S.A., 2004: OTC 16628
    [34] Thethi R., Moros T. Soil Interaction Effects On Simple Catenary Riser Response[C].In: The 2001 Deepwater Pipeline & Riser Technology Conference. Houston, U.S.A., 2001: 1-24
    [35]余龙,谭家华.锚泊线与海底接触的有限元建模及其非线性分析[J].中国海洋平台. 2005, 20(2): 25-29.
    [36] Ong P.P.A., Pellegrino S. Modelling of Seabed Interaction in Frequency Domain Analysis of Mooring Cables[C].In: The 22nd International Conference on Offshore Mechanics and Arctic Engineering. Cancun, Mexico, 2003: OMAE2003/37465
    [37]田平,王惠初.粘土中横向荷载桩的P-Y曲线法评述[J].河海大学学报. 1994, 22(2): 72-76.
    [38]缪国平.挠性部件力学导论[M].上海:上海交通大学出版社, 1996.
    [39]王勖成,邵敏.有限单元法基本原理和数值分析方法[M].北京:清华大学出版社, 1997.
    [40]何世民.随机激励下结构疲劳损伤累积及应用[D].杭州:浙江大学, 2000.
    [41] Chen Z., Reuben R.L., Owen D.G. Development of a Fatigue Model for Prediction of Flexible Pipe Life Expectancy[C].In: The 1st Inernational Offshore and Polar Engineering Conference. Edinburgh, U.K., 1991: 400-413
    [42] Mekha B.B., Heijermans B. The Prince Tlp Steel Catenary Risers Design and Fatigue Challenges[C].In: The 22nd International Conference on Offshore Mechanics and Arctic Engineering. Cancun, Mexico, 2003: OMAE2003/37075
    [43] Senra S.F., Jacob B.P., LúciaFLTorres, et al. Sensitivity Studies On the Fatigue Behavior of Steel Catenary Risers[C].In: The 12th International Offshore and Polar Engineering Conference. Kitakyushu, Japan, 2002: 193-198
    [44] Cunff C.L., Fontaine E., Biolley F. Riser Fatigue Due to Currents and Waves[C].In:The 21th International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway, 2002: OMAE2002/28123
    [45] de Lemos C.A.D., Vaz M.A. Flexible Riser Fatigue Procedure Using a Long Term Distribution of Fpsos Heading Direction[C].In: The 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway, 2002: OMAE2002/28145
    [46] Leira B.J., Holmas T., Herfjord K. Estimation of Extreme Response and Fatigue Damage for Colliding Risers[C].In: The 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway, 2002: OMAE2002/28435
    [47]余建星,李红涛.波流联合作用下海底管跨疲劳失效的分析[J].天津大学学报. 2006, 39(9): 1015-1020.
    [48]薛鸿祥,唐文勇,张圣坤.深海立管涡激共振疲劳寿命简化计算方法[J].工程力学. 2008, 25(5): 231-240.
    [49] Pasto S. Fatigue-Induced Risk Assessment of Slender Structures with Circular Cross-Section at Lock-in[D]. Braunschweig, Germany: Technical University Carolo-Wilhelmina at Braunschweig, 2005.
    [50] Sen T.K. Probability of Fatigue Failure in Steel Catenary Risers in Deep Water[J]. Journal of Engineering Mechanics. 2006, 132(9): 1001-1006.
    [51] Ye W., Shanks J., Fang J. Effects of Fully Coupled and Quasi-Static Semi-Submersible Vessel Motions On Steel Catenary Risers Wave Loading Fatigue[C].In: The 2003 Offshore Technology Conference. Houston, U.S.A., 2003: OTC 14157
    [52] Martins C.A., Pesce C.P. A Simplified Procedure to Assess the Fatigue-Life of Flexible Risers[C].In: The 12th International Offshore and Polar Engineering Conference. Kitakyushu, Japan, 2002: 179-186
    [53] Chaudhury G. Combined Low and High Frequency Fatigue of Platforms in Deep Waters[C].In: The 20th International Conference on Offshore Mechanics and Arctic Engineering. Rio de Janeiro, Brazil, 2001: OMAE2001/OFT1252
    [54] Pesce C.P., Aranha J.A.P., Martins C.A. Steel Catenary Risers for Deepwater Applications[C].In: The 5th International Offshore and Polar Engineering Conference. Hague, Nethlands, 1995: 190-202
    [55]陈云水,王德禹.深水立管的若干结构力学研究进展[J].中国海洋平台. 2007, 22(5): 1-9.
    [56] Campbell M. The Complexities of Fatigue Analysis for Deepwater Risers[C].In: The 1999 Deepwater Pipeline Conference. New Orleans, U.S.A., 1999: 1-13
    [57] Bhat S., Dutta A., Wu J., et al. Pragmatic Solutions to Touch-Down Zone Fatigue Challenges in Steel Catenary Risers[C].In: The 2004 Offshore Technology Conference.Houston, U.S.A., 2004: OTC 16627
    [58] Ishii K., Makino Y., Fuku T. Flexible Riser Technology for Deepwater Applications[C].In: The 27th Offshore Technology Conference. Houston, U.S.A., 1995: OTC7726
    [59] Bjorset A., Leira B.J., Remesth S. Local Buckling Analysis of Titanium Pepes by Probabilitic Response Surface Methods[C].In: The 17th International Conference on Offshore Mechanics and Arctic Engineering. 1998: OMAE1487
    [60] Berge S. Fatigue Strength of Titanium Risers:Effect of Defects[C].In: The 17th International Conference on Offshore Mechanics and Arctic Engineering. 1998: OMAE2209
    [61]周晶,陈严飞,李昕, et al.复杂荷载作用下海底腐蚀管线破坏机理研究进展[J].海洋工程. 2008, 26(1): 127-136.
    [62]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社, 2003.
    [63]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析[M].北京:人民交通出版社, 1996.
    [64]阎楚良,卓宁生,高镇同.雨流法实时计数模型[J].北京航空航天大学学报. 1998, 24(5): 623-624.
    [65]黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应[M].上海:上海交通大学出版社, 1992.
    [66] Arcandra. Hull/Mooring/Riser Coupled Dynamoc Analysis of a Deepwater Floating Platform with Ployester Lines[D]. Houston, U.S.A.: Texas A&M University, 2001.
    [67] Azar J.J. A Comprehensive Study of Marine Drilling Risers[R]. American Society of Mechanical Engineers Petroleum Division, 1978.
    [68] Sparks C.P. Mechanical Behaviour of Marine Risers Mode of Influence of Principal Parameters[C].In: The 1979 Winter Annual Meeting of the American Society of Mechanical Engineers. 1979: OED7
    [69] Kokarakis J.E., Bernitsas M.M. Nonlinear Three-Dimentional Dynamic Analysis of Marine Risres[J]. Jounal of Energy Resource Technology. 1987(109): 105-111.
    [70] Bernitsas M.M. Three-Dimensional Nonlinear Large Deflection Model for Dynamic Behavior of Risers,Pipelines and Cables[J]. J. Ship Res. 1982, 26(1): 59-64.
    [71] Peyrot A.H., Goulois A.M. Analysis of Cable Structures[J]. Comput. Struct. 1978(10): 805-813.
    [72] Orgill G., Wilson J.F., Schmertmann G.R. Static Design of Mooring Arrays for Offshore Guyed Towers[J]. Appl. Ocean Res. 1985, 7(3): 166-174.
    [73] Larsen C.M. Static Analysis of Non-Vertical Marine Risers by Simplified Methods[M]. 1996.
    [74] Karayaka M., Xu L.X. Catenary Equations for Top Tension Riser Systems[C].In: The 13th International Offshore and Polar Engineering Conference. Honolulu, U.S.A., 2003: 91-97
    [75] Kirk C.L., Etok E.U. Wave Induced Random Oscillations of Pipelines During Laying[J]. Appl. Ocean Res. 1979, 2(1): 51-60.
    [76] Krolikowski L.P., G.T.A. An Improved Linearization Technique for Frequency Domain Riser Analysis[C].In: The 1980 Ocean Technology Conference. Houston, U.S.A., 1980: OTC3777
    [77] Langley R.S. The Linearisation of Three Dimensional Drag Force in Random Seas with Current[J]. Appl. Ocean Res. 1984, 6(3): 126-131.
    [78] Eatock Taylor R., Rajagopalan A. Load Spectra for Slender Offshore Structures in Waves and Currents[J]. Earthquake Engng Struct. Dyn. 1983(2): 831-842.
    [79] Kao S. An Assessment of Linear Spectral Analysis Methods for Offshore Structures Via Random Sea Simulation[J]. J. Energy Res. Technol. Trans. 1982(104): 39-46.
    [80] Patel M.H., Sarohia S., Ng K.F. Finite Element Analysis of the Marine Riser[J]. Engng Struct. 1984(6): 175-184.
    [81] Patel M.H., Jesudasen A.S. Theory and Model Tests for the Dynamic Response of Free Hanging Risers[J]. J. Sound Vibr. 1987, 112(1): 149-166.
    [82] Pesce C.P., Martins C.A., Silveira L.M.Y.D. Riser-Soil Interaction: Local Dynamics at Tdp and a Discussion On the Eigenvalue and the Viv Problems[J]. Journal of Offshore Mechanics and Arctic Engineering. 2006: 39-55.
    [83]周宏杰,闫澍旺,孙国民.复杂条件下双层立管的有限元分析[J].海洋工程. 2004, 22(1): 74-79.
    [84]余建星,孙凡,傅明炀, et al.海底管线涡激振动响应动力特性[J].天津大学学报. 2009, 42(1): 1-5.
    [85]黄维平,王爱群,李华军.海底管道悬跨段流致振动实验研究及涡激力模型修正[J].工程力学. 2007, 24(12): 153-157.
    [86]郭海燕,董文乙,娄敏.海中输流立管涡激振动试验研究及疲劳寿命分析[J].中国海洋大学学报. 2008, 38(3): 503-507.
    [87] AW范艾尔萨克.柔性立管在波浪中的特性[J].广东造船. 1994(1): 38-43.
    [88] Duqqal A.S., Niedzwecki J.M. Experimental Study of Tendon/Riser Pairs in Waves[C].In: The 1993 Offshore Technology Conference. Houston, U.S.A., 1993: 323-333
    [89] Guerandel, Vincent, Niedzwecki, et al. Marine Riser Model Tests in Waves and Currents[C].In: The 1995 International Conference on Offshore Mechanics and Arctic Engineering. 1995: 363-373
    [90] Passano, Elizabeth, Lqland, et al. Comparison of Measured and Simulated Riser Response to Surge Excitation and Waves[C].In: The 1998 International Conference on Offshore Mechanics and Arctic Engineering. 1998: OMAE1998/8
    [91] DNV. DNV-RP-C203. Fatigue Strength Analysis of Offshore Steel Structures[S]. Hфvik, Norway: DNV, 2001.
    [92] ABS. Guide for the Fatigue Assessment of Offshore Structures[S]. Houston, U.S.A.: ABS, 2003.
    [93] DOE. Issue M. Offshore Installations: Guidance On Design and Construction, New Fatigue Design Guidance for Steel Welded Joints in Offshore Structures[S]. London, U.K.: DOE, 1983.
    [94] DNV. DNV-RP-F201. Design of Titanium Risers[S]. Hфvik, Norway: DNV, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700