基于改进遗传算法的建模和动态优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从20世纪60年代开始,人们开始研究进化算法,试图发展一种具有适应任意环境的理论,使其用于通用程序和机器。到1975年遗传算法(genetic algorithm,GA)的创立标志着进化算法成立的里程碑。80年代以后进化算法得到了广泛的发展,包括算法成型和理论研究。90年代以后,进化算法应用到了工程结构优化、计算数学、制造系统等等工程应用学科中。2000年以后,进化算法的框架基本成熟,众多学者对其各个应用领域做了不同的改进措施。至今,每年有关进化算法的文献数量都呈递增趋势发展。
     进化算法有着全局搜索、实现方便等的优点,但也存在着效率较低、结果随机性大等的缺点。本文做的主要工作有:
     (1)针对进化算法上述缺点,在前人工作的基础上做了对于遗传算法效率上的改进,提出了逐维进化的遗传算法,使得原优化问题分解为单独的每一维上的子问题进行优化,由原来整个种群进化分解为各个独立的子种群。各个子种群独立进化,而又协作求取优化目标值。由于各个子优化问题维数得到降低,子种群上的负担减少,优化的效率得到提高。本文所做的工作经仿真计算,体现出了一定的优势性。在此基础上,本文分别做了半参数模型和动态优化的研究,取得了一定的成果。经过验证,本文提出的算法较适用于动态优化问题或复杂参数估计问题。
     (2)针对稳态建模和参数估计问题,提出了基于遗传算法和神经网络的半参数模型。该模型结合参数模型与非参数模型各自的优势,提高了建模精度,将非线性半参数模型引入到工业过程建模中。首先,提出了基于遗传算法和神经网络的非线性半参数模型的建模方法及结构方案,并给出了同时估计参数模型部分和非参数模型部分的交叉循环迭代的算法步骤;其次,进行了神经网络的设计和遗传算法的改进研究,重点讨论了在增加精英保留策略、增加算法的记忆功能、提出新的适应度计算方法和交叉变异策略等方面的改进措施;最后,采用聚乙烯装置的现场工业数据对本方法进行了验证。
     (3)针对动态优化求解问题,本文提出了逐维交叉遗传算法(dimensionalcrossover genetic algorithm, DCGA)和逐维进化动态算法(dimensional evolution dynamic algorithm)。逐维交叉遗传算法对于求解含有局部最优和不可微分系统更有优势,但计算量较大。逐维进化动态算法使算法性能得到较大提高。采用逐维进化策略克服了遗传算法进化缓慢的缺点,实现了保证精确性下的效率的提高。同时采用等级交叉和精英保留策略改进了遗传算法中种群的多样性。成功的将逐维进化动态算法用于求解CSTR模型、非连续动态模型和Lee-Ramirez生物反应器模型。在Lee-Ramirez模型中,较之前研究成果在取得全局最优目标的同时,优化目标值计算量减少了29%,计算时间减少了38%,体现出了该算法效率高的优点。
From 1960's, people began to study evolution algorithm, trying to develop a kind of a theory to adapt to any environment, so for common procedures and machines. In 1975 the creation of genetic algorithm marked evolutionary algorithms established milestone. In 1980's, the evolutionary algorithms has been extensive development, including forming and theoretical study of the algorithms. In 1990's, evolutionary algorithms applied to structural optimization, computational mathematics, manufacturing systems engineering disciplines, etc... After 2000, the basic framework of evolutionary algorithms matured, many scholars have made various areas of applications of different improvement measures. So far, each of the literature on evolutionary algorithms were tested increasing trend.
     (1) Evolutionary algorithm has the advantages of global search, easy to realize, but there are the faults of less efficient, the large random of the results. In this paper, based on previous work the efficiency of genetic algorithm is improved in gradual dimension evolution algorithm. The original optimization problem is divided into separate sub-problems on each dimension, the whole population divided into sub-population on each dimension. Each sub-population evolved independently but strike a cooperative optimization target. The dimension of each sub-problem is reduced, reducing the burden of each sub-population, so the efficiency of the algorithm is improved. This work compared with the latest improved genetic algorithms, expressed a certain advantage. On this basis, the studies of semi-parameter model and dynamic optimization is made. After verification, the proposed method is more suitable for dynamic optimization problems or complex parameter estimation.
     (2) In order to combine parameter model and non-parameter model with their own advantage, impove the modeling accuracy, nonlinear semiparametric models was introduced into industrail process modeling. At first, the method and structure for modeling of nonlinear semiparametric based on genetic algorithm and neural network was described, with giving the algorithmic steps of cross-loop iteration for parametric part and nonparametric part's estimation. Then, the design of neural network and the improvement of genetic algrorithm was researched, new calculation method of fitness and improved measure of crossover and variation. At last, this method was varified by the on-site industrail data of polyethylene plant. The result shows that the modeling approach proposed in this paper can well meet the demand for industrial field applications.
     (3) For the dynamic optimization problem, this paper proposes the improved genetic algorithm for dynamic optimization problems by dimensional evolution dynamic algorithm. Gradual dimension strategy overcome the shortcomings of the slow evolution of the genetic algorithm and avoid the proliferation of the dynamic programming. At the same time using cross-grade retention policy and elite genetic algorithm to improve the diversity of population. The improved genetic algorithm success solving the CSTR model, non-continuous dynamic model and Lee-Ramirez bioreactor model. In the model of Lee-Ramirez, this work obtained the global optimal goals while reducing computation 29% and computing time 38%, reflecting the advantages of high efficiency of the algorithm.
引文
[1]Holland, J.H. Concerning Efficient Adaptive Systems. In Yovits M.C., Eds. Self-Organizing Systems,1962,215-230
    [2]Bagley, J.D. The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms. Dissertation Abstracts International.1967,28(12)
    [3]Rosenberg, R.S. A Computer Simulation of a Biological Population. Unpublished Manuscript, 1966
    [4]Cavicchio, D.J. Reproductive Adaptive Plans. Proc. Of the ACM 1972 Annual Conf.1972, 1-11
    [5]Weinberg, R. Computer Simulation of a Living Cell. Doctoral Dissertation. Univ. of Michigan. Dissertations Abstracts Ind.1970,31(9)
    [6]Frantz, D.R.. Non-Linear ties in Genetic Adaptive Search. Doctoral Dissertation. Univ. of Michigan, Dissertation Abstract. Abstracts Inc.1972,33(11),5240B-5241B
    [7]Holland, J.H. Adaptation in Natural and Artificial Systems.1st ed.1975,2nd ed.. Cambridge. MA:MIT press 1992
    [8]DeJong, K.A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PH.D. Dissertation, University Microfilms. No.76-9381. University of Michigan, Ann Arber,1975.
    [9]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA:Addison Wesley,1989
    [10]Davis, L. Ed. Handbook of Genetic Algorithms. New York:Van Normandy Reinhold,1991
    [11]Davis, L.D. Genetic Algorithms and Simulated Annealing. Morgan Kaufman. Los Altos,1987
    [12]Goldberg, D.E. Simple Genetic Algorithms and the Minimal Deceptive Problem. In L. Davia (Ed.) Genetic Algorithms and Simulated Annealing. London Pitman,1987,74-78
    [13]Goldberg, D.E. and Segrest, P. Finite Markov Chain Analysis of Genetic Algorithm. Genetic Algorithms and Their Applications:Proceedings of the Second International Conference on Genetic Algorithms.1987.1-8
    [14]Brindle, A. Genetic Algorithms for Function Optimization. Doctoral Dissertation. Univ. of Alberta,1981
    [15]Booker, L.B. Goldberg, D.E. and Holland, J.H. Classifier Systems and Genetic Algorithms. Artificial Intelligence,1989,40:235-283
    [16]Syswerda, G. Uniform Crossover in Genetic Algorithms.3rd Int. Conf. on Genetic Algorithms. 1989,2-9
    [17]Whitley, D. et, al. Genitor 1:A Distributed Genetic Algorithm. J. Expt. Ther. Intell.1990, 2:189-214
    [18]Davis, L. Job Shop Scheduling with Genetic Algorithms. Proceedings of International Conference on Genetic Algorithms and Their Application,1985,136-140
    [19]Grefenstette, J.J. Gopal, R.. Rosmaite. B. and Van Gucht, D.. Genetic Algorithms for the Traveling Salesman Problem. In Proc. Of Intern. Conf. on Genetic Algorithms and Their Applications. Grefenstette, J.J. Ed. Lawrence Earlbaum.1985,160-168
    [20]Wright, A.H. Genetic Algorithms for Real Parameter Optimization in Foundations of Genetic Algorithms, Rawlings:G.J.E., Ed. San Maten, CA. Morgan Kaufmann.1991.205-218
    [21]Lin, F.T.. Kao. C.Y. Hsu. C. C. Applying the Genetic Approach to Simulated Annealing in Solving Some NP-Hard Problems. IEEE Trans. SMC.1993.23(6):1752-1767
    [22]Kirkpatrick. S. Gefatt. C. D. Vecchi. M. P.. Optimization by Simulated Annealing. Science. 1983.671-680
    [23]Bellgard, M.. Tsang. C.P.. Some Experiments on the Use of Genetic Algorithms in a Boltzmann Machine. Proc. IEEE Conf. Tools for Artificial Intelligence,1990
    [24]Lin, J.L. et al.. Hybrid Genetic Algorithm for Container Packing in Three Dimensions. IEEE Conf. Tools for AI.1993,353-359
    [25]Petersen, C. Parallel Distributed Approaches to Combinational Optimization. Neural Computation.1990,2(3):261-269
    [26]Michalewicz. Z. et. Al. Genetic Algorithms and Optimal Control Problems. Proc.29th. IEEE conf Discussion and control,1990,1664-1666
    [27]Michalewicz, Z. et. Al.. A modified Genetic Algorithm for Optimal Control Problems. Computers Math. Applic.1992,23(12):83-94
    [28]陈根社,陈新海.应用遗传算法设计自动交会控制器.西北工大学报.1994.11(2)
    [29]Mudock, T.M. et. Al. Use of a Genetic Algorithm to Analyze Robust Stability Problems. Proc. American Control Conf. Boston,1991,886-889
    [30]Potier, B. Jones, A.H. Genetic Tuning of Digital PID Controllers. Electronic Letters,1992, 28(9):834-844
    [31]Kristiosson, K. Dumenu, G.A.. System Identification and Control Using Genetic Algorithms. IEEE Trans. SMC,1992,22(5):1033-1046
    [32]Maclay, D.. et. Al. Appying Genetic Search Techniques to Driver-train Modelling. IEEE Control Systems Journal.1993.50-55
    [33]Freeman. L.M., et. Al.. Tuning Fuzzy Logic Controller Using Genetic Algorithm-Aerospace Applications. Proc. AAAIC. Dayton.1990,351-358
    [34]Park, D.. Kandel, A.. Langholz, G. Genetic-Based New Fuzzy Reasoning Models with Application to Fuzzy Control. IEEE Trans. SMC,1994,24(1):39-47
    [35]Xiao C, Ning W.. A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction. Chemical Engineering Journal.2009.150:527-535
    [36]Kusum D, Krishna P.S.et. al. A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appliced Mathematics and Computation.2009.212:505-518
    [37]Quan Y, Feng Q.. A hybrid genetic algorithm with the Baldwin effect. Information Sciences. 2010.180:640-652
    [38]Hsieh, S.T., Sun, T.Y. Potential offspring production strategies:An improved genetic algorithm for global numerical optimization. Expert Systems with applications.2009. 36:11088-11098
    [39]N.F. Wang, K. Tai, Target matching problems and an adaptive constraint strategy for multiobjective design optimization using genetic algorithms, Computers & Structures,2010, 88:1064-1076
    [40]Deb, K., Amrit, P.. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ. IEEE transactions on evolutionary computation,2002,6:182-187
    [41]Claudia G, Abel B, Speeding up a multiobjective genetic algorithm with constraints through artificial neuronal networks, In:Computer Aided Chemical Engineering,2010,28:391-396
    [42]J.A. Dieg, S. Asensio-Cuesta, M.A. A multi-criteria genetic algorithm for the generation of job rotation schedules, International Journal of Industrial Ergonomics,39,2009,23-33
    [43]J. Go, M. Go,. et. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem, Computers & Operations Research, Issue 5,2010, 927-937
    [44]L. De Giovanni, F. Pezzella, An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem, European Journal of Operational Research,2,2010,395-408
    [45]H. Zhou, W. Cheung, Lawrence C. Leung, Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm, European Journal of Operational Research,3, 2009,637-649
    [46]P. Chang, W. Huang, C. Ting, Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems, Expert Systems with Applications,3,2010, 1863-1878
    [47]F. Liu, G;. Zeng, Study of genetic algorithm with reinforcement learning to solve the TSP, Expert Systems with Applications,2,2009,6995-7001
    [48]A. Costa, G. Celano, A new efficient encoding/decoding procedure for the design of a supply chain network with genetic algorithms, Computers & Industrial Engineering,4,2010,986-999
    [49]H. Wang, H. Hsu, A closed-loop logistic model with a spanning-tree based genetic algorithm, Computers & Operations Research,2,2010,376-389
    [50]S.H. Zegordi, I.N. Kamal Abadi, M.A. Beheshti Nia, A novel genetic algorithm for solving production and transportation scheduling in a two-stage supply chain, Computers & Industrial Engineering,3,2010,373-381
    [51]Potryagin, v., Botyanskii, V, Gamkrelidge, R. The mathematical theory of optimal processes. New York:Interscience Publishers Inc.1962
    [52]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社.2001
    [53]Canon, M.D., Cullum, C.D. Theory of Optimal Control and Mathematical Programming, McGraw Hill 1970
    [54]Polak, E. Computational Methods in Optimization. New York:Academica Press.1971
    [55]Tsang, T.H., D.M.Himmelblau, T.F.Edgar. Optimal Control via Collocation and Non-linear Programming. Int. J. Control,21(5),763-768 1975
    [56]Biegler, L.T. Solution of Dynamic Optimization Problems by Successive Quadratic Programming and Orthogonal Collocation, Computers & Chemical Engineering,8(3), 243-2481984
    [57]Renfro, J.G. Computational Studies in the Optimization of Systems Described by Differential /Algebraic Equations. Ph.D.Thesis, University of Houston, University Park 1986
    [58]Renfro, J.G, A.M. Morshedi, O.A.Asbjornsen. Simultaneous Optimization and Solution of Systems Described by Differential/Algebraic Equations, Computers & Chemical Engineering, 11(5),503-517,1987
    [59]Vlassenbroeck, J. R. van, Dooren. A Chebyshev Technique for Solving Nonliear Optimal Control Problems, IEEE Trans. Aut. Con,33(4),333-3401970
    [60]Cuthrell, J.E., L.T. Biegler. On the Optimization of Differential-Algebraic Process Systems, AICHE J.,33(8),1257-1270.1975
    [61]Logsdon, J.S.& L.T. Biegler. Accurate Solution of Differential-Algebraic Optimization Problem, Ind. Eng. Chem. Res.28,1628-1639 1989
    [62]Logsdon, J.S. Biegler, L.T. On the Accurate Solution of Differential-algebraic Optimization Problems. I&EC Research,28,1628,1989
    [63]Vasantharajan, S. L.T.Biegler. Simultaneous Strategies for Optimization of Differential-Algebraic Systems with Enforcement of Error Criteria. Computers & Chemical Engineering,14(10),1083-1100 1990
    [64]Logsdon, J.S. Efficient Determination of Optimal Control Profiles for Differential Algebraic Systems, Ph.D.thesis, Carnegie Mellon University, October 1990
    [65]Logsdon, J.S., L.T. Biegler, Decomposition Strategies for Large-Scale Dynamic Optimization Problems, Chem. Eng. Sci.47(4),851-864,1992
    [66]Pollard, G.P. R.W.H. Sargent, Off Line Computation of Optimum Controls for a Plate Distillation Column, Automatica,6,59-76,1970
    [67]Sargent, R.W.H., G.R.Sullivan. The Development of an Efficient Optimal Control Package, Proc.8th IFIP Conf. Optimization Tech.Pt.2.1977
    [68]Morison, K.R. Optimal Control of Processed Described by Systems of Differential-Algebraic Equations, Ph. D.Thesis, University of London.1984
    [69]Gritsis, D. The Dynamic Simulation and Optimal Control of Systems Described by Index Two Differential-Algebraic Equations, Ph. D. Thesis, University of London.
    [70]王宏刚,曾建潮.两级递阶遗传算法。系统工程与电子技术。1998(3):70~72
    [71]赵明旺.基于遗传算法和最速下降法的函数优化混合数值算法。1999.12(1):104~107
    [72]王雪梅,王义和.模拟退火与遗传算法的结合。计算机学报。1997,20(4):381~384
    [73]Engle R J. Semiparametric estimates of ralation between weather and electricity sale[J]. Journal of the American Statistical Association.81(394):310-320,1986
    [74]Heckman S. Kernel smoothing in particial linear models[J]. Journal of the Royal Statistical Society.50(3):413-436,1988
    [75]高集体,洪圣岩,梁华.半参数回归模型研究的若干进展[J].应用概率统计,10(1):95-103,1994
    [76]柴根象,孙平,蒋泽云.半参数回归模型的二阶段估计[J].应用数学学报,16(1):353-363,1995
    [77]张松林,张昆.非参数模型最小二乘核估计参数分量的统计性质[J].大地测量与地球动力学,17(1):55-58,2007
    [78]张昆,张松林.非线性半参数模型最小二乘核估计的直接解法[J].大地测量与地球动力学,16(2):92-94,2006
    [79]冯三营,李高荣.非线性半参数回归模型的最大经验似然估计[J].应用数学,22(1):101-110,2009
    [80]王志忠,郭兴翠.非线性半参数模型的虚拟观测法[J].数学理论与应用,27(2):60-63,2007
    [81]Mcauley K B. and J F MACGREGOR Online Inference of Polymer Properties in an Industrial Polyethylene Reactor. AIChE Journal,37(6):825-835,1991
    [82]Bojan Bojkov, Rein Luus. Use of random admissible values for control in iterative dynamic programming. Ind Eng Chem Res,,(31):1308,1992
    [83]Rein Luus. Optimization of fed-batch fermentors by iterative dynamic programming. Biotechnology and Bioenginnemin,1993.(19):760
    [84]Rein Luus, Oscar Rosen. Application of dynamic programming to final state constrained optimal control problems. Ind Eng Chem Res 1991,(30):1525.
    [85]张兵.化工动态优化方法的研究与应用,浙江大学博士学位论文,2004
    [86]宫锡芳.最优控制问题的计算方法[M].北京:科学出版社,1979
    [87]Rein Luus and Cormack. Multiplicity of solutions resulting from the use of variational methods in optimal control problems[J]. Industrial and Engineering Chemistry Research,1972, 50,309-311
    [88]Luus R:Piecewise Linear Continuous Optimal Control by Iterative Dynamic Programming. Ind. Eng. Chem. Res.1993,32,859-869
    [89]Stonier R J; Bell J:Optimal control using fuzzy logic and evolutionary algorithms. Complexity International 2005,12
    [90]Thomopoulos S C A; Papadakis I N M:A Single Shot Method for Optimal Step Computation in Gradient Algorithms. Proceedings of the 1991 American Control Conference; Automatic Control Council, IEEE Service Center:Piscataway, NJ,1991; 2419-2433 [91] Tholudur, Ramirez, Optimization of Fed-Batch Bioreactors Using Neural Network Parameter Function Models. Biotechnol.1996,12,302-309 [92] Roubos, Straten, An evolutionary strategy for fed-batch bioreactor optimization; concepts and performance. Journal of Biotechnology 1999,67,173-187 [93] Mekarapiruk, Luus, Optimal Control by Iterative Dynamic Programming with Deterministic and Random Candidates for Control. Ind. Eng. Chem. Res.2000,39,84-91
    [94]Jayaraman V K, Kulkami B D. Dynamic optimization of fed-batch bioreactors using the ant algorithm. Biotechnol Prog,2001,17(1):81-88
    [95]Sarkar D, Modar J ANNSA:A hybrid artificial neural network/simulated annealing algorithm for optimal control problems. Chemical Engineering Science,2003,58(14):3131-3142
    [96]Zhang Bing, Yu Huanjun.序贯优化化工动态问题的蚁群算法。高校化学工程学报,2006,20(1):120-125
    [97]蒲黎明,愈欢军,陈德钊.连续多蚁群算法的构建及其在过程动态优化中的应用。高校化学工程学报,2008,5,871-876
    [98]林可鸿,贺益君.混合优化人工免疫网络用于过程动态优化。浙江大学学报。2008.42.2181-2186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700