多自由度碰撞振动系统的对称性、分岔与混沌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以两个典型的三自由度对称碰撞振动模型为研究对象,系统地研究了该类非光滑动力系统的分岔和混沌等动力学行为。研究表明:有对称双侧刚性约束的碰撞振动系统(对称碰撞振动系统)的动力学行为与一般的碰撞振动系统相比有很大的不同。
     第一章从碰撞振动系统的周期运动的稳定性、分岔以及混沌等方面的理论研究和工程应用背景出发,综述了部分研究成果、最新发展动态和存在的主要问题。
     第二章研究了三自由度对称碰撞振动系统的对称周期n-2运动以及Poincaré映射的对称性。讨论了其对称周期n-2运动的存在性条件,并得到了对称周期n-2运动的解析解。确定了系统的Poincaré截面及其对称截面,建立了一个对称变换,并构造了Poincaré映射。研究发现系统的Poincaré映射具有一定形式的对称性,在这种对称性质作用下,Poincaré映射P可以表示为另外一个映射Q_γ的二次复合。定义了对称不动点和反对称不动点的概念,它们分别对应于碰撞振动系统的对称周期n-2运动和反对称周期n-2运动。利用Poincaré映射的线性化矩阵的特征值,结合映射不动点的分岔理论,证明了碰撞振动系统的对称不动点(对称周期n-2运动)不可能发生余维一的周期倍化分岔,以及Hopf-flip分岔和pitchfork-flip分岔。证明了两个反对称不动点(反对称周期n-2运动)的Poincaré映射的线性化矩阵具有相同的特征值,从而说明它们具有相同的稳定性。计算了对称不动点(对称周期n-2运动)的Poincaré映射的线性化矩的特征值。通过数值模拟发现对称不动点可能发生音叉分岔和Hopf分岔。
     第三章研究了一类三自由度对称碰撞振动系统在音叉分岔后通向混沌之路。利用动力系统中的极限集理论,研究了对称碰撞振动系统吸引子的对称性。讨论了从非对称极限集转化为对称极限集的条件,并得到以下结论:若ω-极限集与其共轭极限集的交集非空,则该ω-极限集是对称极限集。数值模拟不仅得到了非对称的共轭混沌吸引子和对称混沌吸引子,还得到了非对称的共轭拟周期吸引子和对称拟周期吸引子。在一定的参数区间上,吸引子则可能反复经历失去对称性和恢复对称性的过程。对于映射P而言,拟周期吸引子明显地具有“爆发”的特征,即吸引子的形状突然变大,并延伸到与自身对称的区域,从而完成了从非对称极限集到对称极限集的演化,因此这个过程可称为吸引子的“恢复对称性”分岔。对于映射Q_γ而言,则可以认为是两个共轭的拟周期吸引子互相碰撞并同时突然融合到对方体内,完成了从非对称极限集到对称极限集的演化,从而生成一个外形尺寸更大的具有对称性的拟周期吸引子。以上这两种解释不仅对于拟周期吸引子是有效的,对于其它类型的吸引子(例如混沌吸引子)同样是有效的。
     第四章研究了三自由度对称碰撞振动系统的余维二分岔。因为Poincaré映射P的对称性能够通过映射Q_γ表示,对于映射P在分岔点处的范式研究,可转化为对映射Q_γ的范式研究。讨论了Poincaré映射P在几种余维二分岔点处的范式映射,包括:Hopf-Hopf分岔,Hopf-pitchfork分岔,以及1:2共振的情况。以上这三种情况分别对应于映射Q_γ的Hopf-Hopf分岔,Hopf-flip分岔,以及1:4共振的情况。在这三种余维二分岔的情况下,虽然映射P及其所对应的映射Q_γ的范式的形式是完全相同的,但是范式映射的系数却是不同的。这当然导致了它们范式映射在余维二分岔点处的开折图中的区间边界的不同。对模型一的Hopf-Hopf分岔和1:2共振的情况,以及模型二的Hopf-pitchfork分岔进行了数值分析。还通过数值模拟发现了三个孤立的稳定Hopf圈共存的现象,其演化顺序为:一个不稳定对称不动点→一个半稳定的对称Hopf圈→三个稳定Hopf圈。目前还不能对这种现象给出较好的理论解释。
     第五章研究了对称碰撞振动系统的Lyapunov指数的计算方法。对于具有对称双侧刚性约束的碰撞振动系统,利用其Poincaré映射P的对称性质,可以通过构造一个虚拟隐式映射Q_γ来计算所有Lyapunov指数。当得到虚拟隐式映射Q_γ之后,便可以引用光滑系统中采用时间序列的方法来计算Lyapunov指数。当得到全部的Lyapunov指数之后,就可以计算Lyapunov维数,并可以之来衡量混沌吸引子的奇异性。利用Lyapunov指数来区别长周期运动和混沌运动也是十分有效的。本章还说明了在碰撞振动系统中取不同的Poincaré截面构造Poincaré映射P对于研究系统的局部动力学行为是等效的。
This dissertation considers two typical three-degree-of-freedom vibro-impact systems with symmetric two-sided rigid constraints(i.e.,symmetric vibro-impact systems),and studies bifurcations and chaos in these non-smooth dynamic systems.It is shown there are some important differences in the dynamic behaviour between the symmetric vibro-impact systems and the general ones.
     Based on the theoretic researchs and engineering applications on the stability, bifurcation of periodic motion and chaos in vibro-impact systems,charpter one surveys the recent achievements,developments and unsolved problems.
     Chapter two considers the symmetric period n-2 motion of the symmetric vibro-impact system,and sduties the symmetric property of the Poincarémap of the system.The existence conditions of the symmetric period n-2 motion are obtained,and the solutions of the symmetric period n-2 motion is deduced.The Poincarésection and its symmetric section are determined,and a symmetric transformation is established.Subsequently,the Poincarémap of the system is constructed.It is shown that the Poincarémap exhibits some symmetric property, and as a result,the Poincarémap P can be expressed as the second iteration of another implicit map Q_γ.The symmetric period n-2 fixed point and the antisymmetric period n-2 fixed point are defined,and they correspond to the symmetric period n-2 motion and the antisymmetric period n-2 motion, respectively.Based on bifurcation theories of the fixed point of the map,it is proved that period-doubling bifurcation,Hopf-flip bifurcation and pitchfork-flip bifurcation are suppresed by the symmetry of the Poincarémap.For the two antisymmetric fixed points,it is shown that they have the same stability since their Jacobian matrice have the same eigenvalues.The Jacobian matrix of the Poincarémap is also computed in detail.In numerical simulations,the eigenvalues of the Jacobian matrix is the basis of analysing various bifurcation phenomena. Numerical simulation shows that the symmetric period n-2 fixed point may have both pitchfork bifurcation and Hopf bifurcation.
     Chapter three mainly focuses on the routes to chaos after pitchfork bifurcation in symmetric vibro-impact systems.Using the limit set theory in dynamical systems,the symmetry of the attractors in symmetric vibro-impact systems is investigated.The conception of the limit set of the implicit map is induced,and the attrator is defined as a asympotic stableω-limit set.Special interesting is given in the condition of the transformation from the asymmetric limit set to symmetric limit set,and the following conclusion is obtained:If the intersection of theω-limit set and its conjugate limit set is non-empty,then the co-limit set is a symmetric limit set.By numerical simulations,not only asymmetric conjugate chaotic attractors and symmetric chaotic attractor,but also asymmetric conjugate quasi-periodic attractors and symmetric quasi-periodic attractor,are obtained.It is also shown that in some parameter region,attractors may undergo symmetry-breaking and symmetry-restoring processes repeatedly.For the the Poincarémap P,attractors may grow in size abruptly and has explosion property. Due to the birth of a larger symmetric attractor,this phenomenon is called symmetry-restoring.At the same time,for the implicit map Q_γ,the two conjugate attractors collide to and merge into each other suddenly,and these two conjugate attractors evolve into the new symmetric attractor.The above two explanations are true for both quasi-periodic attractors and chaotic attractors.
     Chapter four discusses codimension two bifurcations of the period n-2 motion in symmetric vibro-impact systems.Since the symmetry characteristic of the Poincarécan be captured by the implicit map Q_γ,then the study on the normal form of the Poincarémap P near the bifurcation point is translated into the study on the normal form of the map Q_γ.Hopf-Hopf bifurcation,Hopf-pitchfork bifurcation and bifurcation satisfying 1:2 resonance conditions of the Poincarémap P are correspond to Hopf-Hopf bifurcation,Hopf-flip bifurcation and bifurcation satisfying 1:4 resonance conditions of the map Q_γ,respectively.It is shown that for the corresponding codimension two bifurcation,the normal form of the Poincarémap P are same to that of the map Q_γ,but the coefficients of the associated normal form are different,which makes the different area bound in the folding portraits near the codimension two bifurcation.By numerical simulations, Hopf-Hopf bifurcation,Hopf-pitchfork bifurcation and bifurcation satisfying 1:2 resonance conditions of the Poincarémap P are obtained.In addition,three isolated stable Hopf circles of the Poincarémap P are also obtained,and the evolving sequence is:A unstable symmetriC period n-2 fixed point→a symmetric semi-stable Hopf circle→three stable Hopf circles.No reasonable explanations can be given for this phenomenon so far.
     Chapter five represents studies on the computation method of Lyapunov exponents in symmetric vibro-impact systems.Due to the symmetry of the Poincarémap P,a implicit map Q_γis established to compute all the Lyapunov exponents.Based on the map Q_γ,the method of computing Lyapunov exponents from time series in smooth dynamic systems is applied to the symmetric vibro-impact systems.Once all the Lyapunov exponents are obtained,Lyapunov dimension can be calculated,and offers a measurement of the degree of the singularity of the chaotic attractor.It is also effective to distinguish long periodic motion and chaotic motion making use of Lyapunov exponents.In symmetric vibro-impact systems,if different Poincarésections are chosen for constructing Poincarémap,they are equivalent for computing Lyapunov exponents.
引文
[1]Paget,A.L.Vibration in steam turbine buckets and damping by impact.Engineering.1937,143:305-307.
    [2]Reed,W.H.Hanging chain impact dampers-a simple method of damping tall flexible structures,Proceeding of International Research Seminar,Wind Effects on Buildings and Structures,Ottawa,1967(2):283-321.
    [3]Cai,Y.,Chen,S.S.Nonlinear dynamics of loosely supported tubes in crossflow.Journal of Sound and Vibration.1993,168(3):449-468.
    [4]Laggiard,E.,Runkel,J.One-dimensional bimodel of vibration and impacting of instrument tubes in a boiling water reactor.Nuclear Science and Engineering,1993,115:62-70.
    [5]Feng,Q.,Pfeiffer,F.Stochastic model on a rattling system.Journal of Sound and Vibration.1998,215(3):439-453.
    [6]Pfeiffer,F.,Prestl,W.Hammering in Diesel-engine driveline systems.Nonlinear Dynamics.1994,5:477-492.
    [7]Babitsky,V.Theory of vibro-impact systems and applications.Springer:Berlin.1998.
    [8]Plaut,R.H.,Farmer,A.L.Large motion of a moored floating breakwater modeled as an impact oscillator.Nonlinear Dynamics.2000,23:319-334.
    [9]Plaut,R.H.,Farmer,A.L.,Holland,M.M.Bouncing-ball model of dry motions of a tethered buoy.Journal of Vibration and Acoustics.2001,123:333-339.
    [10]Stepanenko,Y.,Sankar,T.S.Vibro-impact analysis of control systems with mechanical clearance and its application to robotics actuators.Journal of Dynamic System,Measurement and Control.1986,108(1):9-16.
    [11]Brogliato,B.Nonsmooth impact mechanics.Springer:London,1996.
    [12]Kop,L.Wear of power plant components due to impact and sliding.Applied Mechanics Reviews.1997,50(7):387-411.
    [13]闻邦椿,刘树英.振动机械的理论与动态设计方法.机械工业出版社,2002.
    [14]赵统武,冲击钻进动力学.冶金工业出版社,1996.
    [15]Goldsmith,W.Impact.London:Edward Arnold,1960.
    [16]舒仲周,谢建华.冲击动力学的发展与展望.黄文虎,陈滨,王照林主编:《一般力学(动力学、振动与控制)最新进展》,北京:科学出版社,1994:198-204.
    [17]胡海岩.分段光滑机械系统动力学的进展.振动工程学报,1995,8(4):331-341.
    [18]Brach,R.M.Mechanical impact dynamics.New York:John Wiley & Sons,1991.
    [19]Lieber,P.,Grubin,C.A.Theory of the acceleration damper leading a rational design procedure,PRI,Troy,N.Y.March,1951,Contract No.Monr-591(00).
    [20]Lieber,P.,Grubin,C.A.Comparative study between an exact and approximate theory the impact,Poly Institute of Brooklyn,N.Y.,July,1951,Contract No.N60nr2636,Project No.Nr035-527.
    [21]Arnold,R.N.The acceleration damper.Brussels International Conference of Applied Mechanics.1956,367-376.
    [22]Sedek,M.M.The behavior of the impact damper.Proceedings of the Institute of Mechanical Engineers.1965,Vol.180:895-906.
    [23]Masri,S.F.General motion of impact damper.The Journal of Acoustical Society of America.1970,47:229-237.
    [24]Masri,S.F.Forced vibration of nonlinear dissipative beams.Journal of the Engineering Mechanics Division.ASCE 1970,Vol.99:669-683.
    [25]Roy,R.K.,Richard,D.R.,Foster,J.E.The application of impact dampers to continuous system.Journal of Engineering for Industry.1975,11:1317-1324.
    [26]Bapat,C.N.,Sankar,S.Single unit impact damper in free and forced vibration.Journal of Sound and Vibration.1985,99:85-94.
    [27]Nigm,M.M.Effects of an impact damper on a multi-degree-of-freedom systems.Journal of Sound and Vibration.1984,89(4):541-557.
    [28]Popplewell,N.Stable periodic vibro-impacts of an oscillator.Journal of Sound and Vibration.1983,87(1):41-59.
    [29]Popplewell,N.,Liao,M.A simple design procedure for optimum impact dampers.Journal Of Sound and Vibration.1991,146(3):519-526.
    [30]Bapat,C.N.The general motions of an inclined impact oscillator with the addition of dry friction.Journal of Sound and Vibration.1995,184(3):417-427.
    [31]舒仲周,谢建华.碰撞振动的稳定性.西南交通大学学报.1985,(3):417-427.
    [32]舒仲周,圣小珍.双质体碰撞振动的自动隔振和完全稳定.机械工程学报.1990,26(3):50-57.
    [33]Shu Zhongzhou.Impact vibration and stability of multi-mass system in series-parallel under multiple excitation with different frequencies.In:PICDVC:PUP1990,930-936.
    [34]舒仲周.有碰撞存在的多体振动系统的周期运动和稳定性条件.振动工程学报.1990,3(3):42-51.
    [35]曹登庆,舒仲周.存在间隙的多自由度碰撞振动系统的周期运动与稳定性.力学学报.1992,24(4):480-487.
    [36]Natsiavas,S.,Gonzalez,H.Vibration of Harmonically excited oscillators with asymmetric constraints.Journal of Applied Mechanics.1992,59:284-290.
    [37]Lau,S.L.,Zhang W.S.Nonlinear vibrations of piecewise-linear system by incremental harmonic balance method.Journal of Applied Mechanics.1992,59(1):153-160.
    [38]Choi,Y.S.,Noah,S.T.Forced periodic vibration of unsymmetrical piecewise-linear system.Journal of Sound and Vibration.1988,121(1):117-126.
    [39]李骊,任保经,陆志奇.具有间隙动力系统的自激振动.应用数学学报.1990,13:49-55。
    [40]杨翊仁,赵令诚.带外挂二元翼极限环颤振的高次线性化分析.应用力学学报.1992,9:109-113.
    [41]Yang Yi-Ren.Limit cycle hunting of a bogie with flanged wheels.Vehicle System Dynamics.1995,24(3):185-196.
    [42]曾京.轮轨摩擦碰撞及脱轨研究.振动工程学报.200l,14(1):1-6.
    [43]Ahmadian,M.,Yang,S.P.Hopf bifurcation and hunting behavior in a rail wheelset with flange contact.Nonlinear Dynamics.1998,15:15-30.
    [44]许明田,胡海岩,程德林.求解非线性振动问题的一些新方法.应用力 学学报.1998,15(4):49-54.
    [45]甘春标,陆启韶,黄克累.一类慢变参数振子系统的同宿分岔及其安全盆侵蚀.应用力学学报.1999,16(2):12-16.
    [46]徐健学,洪灵.全局分析的广义胞映射图论方法.力学学报,1999,31(6):724-730.
    [47]郑吉兵,孟光.一种确定非线性裂纹转子解的形式的新方法.力学学报.1998.30(1):113-117.
    [48]Reithmeier,E.In:Nonlinear dynamics in engineering systems(Ed.By Schiehlen,W.),Springer-Verlag,1990:249-256.
    [49]Hu,H.Y.Numerical scheme of locating the periodic response of non-smooth non-autonomous system of high dimension.Computer Methods in Applied Mechanics and Engineering.1995,123(1):53-62.
    [50]曾京.车辆系统的蛇行运动分岔及极限环的的数值计算.铁道学报.1996,18(3):13-18.
    [51]Shaw,S.W.A periodically forced piecewise linear oscillator.Journal of Sound and Vibration.1983,90(1):129-155.
    [52]Shaw,S.W.The dynamics of a harmonically excited system having rigid amplitude constraints,Part 1:Subharmonic motion and local bifurcation.Journal of Applied Mechanics.1985,52:453-458.
    [53]Shaw,S.W.The dynamics of a harmonically excited system having rigid amplitude constraints,Part 2:Chaotic motions and global bifurcations.Journal of Applied Mechanics.1985,52:459-464.
    [54]Shaw,S.W.Forced vibrations of a beam with one-sided amplitude constraint:Theory and experiment.Journal of Sound and Vibration.1985,92(2):199-212.
    [55]Ketema,Y.An oscillator with cubic and piecewise linear springs.International Journal of Bifurcation and Chaos.1991,1(2):349-356.
    [56]Shaw,S.W.,Rand,R.H.The transition to chaos in a simple mechanical.system.International Journal of Non-linear Mechanics.1989,24(1):41-56.
    [57]Solomon,C.S.Nonlinear impact and chaotic response of slender rocking objects.Journal of Eng.Mech.1991,117(9):2079-2100.
    158]Xie Jianhua.Symmetry and horseshoe in the model of bouncing ball.Chinese Science Bulletin.1999,44(4):315-318.
    [59]谢建华.一个简单力学模型的Smale马蹄.力学与实践.1994,29:7-13.
    [60]谢建华.振动锤的数学模型与全局分岔.力学学报.1997,29(4):456-463.
    [61]Shaw,S.W.,Holmes,P.J.A periodically forced impact oscillator with large dissipation.Journal of Applied Mechanics.1983,50:849-857.
    [62]Shaw,S.W.,Holmes,P.J.Periodically forced linear oscillator with impact:Chaos and long-period motions.Physical Review Letters,1989,51(8):623-626.
    [63]Li,T.Y.,York,J.A.Period three implies chaos.American Math.Monthly.1975,82:985-992.
    [64]Devaney,R.L.An introduction to chaotic dynamical systems.Addison-Wesley Publishing Company,1989.
    [65]Whiston,G.S.Global dynamics of a vibro-impacting linear oscillator.Journal of Sound and Vibration.1987,115(2):303-319.
    [66]Whiston,G.S.Singularities in vibro-impact dynamics.Journal of Sound and Vibration.1992,152(3):427-460.
    [67]Nordmark,A.B.Non-periodic motion caused by grazing incidence in an impact oscillator.Journal of Sound and Vibration.1991,145(2):279-297.
    [68]Janin,O.,Lamarque,C.H.Stability of singular periodic motions in a vibro-impact oscillator.Nonlinear Dynamics.2002,28:231-241.
    [69]Foale,S.,Bishop,S.R.Bifurcations in impact oscillators:Theory and experiments.Nonlinearity and Chaos in Engineering Dynamics(Ed.By Thompson J.M.T.),John Wiley and Sons LTD.,Chichester,1994:91-102.
    [70]Ivanov,A.P.Stabilization of an impact oscillator near grazing incidence owing to resonance.Journal of Sound and Vibration.1993,162(3):562-565.
    [71]Ivanov,A.P.Impact oscillation:Linear theory and vibration,1994,178(3):361-378.
    [72]胡海岩.分段线性系统动力学的非光滑分析.力学学报,1996,28(4):483-488.
    [73]Hu,H.Y.Detection of grazing orbits and incident bifurcations of a forced continuous,piecewise-linear oscillator.Journal of Sound and Vibration.1995,187(3):485-493.
    [74]Peterka,F.Bifurcation and transition phenomena in an impact oscillator.Chaos,Solitons and Fractals.1996,7(10):1635-1647.
    [75]丁旺才,谢建华,李国芳.三自由度碰撞振动系统的周期运动稳定性与分岔.工程力学.2004,21(3):123-128.
    [76]丁旺才,谢建华,李万祥.碰撞振动系统强共振下的两参数动力学分析.计算力学学报.2004,21(6):658-664.
    [77]罗冠炜,褚衍东,苟向锋.一类碰撞振动系统的概周期运动及混沌形成过程.机械强度.2005,27(4):445-451.
    [78]郑小武,谢建华.一类碰撞振动系统的倍周期分岔研究.四川大学学报(工程科学版).2006,38(2):30-33.
    [79]金俐,陆启韶,王琪.双自由度非定点斜碰撞振动系统的动力学分析.应用数学和力学,2005,26(7):810-818.
    [80]马永靖,丁旺才,杨小刚.碰撞振动系统的参数自调节混沌控制.振动与冲击.2007,26(1):26-34.
    [81]丁旺才,马永靖,王靖岳.碰撞振动系统的状态预测反馈控制.振动工程学报.2007,20(6):589-593.
    [82]魏艳辉,李群宏,徐洁琼,陆启韶.两自由度碰撞振动系统的动力学分析.南京师范大学学报(工程技术版).2002,7(1):85-92.
    [83]林梅,丁旺才,武俊虎,两点碰撞振动系统的周期运动与分叉.动力学与控制学报.2006,4(1):16-21.
    [84]赵文礼,周晓军.二自由度含间隙碰撞振动系统的分岔与混沌.浙江大学学报(工学版).2006,40(8):1435-1438.
    [85]吕小红,张淑华.单自由度碰撞振动系统的稳定性分析.兰州交通大学学报(自然科学版).2006,25(6):101-104.
    [86]金栋平,胡海岩.结构碰撞振动的建模与模态截断.固体力学学报.2001,22(2):205-208.
    [87]黄志龙,高李霞,朱位秋.宽带随机激励下单自由度振动系统的平稳响应.浙江大学学报(工学版).2003,37(1):94-97.
    [88]刘中华,黄志龙,朱位秋.二自由度碰撞振动系统的随机响应.振动工程学报.2002,15(3):257-261.
    [89]Natsiavas,S.Stability and bifurcation analysis for oscillator with limiting constraints.Journal of Sound and Vibration.1990,141(1):91-102.
    [90]Budd,C.,Dux,F.The Effect of frequency and clearance vibrations on single-Degree-of-Freedom impact Oscillators.Journal of Sound and Vibration.1995,184(3):475-502.
    [91]谢建华,葛玉梅.冲击式振动落砂机的动态响应与分岔.振动工程学报.1993,6(1):90-95.
    [92]谢建华,罗冠炜.碰撞振动系统的分岔与混沌研究.见:胡海岩等主编:《面向21世纪的中国振动工程研究》.航空工业出版社,1999:52-58.
    [93]罗冠炜,谢建华.碰撞振动系统的周期运动和分岔.北京:科学出版社,2004:172-186
    [94]Xie,Jianhua.Codimension two bifurcation and Hopf bifurcation of an impacting vibrating system.Applied Mathematics and Mechanics.1996,17:65-75.
    [95]谢建华,郑小武.惯性式冲击振动落砂机周期运动的Hopf分岔.振动工程学报,1999,12(3):297-303.
    [96]郑小武.一类碰撞振动系统周期运动的Hopf分岔.西南交通大学硕士学位论文.1997.
    [97]谢建华,文桂林,肖建.两自由度碰撞振动系统分岔参数的确定.振动工程学报,2001,14(3):285-290.
    [98]文桂林.碰撞振动系统的复杂Hopf分岔与混沌研究.西南交通大学博士学位论文.2001.
    [99]罗冠炜.两自由度碰撞振动系统的Hopf分岔与混沌研究.西南交通大学博士学位论文.1998.
    [100]Luo,G.W.,Xie,J.H.Hopf bifurcation of a two-degree-of-freedom vibro-impact system.Journal of Sound and Vibration.1998,213(3):391-408.
    [101]Luo,G.W.,Xie,J.H.Bifurcation and chaos in a system with impacts.Physica D.2001,148:183-200.
    [102]Luo,G.W.,Xie,J.H.Hopf bifurcation and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases.International Journal of Non-Linear Mechanics.2002,37(1):19-34.
    [103]Luo,G.W.,Xie,J.H.,Guo,S.H.L.Periodic motions and global bifurcations of a two-degree-of-freedom vibro-impact system with plastic vibro-impact.Journal of Sound and Vibration.2001,240(5):837-858.
    [104]罗冠炜,谢建华,孙训方.单自由度塑性碰撞振动系统的周期运动及分 岔特点.中国机械工程,2001,12(11):1297-1300.
    [105]Wen,GL.Codimension-2 Hopf bifurcation of a two-degree-of-freedom vibro-impact system.Journal of Sound and Vibration.2001,242(3):475-485.
    [106]Luo,G.W.,Xie,J.H.The codimension two bifurcation of periodic vibro-impact and chaos of a dual component system.Physics Letters A.2003,313(4):267-273.
    [107]Ding,W.C.,Xie,J.H.,Sun,Q.G.Interaction of Hopf and period doubling bifurcations of a vibro-impact system,Journal of Sound and Vibration.2004,275(5):27-45.
    [108]Ding,W.C.,Xie,J.H.Dynamical analysis of a two-parameter family for a vibro-impact system in resonance cases.Journal of Sound and Vibration.2005,287:101-115.
    [109]丁旺才,谢建华.碰撞振动系统的一类余维二分岔及T~2分岔.力学学报,2003,34(4):503-508.
    [110]Xie,J.H.,Ding,W.C.Hopf-Hopf bifurcation and invariant torus T~2 of a vibro-impact system.International Journal of Non-Linear Mechanics.2005.40:531-543.
    [111]Ding,W.C.,Xie,J.H.Torus T~2 and its routes to chaos of a vibro-impact system.Physics Letters A.2006,349:324-330.
    [112]丁旺才.多自由度碰撞振动系统的环面分岔与混沌研究.西南交通大学博士学位论文.2004.
    [113]Oseledec,V.I.A multiplicative ergodic theorem,Lyapunov characteristic numbers for dynamical system.Trans.Moscow.Math.Soc.1968,19:197-231.
    [114]Wolf,A.,Swift,J.B.,Swinney,H.L.,Vastano,J.A.Determining Lyapunov exponents from a time series.Physica D.1985,16:285-317.
    [115]Eckmann,J.P.,Ruelle,D.Ergodic theory of chaos and strange attractors.Reviews of Modern Physics.1985,57:617-656.
    [116]Eckmann,J.P.,Ruelle,D.,Ciliberto,S.Lyapunov exponents from time series.Physical Review A.1986,34:4971-4979.
    [117]Brown,R.,Bryant,P.,Abarbanel,H.D.I.Computing the Lyapunov spectrum of a dynamical system from an observed time series.Physical Review A. 1991,43:2787-2806.
    [118] Gencay, R. , Dechert, W. D. An algorithm for the n Lyapunov exponents of an n -dimensional unknown dynamical system. Physica D. 1992, 59: 142-157.
    [119] Andrzej Stefanski. Estimation of the largest Lyapunov exponent in systems with impacts. Chaos, Solitons and Fractals. 2000, (11):2443-2451.
    [120] de Souza S. L. T. , Caldas I. L. Calculation of Lyapunov exponents in systems with impacts, Chaos, Solitons and Fractals. 2004, (19):569-579.
    [121] Jin, L, Lu, Q. S. , Twizell, E. H. A method for calculating the spectrum of Lyapunov exponents by local maps in non-smooth impacting systems. Journal of Sound and Vibration. 2006,298:1019-1033.
    [122] Robert, C. , Alligood, K. T. , Ott, E. , Yorke, J. A. Explosion of chaotic sets. Physica D, 2000, 144:44-61.
    [123] Chossat, P. , Golubitsky, M. Symmetry-increasing bifurcation of chaotic attractors. Physica D, 1988, 32:423-436.
    [124] Melbourne, I. , Dellnitz, M. , Golubitsky, M. The structure of symmetric attractors. Arch. Rationnal Mech. Anal. 1993,123:75-98.
    [125] Schenker, J. H. , Swift, J. W. Observing the symmetry of attractors. Phisica D, 1998,114:315-337.
    [126] Ben-Tal, A. Symmetry restoration in a class of forced oscillators. Physica D, 2002,171:236-248.
    [127] Alligood, K. T. , Sauer, T. D. , Yorke, J. A. Chaos an introduction to dynamic systems. Springer, Berlin. 1996.
    [128] Robinson, C. Dynamical systems: Stability, symbolic dynamics and chaos. CRC Press, Boca Raton. 1995.
    [129] Guckenheimer, J. , Holmes, P. Nonlinear oscillations, dynamical systems and bifurcation of vector fields. Springer, New York, 1990.
    [130] Wiggins, S. Introduction to applied nonlinear dynamical systems and chaos. Springer, Berlin, 1990.
    [131] Poincare, H. Les Methodes Nouvelles de la Mecanique Celeste, Poincare, 3 Vols. Gauthier-Villars: Paris, 1899.
    [132] Lichtenberg, A. J. , Lieberman, M. A. , Regular and stochastic motion. Springer-Verlag: New York, Heidlberg, Berlin, 1982.
    [133]Hale,J.,Ordinary differential equations.Wiley:New York,1969.
    [134]Kuznetsov,Y.A.Elements of Applied Bifurcation Theory,The Second Edition.Springer-Verlag,New York,1998.
    [135]Thomsen,J.J.Vibrations and stability.The Second Edition.Springer,2002.
    [136]Parker,T.S.,Chua,L.O.Practical numerical algorithms for chaotic systems.Springer-Verlag,1989.
    [137]金栋平,胡海岩.碰撞振动与控制.科学出版社,2005.
    [138]Rossler,O.E.An equation for hyperchaos.Physics Letters A.1979,71:155.
    [139]Iooss,G.Bifurcation of maps and application.North-Holland publishing company,1979.
    [140]陈予恕,唐云.非线性动力学中的现代分析方法.科学出版社,2000.
    [141]陈予恕.非线性振动.高等教育出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700