γ-谷氨酰转肽酶的纯化和性质及其用于L-茶氨酸的生物制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-茶氨酸是存在于茶叶内的一种主要氨基酸,是一种具有多种生理功能且不会产生任何副作用的一种功能因子,在食品、保健和医疗领域中具有重要的应用价值。因此,研究生物法合成L-茶氨酸具有重要的现实意义。目前生物法生产L-茶氨酸最有效的酶是γ-谷氨酰转肽酶(γ-Glutamyltranspeptidase, GGT, EC 2.3.2.2)。GGT是生物体内谷胱甘肽代谢途径中的关键酶,也是催化转移L-γ-谷氨酰基的特异性酶,可催化L-谷氨酰胺和乙胺合成L-茶氨酸(γ-谷氨酰基-乙胺),在催化合成方面正成为研究者关注的热点。
     本研究首先从发酵食品虾酱中通过发酵法产GGT实验和酶法合成L-茶氨酸实验两步筛选法分离得到一株可用来高效合成L-茶氨酸的菌株SK11.004。通过形态观察和生理生化特性实验,结合16S rDNA序列分析,将该菌株鉴定为枯草芽孢杆菌,并将其命名为Bacillus subtilis SK11.004。其16S rDNA基因全长为1142 bp,已提交至GenBank数据库,数据库登记号为:FJ437210。GGT的合成与菌体生长同步,发酵16 h产酶活力最高,达到2.5 U/mL。
     在筛选获得Bacillus subtilis SK11.004的基础上,建立了以L-谷氨酰胺和乙胺盐酸盐为底物通过发酵液酶促反应合成L-茶氨酸的工艺,并完成了中试生产。首先对酶促反应条件进行了优化,在最适反应条件下,副反应得到了有效的抑制,L-茶氨酸的转化率约为94%,纯度达65.2%。此外,还建立了L-茶氨酸的脱色及分离纯化工艺,通过串联使用阴阳离子交换树脂去除反应液中的L-谷氨酸及其它杂质,再经洗脱、减压浓缩干燥,获得L-茶氨酸,纯度达到85%,收率为80.4%。最后建立了L-茶氨酸的结晶工艺,在优化后的结晶工艺条件下,晶体得率为48%,晶体纯度达97%,并利用扫描电镜对其晶体形态进行了扫描,晶体呈规则的致密的方形层状结构。
     对B. subtilis SK11.004的发酵液进行了分离纯化,采用超滤、硫酸铵沉淀、疏水作用层析和凝胶过滤等手段,得到两种具有GGT活力的酶(GGT-1与GGT-2),比酶活分别达到684.9和193 U/mg。通过Native-PAGE、SDS-PAGE和凝胶过滤色谱对酶的纯度和分子量进行测定,结果表明GGT-1为二聚体,包含两个亚基(40 kDa和21 kDa),分子量约为62 kDa;GGT-2为单体酶,分子量约为58 kDa。
     对比酶活高的GGT-1的酶学性质进行了系统研究。其转肽反应的最适pH为10;水解反应的最适pH为8.0;在pH6-12的缓冲液中酶活稳定性良好;等电点为7.8,说明该酶处于兼性离子及负离子时,才能更好地发挥活力;该酶的最适反应温度为37 oC,在50 oC以下具有良好的稳定性;Na~+和Ca~(2+)对酶活影响不明显,Al~(3+)和Mg~(2+)能促进酶活力,Cu~(2+)和Zn~(2+)对GGT的酶活有明显抑制作用,Zn~(2+)的抑制作用最强,可抑制32.2%的活力,而酸根离子SO_4~(2-)、Cl~-、NO_3~-对酶活基本没有影响。另外,EDTA对酶活基本没有影响,说明GGT-1并非金属蛋白酶。
     对GGT-1的底物特异性进行研究,结果说明,空间位阻的大小、氨基酸的酸碱性是影响活力的最主要因素,侧链的增加以及酸性的增强会导致酶与底物亲和力的下降,且空间位阻的影响要大于酸碱性的影响。此外,底物的立体异构性对于酶的转肽活力也有一定影响。GGT-1对于谷氨酰供体具有相对低的K_m值,而对于谷氨酰受体则具有高的K_m值。对于γ-GpNA具有低的亲和力,而对于L-Gln亲和力高一些。L-Gln转肽反应和水解反应的特征常数K_m分别为0.83和3.16 mM,说明GGT-1易于催化L-Gln进行转肽反应。该酶催化反应速率较快,催化效率较高,可用于γ-谷氨酰类化合物的的生物转化。
     化学修饰剂PMSF和NBS对酶蛋白的活性影响显著,表明羟基和色氨酸残基均是GGT-1酶活性功能的必需基团。添加底物对NBS对酶的修饰不起保护作用,说明被修饰的色氨酸残基可能不处在酶与底物的契合部位,但它是维持酶空间结构保持其活性必需的基团,而底物的添加对PMSF对酶的修饰有一定保护作用,表明羟基处于底物结合区域。
     圆二色谱进一步考察了经PMSF和NBS修饰后GGT-1二级结构的变化。结果表明,GGT-1的二级结构由34.4%α-螺旋、11.7%β-折叠、22.2%转角和31.7%无规卷曲组成。经5 mmol/L PMSF处理1h后,其α-螺旋含量由34.4%减少至23.1%,β-折叠和无规卷曲的含量分别增加至17.6%和42.2%,而β-转角的含量则下降至17.1%,说明酶蛋白的二级结构受到了一定程度的破坏。而GGT被1mmol/L NBS修饰后,仅剩余6.8%的α-螺旋,其余结构均转变成了无规卷曲,基本失去了蛋白结构特征,进一步证实了色氨酸残基对于维持酶空间结构的重要性。
     对GGT-1进行了质谱鉴定,经数据库检索,获得一个Mascot score达到84的有效匹配,匹配蛋白为来自Bacillus amyloliquefaciens FZB42的GGT,氨基酸覆盖率达18%,初步判断GGT-1为γ-谷氨酰转肽酶。经492cLC型蛋白质测序仪分析,GGT-1大亚基的N端结构前八个氨基酸残基连接依次为:FSYDTYKQ。与通过肽指纹图谱匹配到的蛋白质比对,基本与其第35个氨基酸至第43个氨基酸吻合。证实肽指纹图谱鉴定的准确性。结合肽指纹图谱和N端测序结果,确证GGT-1是一种新的γ-谷氨酰转肽酶,且与B. amyloliquefaciens FZB42 GGT具有较近的同源性。
Theanine, a unique amino acid found almost exclusively in tea plants, has various favorable physiological and pharmacological functions for human beings without any toxic or side effect. In addition, it has diverse applications in food and medicine areas. Therefore, a study on biological synthesis of theanine has important theoretical and practical significances. Gamma-glutamyltranspeptidase (GGT, EC 2.3.2.2) is considered to be the most effective enzyme for the production of theanine. GGT is the key enzyme in glutathione metabolism, and can catalyze the transfer of theγ-glutamyl group. It can catalyse L-glutamine and ethylamine to theanine (γ-glutamyl-ethylamine). GGT’s application in catalysis has become a research focus.
     In this study, strain SK 11.004 isolated from fermented shrimp paste through two steps was demonstrated as an effective strain for theanine production. It was identified as Bacillus subtilis based on its physiological and biochemical properties, as well as its 16S rDNA sequence analysis, and named as Bacillus subtilis SK11.004. The 16S rDNA sequence data from B. subtilis SK11.004 was submitted to the GenBank databases under accession no. FJ437210. GGT production was synchronous with the growth of B. subtilis SK11.004, and the highest enzyme activity (2.5 U/mL) in the culture was achieved after 16h.
     The goal of developing an effective method for the production of theanine was achieved using the GGT from B. subtilis SK11.004. Firstly, the optimum conditions for the synthesis of theanine were determined. In the optimized conditions, the side reaction was inhibited effectively, and the conversion rate of L-Gln to theanine reached 94%. Secondly, the technology of decoloration and purification of theanine was established. The theanine with 85% purity was obtained through activated carbon decoloration, 001×7 strong acidic resin (H~+ form), 201×7 strong basic resin (Cl~- form), vacuum concentration and freeze-drying, with the recovery rate of theanine as 80.4%. Finally, the crystallization process of theanine was also studied. After crystallization, the theanine with purity of 97% was obtained with a yield of 48%. The crystals appeared as compact layered-structure with tetra-rectangle under scanning electron microscopy.
     Two GGTs (GGT-1 and GGT-2) were purified to electrophoretical homogeneity by ultrafiltration, hydrophobic interaction and gel filtration chromatography, and exhibited the special activity of 684.9 and193 U/mg, respectively. Based on SDS-PAGE and gel filtration analysis, it was confirmed that GGT-1 was composed of one large subunit of 40 kDa and one small subunit of 21 kDa, with the molecular mass of 62 kDa, GGT-2 was showed as a monomer, with the molecular mass of 58 kDa.
     The properties of GGT-1 were investigated. The enzyme showed maximal activity in hydrolase reaction at pH 8, while in transpeptidase activity at pH 10. It exhibited strong stability in pH 6-12.The isoelectric point of GGT-1 was determined to be 7.8, suggesting that the enzyme had higher activity when it was zwitterion and anion. The enzyme showed maximal activity at 37 oC, and was highly stable below 50°C. Al~(3+) and Mg~(2+) stimulated the enzyme activity of GGT-1, whereas Cu~(2+), Zn~(2+), Fe~(2+)and Fe~(3+) caused its inhibition. The acid radicals SO_4~(2-), Cl~-, and NO_3~- did not influence enzyme activity.
     The enzyme exhibited the highest affinity to imino acids (L-Pro) and then decreasing affinities for aromatic amino acids, ethylamine and basic amino acids. GGT-1 has low K_m values forγ-glutamyl donors, but high ones for acceptors, and low affinity forγ-GpNA, but high for L-Gln. The K_m values of hydrolysis and of transpeptidation for L-Gln were 3.16 mM and 0.83 mM respectively, suggesting that the GGT-1 likely synthesizes valuableγ-glutamyl peptides using L-Gln asγ-glutamyl donor.
     Chemical modifiers PMSF and NBS showed strong inhibition of the GGT-1 enzyme activity, indicating the tryptophan residues and hydroxy groups of Ser or Thr are essential to enzyme activity. The addition of excess substrate did not reverse the inhibition process of NBS, it was suggested that the tryptophan residues were not located in the substrate binding site of GGT-1, but it was necessary group which maintain the structure of the enzyme. However, the addition of excess substrate reduced the inhibition effect of PMSF, revealing that the hydroxy groups were located in the substrate binding site of GGT-1.
     Circular dichroism spectra reflected the conformational changes of GGT-1. CD of the native enzyme showed that ratio ofα-Helix,β-sheet, turn and random coils structure were 34.4%, 11.7%, 22.2% and 31.7%. The modified GGT-1 by PMSF resulted in the decrease ofα-helix contente and increase of random coils content, showing that the secondary structure of the enzyme was destroyed to some extent. However, when GGT-1 was modified by NBS, there was only 6.8%α-Helix left, with 93.2% random coils. It was confirmed that the tryptophan residues were very important in maintaining the structure of the enzyme.
     The MALDI-TOF-TOF MS data were used to query the Mascot proteomics database, resulting in one significant match, GGT [Bacillus amyloliquefaciens FZB42]. After in-gel digestion, we obtained a Mascot score of 84 with a sequence coverage of 18%. The N-terminal amino acid sequence of the first 8 residues of heavy subunit was determined as FSYDTYKQ, which almost fully corresponded to residues 35-43 of B. amyloliquefaciens FZB42 GGT. The result confirmed the accuracy of identification by MALDI-TOF-TOF MS. A comparison with other existing GGT enzymes proved the observed N-terminal amino acid sequence to be different.
引文
[1] Sakato Y. The chemical constituents of tea: III. A new amide theanine (in Japanese). Nippon Nogeikagaku Kaishi, 1949, 23: 262-267.
    [2] Feldheim W, Yongvanit P, Cummings P H. Investigation of the presence and significance of theanine in the tea plant [J]. J Sci Food Agric, 1986, 37: 527-534.
    [3] Ekborg-Ott K H, Taylor A, Armstrong D W. Varietal differences in the total and enantiomeric composition of theanine in tea [J]. J Agric Food Chem., 1997, 45: 353-363.
    [4] Takeo T. L-Alanine as a precursor of ethylamine in Camellia sinensis. Phytochemistry, 1974, 13: 1401–1406.
    [5] Unno T, Suzuki Y, Kakuda T, et al. Metabolism of theanine, gamma-glutamylethylamide, in rats [J]. J Agric Food Chem, 1999, 47: 1593–1596.
    [6] Terashima T, Takido J, Yokogoshi H. Time-dependent changes of amino acids in the serum, liver, brain and urine of rats administered with theanine [J]. Biosci Biotechnol Biochem, 1999, 63: 615–618.
    [7] Juneja L R, Chu D C, Okubo T, et al. L-theanine—a unique amino acid of green tea and its relaxation effect in humans [J]. Trends Food Sci Tech, 1999, 10: 199-204.
    [8] Kakuda T, Nozawa A, Unno T, et al. Inhibiting effects of theanine on caffeine stimulation evaluated by EEG in the rat [J]. Biosci Biotechnol Biochem, 2000, 64: 287-293.
    [9] Crystal F. Haskell, David O, et al. The effects of L-theanine, caffeine and their combination on cognition and mood [J]. Biol Psychol, 2008, 77:113-122.
    [10] Kimura K, Ozeki M, Juneja L R, et al. L-Theanine reduces psychological and physiological stress responses [J]. Biol Psychol, 2007, 4: 39-45.
    [11] Gomez-Ramirez M, Higgins B A, Rycroft J A, et al. The deployment of intersensory selective attention: a high-density electrical mapping study of the effects of theanine [J]. Clin Neuropharmacol, 2007, 30 (1): 25-38.
    [12] Yokogoshi H, Mochizuki M, Saitoh K. Theanine–induced reduction of brain serotonin concentration in rats [J]. Biosci Biotechnol Biochem, 1998, 62 (4):816-817.
    [13] Yokogoshi H, Kato Y, Sagesaka YM, et al. Reduction effect of theanine on blood pressure and brain 5-hydroxyindoles in spontaneously hypertensive rats [J]. Biosci Biotechnol Biochem, 1995, 59 (4):615-618.
    [14] Zhang G, Miura Y, Yagasaki K. Effects of dietary powdered green tea and theanine on tumor growth and endogenous hyperlipidemia in hepatomabearing rats [J]. Biosci Biotechnol Biochem, 2002, 66 (4): 711-716.
    [15] Sadzuka Y, Sugiyama T, Suzuki T, et al. Enhancement of the activity of doxorubicin by inhibition of glutamate transporter [J]. Toxicol Lett, 2001, 123 (2-3): 159-167.
    [16] Sugiyama T, Sadzuka Y. Theanine and glutamate transporter inhibitors enhance the antitumor efficacy of chemotherapeutic agents [J]. Biochim Biophys Acta, 2003, 1653 (2): 47-59.
    [17]林雪玲,程朝辉,黄才欢等.茶氨酸对小鼠学习记忆能力的影响[J].食品科学, 2004, 25 (5):171-173
    [18] Kakuda T. Neuroprotective effects of the green tea components theanine and catechins [J]. Biol Pharm Bull, 2002, 25(12):1513-1522.
    [19] Iwasaki K, Chung E H, Egashira N, et al. Non-NMDA mechanism in the inhibition of cellular apoptosis and memory impairment induced by repeated ischemia in rats [J]. Brain Res, 2004, 995:131-139.
    [20] Egashira N, Hayakawa K, Mishima K, et al. Neuroprotective effect ofγ-glutamylethylamide (theanine) on cerebral infarction in mice [J]. Neurosci Lett, 2004, 363 (1):58-61.
    [21] Cho H S, Kim S, Lee S Y, et al. Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death [J]. Neurotoxicology, 2008, 29 (4):656-662.
    [22] Yamada T, Terashima T, Wada K, et al. Theanine,γ-glutamylethylamide, increases neurotransmission concentrations and neurotrophin mRNA levels in the brain during lactation [J]. Life Sci. 2007, 81 (16):1247-1255.
    [23] Kakuda T, Nozawa A, Sugimoto A, et al. Inhibition by theanine of binding of [3H] AMPA, [3H] kainate, and [3H]MDL 105,519 to glutamate receptors [J]. Biosci Biotechnol Biochem, 2002, 66:2683-2686.
    [24]王小雪,邱隽,宋宇等.茶氨酸的抗疲劳作用研究[J].中国公共卫生, 2002, 18(3): 315-317.
    [25]李敏,沈新南,姚国英.茶氨酸延缓运动性疲劳及其作用机制研究[J].营养学报, 2005, 27 (4): 326-329.
    [26] Kamath A B , Wang L S, Das H, et al. Antigens in tea-beverage prime human Vγ2Vδ2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses [J]. P Natl Acad Sci USA, 2003, 100 (10): 6009-6014.
    [27] Kurihara S, Shibahara S, Arisaka H, et al. Enhancement of antigen-specific immunoglobulin G production in mice by Co-administration of L-cystine and L-theanine [J]. J Vet Med Sci, 2007, 69 (12): 1263-1270 .
    [28] Juneja L R,大久保勉.绿茶テアニンの驚くべき効果[J]. Ryokucha, 2002, 1: 29-31.
    [29] Zheng G D, Bamba K, Okubo T, et el. Effect of theanine,γ-glutamylethylamide, on bodyweight and fat accumulation in mice [J]. Anim Sci J, 2005, 76 (2): 153-157.
    [30]陈瑛,钟俊辉.离子交换法提取茶氨酸的研究[J].氨基酸和生物资源, 1998, 20 (1): 31-34.
    [31]林智,杨勇,谭俊峰等.茶氨酸提取纯化工艺研究[J].天然产物研究与开发,2004,16 (5) :442- 447.
    [32]袁华,高小红,闫志国等.离子交换法从茶叶中提取茶氨酸[J].精细石油化工研究进展,2006,7 (3): 42-44.
    [33]林智,杨勇,谭俊峰等.一种茶氨酸提取工艺[P]. CN1546461A, 2004-11-17.
    [34] Lichtenstein N. Preparation ofγ-alkylamides of glutamic acid [J]. J Am Chem, 1942, 64 (5): 1021-1022.
    [35]郑国斌.茶氨酸的制备方法[P]. CN1706816A, 2005-12-14.
    [36]王三永,李晓光,李春荣等. L-茶氨酸的合成研究[J].精细化工, 2001, 18 (4): 223-224.
    [37]钱绍松,陈然,刘毅等.中试规模制备L-茶氨酸及其衍生物[J].精细化工, 2005, 22 (11): 845-847
    [38] Orihara Y, Furuya T. Production of theanine and otherγ- glutamyl derivatives by Camellia sinensis cultured cells [J]. Plant cell reports, 1990, 9 (2): 65-68.
    [39] Li J, Li P G, Liu F. Production of theanine by Xerocomus badius (mushroom) using submerged fermentation [J]. LWT-Food Sci Technol, 2008, 41 (5):883-889.
    [40]Tachiki T, Suzuki H, Wakisaka S, et al. Production ofγ-glutamylmethylamide andγ-glutamylethylamide by coupling of baker’s yeast preparations and bacterial glutamine synthetase [J]. J Gen Appl Microbiol, 1986, 32: 545-548.
    [41] Yamamoto S, Uchimura K, Wakayama M, et al. Purification and characterization of glutamine synthetase of Pseudomonas taetrolens Y-30, an enzyme usable for production of theanine by coupling with the alcoholic fermentation system of baker’s yeast [J]. Biosci Biotechnol Biochem, 2004, 68: 1888-1897.
    [42] Yamamoto S, Wakayama M, and Tachiki T. Theanine production by coupled fermentation with energy transfer employing Pseudomonas taetrolens Y-30 glutamine synthetase and baker’s yeast cells [J]. Biosci Biotechnol Biochem, 2005, 69: 784-789.
    [43] Yamamoto S, Wakayama M, and Tachiki T. Cloning and expression of Pseudomonas taetrolens Y-30 gene encoding glutamine synthetase: an enzyme available for theanine production by coupled fermentation with energy transfer [J]. Biosci Biotechnol Biochem, 2006, 70: 500-507.
    [44] Sachiko Y, Mamoru W, Takashi T. Characterization of theanine-forming enzyme from Methylovorus mays No.9 in respect to utilization of theanine production [J]. Biosci Biotechnol Biochem, 2007, 71 (2): 545-552.
    [45] Abelian V H, Okubo T, Shamtsian M M, et al. A novel method of production of theanine by immobilized Pseudomonas nitroreducens cells [J]. Biosci Biotechnol Biochem, 1993, 57 (3): 481-483.
    [46] Abelian V H, Okubo T, Mutoh K, et al. A continuous production method for theanine by immobilized Pseudomonas nitroreducens cells [J]. J Ferment Bioeng, 1993, 76 (3): 195-198.
    [47] Tachiki T, Yamada T, Mizuno K, et al.γ-Glutamyl transfer reactions by glutaminase from Pseudomonas nitroreducens IFO 12694 and their application for the syntheses of theanine andγ-glutamylmethylamide [J]. Biosci Biotechnol Biochem, 1998, 62 (7): 1279-1283.
    [48] Tachiki, Takashi O, Yukitaka O, et al. Process for producing theanine [P]. US Patent, 7335497. 2008-02-26.
    [49] Okada Y, Ozeki M, Aoi N. Method of Making Theanine [P]. US Patent, 20070224667. 2007-09-27.
    [50] Suzuki H, Izuka S, Miyakawa N, et al. Enzymatic production of theanine, an“umami”component of tea, from glutamine and ethylamine with bacterialγ–glutamyltranspeptidase [J]. Enzyme Microb Technol, 2002, 31: 884-889.
    [51]郭亮,沈微,王正祥等.生物转化法生产茶氨酸的重组大肠杆菌的构建[J].食品与生物技术学报, 2005, 24 (2): 41-45.
    [52]王贤波,王丽鸳,成浩等.茶氨酸生物合成工程菌构建[J].茶叶科学, 2007, 27 (1): 61-66.
    [53] Reiko N, Hidehiko K, Tatsurokuro T. Purification and properties ofγ-Glutamyltranspeptidase from Proteus mirabilis [J]. J Bacteriol, 1984, 160 (1): 341-346.
    [54] Suzuki H, Kumagai H, Tochikura T.γ-Glutamyltranspeptidase from Escherichia coli K-12: purification and properties [J]. J Bacterio1, 1986, 168 (3): 1325-1331.
    [55] Suzuki H, Kumagat H, Echigo T, et a1. Molecular cloning of Escherichia coli K-12 ggt and rapid isolation ofγ-glutamyltranspeptidase [J]. Biochem Biophys Res Commun, 1988, 150 (1): 33-38.
    [56] Yoshihiro O, Hiroshi H, Mitsutoshi H, et al. Purification and properties ofγ-glutamyltranspeptidase from Bacillus subtilis(natto) [J]. Agric Biol Chem, 1991, 55 (12): 2971-2977.
    [57]浅田芳宏.γ-glutamyltranspeptidaser制备方法[P].日本公开特许.特开平4-281787, 1992-10-7
    [58]张新民,张鲁嘉,荀志金等.γ-谷氨酰转肽酶产生菌的筛选和培养条件的研究[J].生物加工过程, 2003, 1 (2): 39-42.
    [59] Hwang S Y, Ryang J H, Lim W J, et al. Purification and properties ofγ-glutamyl transpeptidase from Bacillus sp. KUN-17 [J]. J Micro Biotech, 1996, 6: 238-244.
    [60] Moallic C, Dabonne S, Colas B, et al. Identification and characterization of aγ-glutamyltranspeptidase from a thermo-alcalophile strain of Bacillus pumilus [J]. Protein J, 2006, 25: 391-397.
    [61] Minami H, Suzuki H, Kumagai H. Salt-tolerantγ-glutamyltranspeptidase from Bacillus subtilis 168 with glutaminase activity [J]. Enzyme Micrbo Technol, 2003, 32: 431-438.
    [62] Wu Q, Xu H, Zhang L, et al. Production, purification and properties ofγ-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2 [J]. J Mol Catal B: Enzym, 2006, 43: 113-117.
    [63] Boanca G, Sand A, Okada T, et al.Autoprocessing of Helicobacter pyloriγ-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad [J]. J Biol Chem, 2007, 282: 534-541.
    [64] Lin L L, Hou P R, Hua Y W, et al. Overexpression, one-step purification, and biochemical characterization of a recombinantγ-glutamyltranspeptidase from Bacillus licheniformis [J]. Appl Microbiol Biotechnol, 2006, 73: 103-112.
    [65] Abe K, Ito Y, Ohmachi T, et al. Purification and properties of two isozymes ofγ-glutamyltranspeptidase from Bacillus subtilis TAM-4 [J]. Biosci Biotechnol Biochem, 1997, 61 (10): 1621–1625.
    [66] Penninckx M J, Jaspers C J. Molecular and kinetic properties of purifiedγ-glutamyl transpeptidase from yeast (Saccharomyces cerevisiae) [J]. Phytochemistry, 1985, 24: 1913-1918.
    [67] Inoue M, Hiratake J, Suzuki H, et al. Identification of catalytic nucleophile of Escherichia coliγ-glutamyltranspeptidase byγ-monofluorophosphono derivative of glutamic acid: N-terminal thr-391 in small subunit is the nucleophile [J]. Biochemistry, 2000, 39: 7764-7771.
    [68] Hideyuki S,Hidehiko K, Tatsurokuro T.γ-Glutamyltranspeptidase from Escherichia coli K-12: Formation and location [J]. J Bacteriol, 1986, 168 (3): 1332-1335.
    [69] Goore M Y, Thompson J F.γ-glutamyl transpeptidase from kidney bean fruit I. Purification and Mechanism of action [J]. Biochim Biophys Acta, 1967, 132 (1):15-26.
    [70] Hidehiko K, Hideyuki S, Miho S, et a1.Utilization of theγ-glutamyltrarrspeptidase reaction for glutathione synthesis [J]. J Biotechnol, 1989, 9:129-138.
    [71] Ishiye M, Yamashita M, Niwa M. Molecular cloning of theγ-glutamyltranspeptidase gene from a Pseudomonas strain [J]. Biotechnol Prog, 1993, 9 (3): 323-331.
    [72] Suzuki H, Kumagai H, Echigo T. et a1. DNA sequence of the Escherichia coli K-12γ-glutamyltranspeptidase gene, ggt [J]. J Bacteriol, 1989, 171 (9): 5169-5172.
    [73] Chevalier, Thiberge J M, Ferrero R L. et a1. Essential role of Helicobacter pyloriγ-glutamyltranspeptidase for the colonization of the gastric mucosa of mice [J]. Mol Microbiol, 1999, 31 (5): 1359-1372.
    [74] Xu K, Strauch M A. Identification, sequence, and expression of the gene encodingγ-glutamyltranspeptidase in Bacillus subtilis [J]. J Bacteriol, 1996, 178 (4): 4319-4322.
    [75] Lin L L, Chou P R, Hua Y W, Hsu W H. Overexpression, one-step purification, and biochemical characterization of a recombinantγ-glutamyltranspeptidase from Bacillus licheniformis [J]. Appl Microbiol Biotechnol, 2006, 73 (1): 103-112.
    [76] Tomb J F, White O, Kerlavage A R, et a1. The complete genome sequence of the gastric pathogen Helicobacter pylori [J]. Nature, 1997, 388: 539-547.
    [77] Suzuki H. Kumagai H. Autocatalytic processing ofγ-glutamyltranspeptidase [J]. J Biol Chem, 2002, 277 (45): 43536-43543.
    [78] Boanca G, Sand A, Okada T, et a1. Autoprocessing of Helicobacter pyloriγ-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad [J]. J Biol Chem, 2007, 282 (1):534-541.
    [79] Takahashi H, Watanabe H. Post-translational processing of Neisseria meningitidesγ-glutamylaminopeptidase and its association with inner membrane to the cytoplasmic space [J]. FEMS Microbiol Lett, 2004, 234 (1): 27-35.
    [80] Kim K M, Lee S G, Park M G, et a1. Gamma-glutamyltranspeptidase of Helicobacter pylori induces mitochondria-mediated apoptosis in AGS cells [J]. Biochem Biophys Res Commun, 2007, 355: 562-567.
    [81] Benini F, Pigozzi M G, Pozzi A, et a1. Elevation of serumγ-glutamyltranspeptidase activity is frequent in chronic hepatitis C, and is associated with insulin resistance [J]. Dig Liver Dis, 2009, 41: 586-590.
    [82] Claudio J O, Suzuki H, Kumagai H, et a1. Excretion and rapid purification ofγ-glutamyltranspeptidase from Escherichia coli K-12 [J]. J Ferment Bioeng, 1991, 72: 125-127.
    [83] Hara T, Yokoo Y, Furukawa T. Potential ofγ-L-glutamyl-L-cystine and bis-γ-L-glutamyl-L-cystine as a cystine-containing peptide for parental nutrition. In: Takai K (ed), Frontiers and new horizons in amino acid research. Amsterdam, 1992, 607–611.
    [84] Suzuki H, Kajimoto Y, Kumagai H. Improvement of the bitter taste of amino acids through the transpeptidation reaction of bacterialγ-glutamyltranspeptidase [J]. J Agric Food Chem, 2002, 50: 313-318.
    [85] Ichinose H, Togari A, Suzuki H, et a1. Increase of catecholamines in mouse brain by systemic administration ofγ-glutamyl L-3, 4-dihydroxyphenylalanine [J]. J Neurochem, 1987, 49: 928-932.
    [86] Kumagai H, Echigo T, Suzuki H, et a1. Synthesis ofγ-glutamyl-DOPA from L-glutamine and L-DOPA byγ-glutamyl transpeptidase of Escherichia coli K-12 [J]. Agric Biol Chem, 1988, 52: 1741-1745.
    [87]贺忠,荀志金.用Bacillus subtilis NX-2菌株谷氨酰转肽酶催化合成S-苄基-谷胱甘肽[J].生物加工过程, 2004, 2(4): 57-60.
    [88] Bittner S, T Win, R Gupta. Gamma-L-glutamyltaurine [J]. Amino Acids, 2005, 28: 343-356.
    [89] Suzuki H, Miyakawa N, Kumagai H. Enzymatic production ofγ-L-glutamyltaurine through the transpeptidation reaction ofγ-glutamyltranspeptidase from Escherichia coli K-12 [J]. Enzyme Microb Tech, 2002, 30: 883-888.
    [90] Simbirtsev A, Kolobov A, Zabolotnych N, et a1. Biological activity of peptide SCV-07 against murine tuberculosis [J]. Russ J Immunol, 2003, 8: 11-22.
    [91] Orellana C. Immune system stimulator shows promise against tuberculosis [J]. Lancet Infect Dis, 2002, 2: 711.
    [92] Suzuki H, Kato K, Kumagai H. Development of an efficient enzymatic production ofγ-D-glutamyl-L-tryptophan (SCV-07), a prospective medicine for tuberculosis, with bacterialγ-glutamyltranspeptidase [J]. J Biotechnol, 2004, 111: 291-295.
    [1] Nakayama R, Kumagai H, Tochikura T. Purification and properties ofγ-glutamyltranspeptidase from Proteus mirabilis [J]. J Bacteriol, 1984, 160 (1):341-346.
    [2] Penninckx M J, Jaspers C J. Molecular and kinetic properties of purified gamma-glutamyl transpeptidase from yeast (Saccharomyces cerevisiae) [J]. Phytochemistry, 1985, 24: 1913-1918.
    [3] Suzuki H, Kumagai H, Tochikura T.γ-Glutamyltranspeptidase from Escherichia coli K-12: purification and properties [J]. J Bacterio1, 1986, 168 (3): 1325-1331.
    [4] Suzuki H, Kumagat H, Echigo T, et a1. Molecular cloning of Escherichia coli K-12 ggt and rapid isolation ofγ-glutamyltranspeptidase [J]. Biochem Biophys Res Commun, 1988, 150 (1): 33-38.
    [5] Hwang S Y, Ryang J H, Lim W J, et al.. Purification and properties ofγ-glutamyl transpeptidase from Bacillus sp. KUN-17 [J]. J Micro Biotech, 1996, 6: 238-244.
    [6] Moallic C, Dabonne S, Colas B, et al. Identification and Characterization of a Gamma-Glutamyl Transpeptidase from a Thermo-Alcalophile Strain of Bacillus pumilus [J]. The Protein J, 2006, 25 (6): 391-397.
    [7] Lin L L, Chou P R, Hua Y W, et al. Overexpression, one-step purification, and biochemical characterization of a recombinantγ-glutamyltranspeptidase from Bacillus licheniformis [J]. Appl Microbiol Biotechnol, 2006, 73: 103-112.
    [8] Ogawa Y, Hosoyama H, Hamano M, et al. Purification and properties ofγ-glutamyltranspeptidase from Bacillus subtilis (natto) [J]. Agric Biol Chem, 1991, 55 (12): 2971-2977.
    [9] Minami H, Suzuki H, Kumagai H. Salt-tolerantγ-glutamyltranspeptidase from Bacillus subtilis 168 with glutaminase activity [J]. Enzyme Micrbo Technol, 2003, 32: 431-438.
    [10] Kimura K, Tran L S, Uchida I, et al. Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate [J]. Microbiology, 2004, 150, 4115-4123.
    [11] Wu Q, Xu H, Zhang L, et al. Production, purification and properties ofγ-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2 [J]. J Mol Catal B: Enzym, 2006, 43: 113–117.
    [12] Kim W, Choi K, Kim Y, et al. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. Strain CK 11-4 screened from Chungkook-Jang [J]. Appl Environ Microbiol, 1996, 62 (7): 2482-2488.
    [13] Hwang K J, Choi K H, Kim M J, et al. Purification and characterization of a new fibrinolytic enzyme of Bacillus licheniformis KJ-31, isolated from Korean traditional Jeot-gal [J]. J Microb Biot, 2007, 17: 1469-1476.
    [14] Kim S, Choi N. Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang [J]. Biosci Biotechnol Biochem, 2000, 64 (8): 1722-1725.
    [15] Kim S B,Lee D W,Cheigh C I,et al. Purification and characterization of a fibrinolytic subtilisin-likeprotease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh [J]. J Ind Microbiol Blot, 2006, 33: 436-444.
    [16] Orlowski M, Meister A.γ-Glutamyl-p-nitroanilide: A new convenient substrate for determination and study of L- and D-γ-glutamyltranspeptidase activities [J]. Biochim Biophys Acta, 1963, 73: 679-681.
    [17] Suzuki H, Izuka S, Miyakawa N, et al. Enzymatic production of theanine, an“umami”component of tea, from glutamine and ethylamine with bacterialγ–glutamyltranspeptidase [J]. Enzyme Microb Technol, 2002, 31: 884-889.
    [18] Suzuki H, Kumagai H. Autocatalytic processing ofγ-glutamyltranspeptidase [J]. J Biol Chem, 2002, 277(45): 43536-43543.
    [1] Suzuki H, Izuka S, Miyakawa N, et al. Enzymatic production of theanine, an“umami”component of tea, from glutamine and ethylamine with bacterialγ–glutamyltranspeptidase [J]. Enzyme and Microb Tech, 2002, 31: 884-889.
    [2] Yamamoto S, Uchimura K, Wakayama M, et al. Purification and characterization of glutamine synthetase of Pseudomonas taetrolens Y-30, an enzyme usable for production of theanine by coupling with the alcoholic fermentation system of baker’s yeast [J]. Biosci Biotech Bioch, 2004, 68: 1888-1897.
    [3] Yamamoto S, Wakayama M, Tachiki T. Theanine production by coupled fermentation with energy transfer employing Pseudomonas taetrolens Y-30 glutamine synthetase and baker’s yeast cells [J]. Biosci Biotech Bioch, 2005, 69: 784-789.
    [4] Yamamoto S, Wakayama M, Tachiki T. Cloning and expression of Pseudomonas taetrolens Y-30 gene encoding glutamine synthetase: an enzyme available for theanine production by coupled fermentation with energy transfer [J]. Biosci Biotech Bioch, 2006, 70: 500-507.
    [5] Abelian V H, Okubo T, Shamtsian M M, et al. A novel method of production of theanine by immobilized Pseudomonas nitroreducens cells [J]. Biosci Biotech Bioch, 1993, 57 (3):481-483.
    [6] Abelian V H, Okubo T, Mutoh K, et al. A continuous production method for theanine by immobilized Pseudomonas nitroreducens cells [J]. J Ferment Bioeng, 1993, 76 (3):195-198.
    [7] Tachiki T, Yamada T, Mizuno K, et al.γ-Glutamyl transfer reactions by glutaminase from Pseudomonas nitroreducens IFO 12694 and their application for the syntheses of theanine andγ-glutamylmethylamide [J]. Biosci Biotech Bioch, 1998, 62 (7):1279-1283.
    [8] Tachiki T O, Yukitaka O, Makoto O, et al. Process for producing theanine [P]. US Patent, 7335497. 2008-02-26.
    [9] Okada Y O, Makoto A N. Method of Making Theanine [P]. US Patent, 20070224667. 2007-09-27.
    [10]袁华,高小红,闫志国等.沉淀法从茶叶中提取茶氨酸.生物学通报, 2007, 42 (5): 46-48.
    [11]赵宁伟,胥俊峰,贾晓鹤等.国产717阴离子树脂对酶法合成L-谷氨酰胺的分离与纯化[J].食品与机械, 2008, 24 (1): 78-80, 99.
    [12]朱松,王洪新,陈尚卫等.离子交换吸附分离茶氨酸的研究[J].食品科学, 2007, 28 (9): 148-153.
    [13] He Y S, Dufour J P, Meurens M.高纯度茶氨酸的合成与特性[J].茶叶科学, 2003, 23 (2): 99-104.
    [1] Suzuki H, Kumagai H, Tochikura T. Gamma-glutamyltranspeptidase from Escherichia coli K-12: Purification and Properties [J]. J Bacteriol, 1986, 168 (3): 1325-1331.
    [2] Lin L L, Chou P R, Hua Y W, et al. Overexpression, one-step purification, and biochemical characterization of a recombinantγ-glutamyltranspeptidase from Bacillus licheniformis [J]. Appl Microbiol Biotechnol, 2006, 73: 103-112.
    [3] Wu Q, Xu H, Zhang L, et al. Production, purification and properties of gamma-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2 [J]. J Mol Catal B Enzym, 2006, 43: 113-117.
    [4] Moallic C, Dabonne S, Colas B, et al. Identification and Characterization of aγ-glutamyltranspeptidase from a thermo-alcalophile strain of Bacillus pumilus [J]. The Protein J, 2006, 25 (6): 391-397.
    [5] Abe K, Ito Y, Ohmachi T, et al. Purification and properties of two isozymes ofγ-glutamyltranspeptidase from Bacillus subtilis TAM-4 [J]. Biosci Biotechnol Biochem, 1997, 61 (10):1621-1625.
    [6] Minami H, Suzuki H, Kumagai H. Salt-tolerantγ-glutamyltranspeptidase from Bacillus subtilis 168 with glutaminase activity [J]. Enzyme Micrbo Technol, 2003, 32: 431-438.
    [7] Moriguchi M, Yamada M, Suenaga S, et al. Partial purification and properties ofγ-glutamyltranspeptidase from mycelia of Morchella esculenta [J]. Arch Microbiol, 144 (1): 15-19.
    [8] Nakano Y, Okawa S, Yamauchi T, et al. Purification and Properties of Soluble and Boundγ-Glutamyltransferases from Radish Cotyledon. Biosci. Biotechnol Biochem., 2006 (70): 369-376.
    [9] Nakayama R, Kumagai H, Tochikura T. Purification and properties ofγ-glutamyltranspeptidase from Proteus mirabilis [J]. J Bacteriol, 1984,160 (1):341-346.
    [10] Ogawa Y, Hosoyama H, Hamano M, et al. Purification and properties ofγ-glutamyltranspeptidase from Bacillus subtilis (natto) [J]. Agric Biol Chem, 1991, 55(12): 2971-2977.
    [11] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227: 680-685.
    [12] Lowry O H, Rosenbrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent [J]. J Biol Chem, 1951, 193: 265-275.
    [13] Orlowski M, Meister A.γ-Glutamyl-p-nitroanilide: A new convenient substrate for determination and study of L- and D-γ-glutamyltranspeptidase activities [J]. Biochim Biophys Acta, 1963, 73: 679-681.
    [14] Nakano Y, Okawa S, Yamauchi T, et al. Purification and Properties of Soluble and Boundγ-glutamyltransferases from Radish Cotyledon [J]. Biosci Biotechnol Biochem, 2006, 70, 369-376.
    [15] Tiwary E, Gupta R. Improved catalytic efficiency of a monomericγ-glutamyl transpeptidase from Bacillus licheniformis in presence of subtilisin [J]. Biotechnol Lett, 2010, 32:1137–1141.
    [16] Hwang S Y, Ryang J H, Lim W J, et al. Purification and properties ofγ-glutamyltranspeptidase from Bacillus sp. KUN-17[J]. J Micro Biotech, 1996, 6: 238-244.
    [17] Chevalier C, Thiberge J M, Ferrero R L, et al. Essential role of Helicobacter pyloriγ-glutamyltranspeptidase for the colonization of the gastric mucosa of mice [J]. Mol Microbiol, 1999, 31: 1359–1372.
    [1] Keillor J W, Castonguay R, Lherbet C. Gamma-glutamyl transpeptidase substrate specificity and catalyticmechanism [J]. Mechanism Methods Enzymol, 2005, 401: 449-467.
    [2] Suzuki H, Kumagai H, Tochikura T. Gamma-glutamyltranspeptidase from Escherichia coli K-12: purification and properties [J]. J Bacteriol, 1986, 168 (3): 1325-1331.
    [3] Yasumoto K, Iwami K, Fushiki T, et al. Purification and enzymatic properties of gamma-glutamyltransferase from bovine colostrum [J]. J Biochem, 1978, 84: 1227-1236.
    [4] Hussein A S, Walter R D. Purification and characterization of gamma-glutamyl transpeptidase from Ascaris sum [J]. Mol Biochem Parasitol, 1996, 77: 41-47.
    [5] Krishna R G, Chin C C, Weldon P J, et al. Characterization of gamma-glutamyl transpeptidase from the Rathke's gland secretions of Kemp's ridley sea turtles (Lepidochelys kempi) [J]. Comp Biochem Physiol B Biochem Mol Biol, 1995, 111(2): 257-264.
    [6] Goore M Y, Thompson J F. Gamma-glutamyl transpeptidase from kidney bean fruit I. Purification and mechanism of action [J]. Biochim Biophys Acta, 1967, 132:15-26.
    [7] Nakayama R, Kumagai H, Tochikura T. Purification and properties ofγ-glutamyltranspeptidase from Proteus mirabilis [J]. J Bacteriol, 1984, 160: 341-346.
    [8] Taniguchi N. Purification and some properties of gamma-glutamyl transpeptidase from azo dye-induced hepatoma [J]. J Biochem, 1974, 75: 473-480.
    [9] Sener A, Yardimci T. Activity determination, kinetic analyses and isoenzyme identification of gamma- glutamyltransferase in human neutrophils [J]. J Biochem Mol Biol, 2005,38: 343-349.
    [10] Ogawa Y, Hosoyama H, Hamano M,et al. Purification and properties ofγ-glutamyltranspeptidase fromBacillus subtilis (natto) [J]. Agric Biol Chem, 1991, 55 (12): 2971-2977.
    [11] Yao Y F, Weng Y M, Hu H Y, et al. Expression optimization and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Escherichia coli novablue [J]. Protein J, 2006, 25: 431-441.
    [12] Wu Q, Xu H, Zhang L, et al. Production, purification and properties ofγ-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2 [J]. J Mol Catal B: Enzym, 2006, 43:113–117.
    [13] Lin L L, Chou P R, Hua Y W, et al. Overexpression, one-step purification, and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Bacillus licheniformis [J]. Appl Microbiol Biotechnol, 2006, 73: 103-112.
    [14] Moallic C, Dabonne S, Colas B, et al. Identification and characterization of aγ-glutamyltranspeptidase from a thermo-alcalophile strain of Bacillus pumilus [J]. Protein J, 2006, 25 (6):391-397.
    [15] Suzuki H, Kumagai H. Autocatalytic processing ofγ-glutamyltranspeptidase [J]. J Biol Chem, 2002, 277, 45: 43536–43543.
    [16] Boanca G, Sand A, Okada T, et al. Autoprocessing of Helicobacter pyloriγ-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad [J]. J Biol Chem, 2007, 282 (1): 534-541.
    [17] Takahashi H, Watanabe H. Post-translational processing of Neisseria meningitidesγ-glutamylaminopeptidase and its association with inner membrane to the cytoplasmic space [J]. FEMS Microbiol Lett, 2004, 234 (1): 27-35.
    [18] Minami H, Suzuki H, Kumagai H. Salt-tolerantγ-glutamyltranspeptidase from Bacillus subtilis 168 with glutaminase activity [J]. Enzyme MicrboTechnol, 2003, 32: 431-438.
    [19] Hwang S Y, Ryang J H, Lim W J, et al. Purification and properties ofγ-glutamyltranspeptidase from Bacillus sp. KUN-17 [J]. J Microbiol Biotechnol, 1996, 6: 238-244.
    [20] Boanca G, Sand A, Barycki J J. Uncoupling the enzymatic and autoprocessing activities of Helicobacter pyloriγ-glutamyltranspeptidase [J]. J Biol Chem, 2006, 281: 19029-19037.
    [21] Reiko N, Hidehiko K, Tatsurokuro T. Purification and properties ofγ-glutamyltranspeptidase from Proteus mirabilis [J]. J Bacteriol, 1984, 160 (1):341-346.
    [22] Lyu RC, Hu HY, Kuo L Y, et al. Role of the conserved Thr399 and Thr417 residues of Bacillus licheniformisγ-glutamyltranspeptidase as evaluated by mutational analysis [J]. Curr Microbiol, 2009, 59:101–106.
    [23] Sener A, Yardimci T. Activity determination, kinetic analyses and isoenzyme identification ofγ-glutamyltransferase in human neutrophils [J]. J Biochem Mol Biol, 2005, 38 (3): 343-349.
    [24] Hsu WH, Ong PL, Chen SC, et al. Contribution of Ser463 residue to the enzymatic and autoprocessing activities of Escherichia coliγ-glutamyltranspeptidase [J]. Indian J Biochem Biophys, 2009, 46: 281-288.
    [25] Abe K, Ito Y, Ohmachi T, et al. Purification and properties of two isozymes ofγ-glutamyltranspeptidase from Bacillus subtilis TAM-4 [J]. Biosci Biotechnol Biochem, 1997, 61 (10):1621–1625.
    [26] Zarnowski R, Cooper K G, Brunold L S, et al. Histoplasma capsulatum secreted gamma-glutamyltransferase reduces iron by generating an efficient ferric reductant [J]. Mol Microbiol, 2008, 70: 352-368.
    [27] Sugimoto M, Yamaguchi N, Kawai K. Characterization of gamma-GTP in a human pancreatic cancer cell line [J]. Gastroenterol Jpn, 1984, 19 (3): 227-231.
    [28] Hada T, Higashino K, Yamamoto H, et al. Further investigations on a novelγ-glutamyl transpeptidase in human renal carcinoma [J]. Clin Chim Acta, 1981, 112 (2):135-140.
    [29]唐炜,张尤历,王文兵等.幽门螺杆菌γ-谷氨酰转肽酶基因的克隆及序列分析[J].江苏大学学报(医学版), 2009, 19 (3): 233-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700