线性分布参数系统的指数稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具边界控制或局部分布的控制的分布参数系统由于其控制易于实现,适用范围广,近年来引起了人们的广泛关注([19,65])。本文研究了如下几个线性系统的指数稳定性及相关问题:
     1.具动态边界条件的热弹性薄板的解析性和指数稳定性;
     2.具动态边界条件的粘弹性薄板的指数稳定性;
     3.具Dirichlet边界反馈的高维弹性系统的指数稳定性;
     4.Pritchaxd-Salamon系统的适定性和允许稳定性。
     我们关于板方程及高维系统的指数稳定性的工作是具创新性并有一定应用价值的。文中的主要技巧之一是频域方法。黄发伦先生在[52]中得到了一个谱决定增长假设的等价条件。该结果与偏微分方程的各种技巧、方法相联系便形成证明分布参数系统指数稳定性的途径之一—频域方法([92,100])。我们在应用频域方法的同时也汲取传统的能量方法中的技巧,并充分利用边界项自身的性质和各类阻尼项的扰动作用,从而克服了高阶边界项,抽象边界项以及局部阻尼等造成的分析困难。
     Pritchard-Salamon系统是具无界输入、输出的无限维线性系统的子类。我们在本文的最后对Pritchard-Salamon系统的扰动半群生成元的结构作出刻划,从而得到“光滑性”条件对Pritchard-Salamon系统的论证结构是不必要的结论。此外,
    
    我们将半群领域中新近提出的临界谱概念应用到对Prit山ard一Sala:nou系统的稳
    定性分析中,从而对P:it(上ard一Salamoll系统的允许能稳性给出一个频域刻画.
The distributed parameter systems with boundary control or locally distributed control has attracted much attention in recent years (see,e.g. [19, 65]). In this thesis we concentrate on the following problems:
    1. The analyticity and the exponential stability for the thennoelastic plate with dynamical boundary conditions;
    2. The exponential stability for the viscoelastic plate with dynamical boundary conditions;
    3. The exponential stability for a system of elasticity with Dirichlet boundary feedback;
    4. The well-posedness and admissible stabilizability for Pritchard-Salamon systems.
    One of the main techniques we use is the frequency method. Falun Huang([52]) introduced the equivalent conditions of the spectrum determined growth assumption. Later Huang's result was used to prove the exponential stability for the distributed parameter systerns([92, 100]). We combine the frequency method with the techniques for partial differential equations, and induce the multiplier technique to get our exponential stability results.
    Pritchard-Salamon systems is a subset of infinite-dimensional linear systems with unbounded input arid output. In the last chapter of this thesis we obtain a characterization of generator of the perturbation semigroup for Pritchard-Salamon systems. So from this we establish that the "smooth condition" is unnecessary in the constructive
    
    
    argument for Pritchard-Salamon systems. We also give a characterization of admissible stabiliz ability for Pritchard-Salamon systems by using the critical spectrum introduced recently.
引文
[1] M. Aassila, M. M. Cavalcanti and J. A. Soriano, Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain, SIAM J. Control Optim., 38(2000) , 1581-1602.
    [2] R. Adamas, Sobolev Spaces, Academic Press, New York, 1975.
    [3] F. Albau and V. Komornik, Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control Optim., 37(1999) , 521-542.
    [4] K. Ammari, Asymptotic behavior of coupled Euler-Bernoulli beams with dissipa-tive joint, ESIAM: Proceedings, 8(2000) , 1-12.
    [5] G. Avalos and I. Lasiecka, Boundary controllability of thermoelastic plates via the free boundary conditions, SIAM J. Control Optim., 38(2000) , 337-383.
    [6] G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29(1998) , 155-182.
    [7] G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend.Istit.Mat. Unvi. Trieste Suppl, XXVIII(1997) , 1-28.
    [8] G. Avalos, I. Lasiecka and R. Rebarber, Uniform decay properties of a model in structural acoustics, submitted. 1999.
    [9] C. Bardos, G. Ledeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30(1992) , 1024-1065.
    [10] R. Bey, J-P. Loheac and M. Moussaoui, Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation, J. Math. Pures. Appl, 78(1999) , 1043-1067.
    
    
    [11] J. Bontsem and R. F. Curtain, Perturbations properties of a class of infinite-dimensional systems with unbounded control and observations, IMA J. Math. Control & Information 5(1988) , 333-352.
    [12] S. Brendle, R. Nagle and J.Polano, On the spectral mapping theorem for perturbed strongly continuous semigroup, Arch.Math., 74(2000) ,365-378.
    [13] C. Castro and E. Zuazua, A hybrid system consisting of two flexible beams connected by a point mass: spectral analysis and well-poseduess in asymmetric spaces, ESI AM Proceeedings, 1(1997) .
    [14] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl, (9) 58(1979) ,249-274.
    [15] G. Chen, A note on the boundary stabilization of the wave equation, SIAM J. Control Optim., 19(1981) , 106-113.
    [16] G. Chen, M. P. Coleman and Z. Ding, Some corner effects on the loss of self adjointness and the non-excitation of vibration for thin plates and shells. Q. J. Meth. Appl. Math., 51(1998) , 2, 213-239.
    [17] G. Chen, M. P. Coleman and K. Liu, Boundary stabilization of Donnell's shallow circular cylindrical shell, J. Soana Vibration, 209(1998) , 2, 265-298.
    [18] G. Chen, M. C. Delfour, A. M. Krall and G. Payre, Modeling, stabilization and control of serially connected beams, SIAM J. Control Optim., 25(1987) , 526-546.
    [19] G. Chen, S. A. Fulling,F. J. Narcowich and S. Sun, Exponential decay of energy of evolution equations with locally distributed damping, SIAM J. Appl. Math., 51(1991) , 255-301.
    [20] S.-P. Cheng, K.-S. Liu and Z.-Y. Liu, Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping, SIAM J. Control Optim., 59(1998) , 651-668.
    [21] F. Conrad and O. Morgul, On the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 36(1998) , 1962-1986.
    
    
    [22] R. F. Curtain, State-space approaches to H∞-control for infinite-dimensional linear systems, Trans. Inst. Measurement & Control, 13(1991) , 253-261.
    [23] R. F. Curtain, A synthesis of time and frequency domain methods for the control of infinite-dimensional systems: a system theoretic approach, Control and Estimation in Distributed Parameter Systems(H. T. Banks ed.), 171-224, (Philadelphia; SIAM, 1992) .
    [24] R. F. Curtain, The Kalman-Yakubovich-Popov Lemma for Pritchard-Salamon systems, System & Control Letters, 27(1996) , 67-72.
    [25] R. F. Curtain, Equivalence of input-output stability and exponential stability for infinite-dimensional systems, Math. Systems Theory, 21(1988) . 19-48.
    [26] R. F. Curtain, H. Logernann S.Townley and H.Zwart, Well-posedness, stabiliz-ability and admissibility for Pritchard-Salamon systems, J. Math. Systems, Estimation, Control, 7(1997) , 439-476.
    [27] R. F. Curtain, M. Weiss and Y. Zhou, Closed formulae for a parametric-mixed-sensitivity problem for Pritchard-Salamon systems, System & Control Letters, 27(1996) , 157-167.
    [28] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Text in Applied Mathematics, vol. 21, Springer.New York 1995.
    [29] R. F. Curtain and H. Zwart, The Nehari problem for the Pritchard-Salamon class of infinite-dimensional linear systems: a direct approach, Integr. Equ. Oper. Theory, 18(1994) , 130-153.
    [30] C.M.Dafermos, Asymptotic stability in viscoelasticity, Arch.Rat.Mech.Anal., 37(1970) , 297-308.
    [31] C.M.Dafermos, On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch.Rat.Mech. Anal., 29(1968) , 241-271.
    [32] C.M.Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, 7(1970) , 554-569.
    
    
    [33] W. Desch and R. K. Miller, Exponential stabilization of Volterra integrodifferen-tial equations in Hilbert space, J. Differential Equations, 79(1987) , 366-389.
    [34] W. Desch and R. K. Miller, Exponential stabilization of Volterra integral equations with singular kernels, J. Integral Equations Applications, 1(1988) , 397-433.
    [35] Y.-F. Du, Q. Zhang and F.-L. Huang, Stabilization of Euler-Bernoulli beam of free ends with locally distributed damping and boundary feedback, Journals of Sichuan University(in Chinese), 38(2001) , 1, 22-28.
    [36] M. Eller, I. Lasiecka and R. triggiani, Exact/approximate controllability of ther-moelastic plates with variable thermal coefficients, Discrete and Continuous Dynamical Systems, 7(2001) , 283-302.
    [37] K. J. Engle and R. Nagle, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, 1999.
    [38] R. H. Fabiano and K. Ito, Semigroup theory and numerical approximation for equations arising in linear viscoclasticity, SIAM J. Math. Anal, 21(1990) , 374-393.
    [39] R. H. Fabiano and K. Ito. An approximation framwork for equations in linear viscoelasticity with strongly singular kernel, Quarterly of Applied Mathematics.
    [40] R. H. Fabiano and B.Lazzari, On the existence and asymptotic stability of solutions for linearly viscoelastic solids. Arch. Rat. Mech. Anal.. 116(1991) . 139-152.
    [41] G.B.Folland, Real Analysis. Modern Techniques and Their Applications, John Weiley & Sons, 1984.
    [42] J. S. Gibson, I. G. Rosen and G. Tao, Approximation in control of thermoelastic systems, SIAM J. Control Optim., 30(1992) , 1163-1189.
    [43] P. Grabowski and F. M. Callier, Admissible observation operators, semigroup criteria of admissibility, Inter. Equat. Oper. Th., 25(1996) , 182-198.
    [44] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985.
    [45] A.Guesmia, Energy decay for a damped nonlinear coupled system. J. Math. Anal. Appl., 239(1999) , 38-48.
    
    
    [46] B.Z.Guo, Riesz basis approach to the stabilization of a flexible beam with a fip mass, SIAM J. Control Optim., 39(2001) , 1736-1747.
    [47] B.Z.Guo, The Riesz basis property of discrete operators and application to an Euler-Bernoulli beam equation with boundary linear feedback control, to appear in IMA J. Math. Control Inform.
    [48] K.B.Hannsgen and R.L.Wheeler, Viscoelastic and boundary feedback damping: Precise energy decay rates when creep modes are dominant, J. Integral Equations and Applications, 2(1990) . 495-527.
    [49] S. Hansen and E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM J. Control Optim., 33(1995) , 1357-1391.
    [50] L. F. Ho Exact controllability of the one-dimensional wave equation with locally distributed control. SIAM J. Control Optim., 28(1990) , 733-748.
    [51] M. A. Horn, Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity, J. Math. Anal. Appl., 223(1998) , 126-150.
    [52] F.-L. Huang. Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1(1985) , 43-56.
    [53] F.-L. Huang, Spectral properties and stability of one-parameter semigroups. J. Differential Equations, 104(1993) , 182-195.
    [54] F.-L. Huang, Strong asymptotic stability of linear dynamical systems in Banach spaces., J. Differential Equations, 104(1993) , 307-324.
    [55] F.-L. Huang, On the mathematical model for linear elastic systems with analytic damping, SIAM J. Control Optim, 26(1988) , 714-724.
    [56] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
    [57] B. V. Kapitonov and J. S. Souza, Observability and uniqueness theorem for a coupled hyperbolic system, Internal. J. Math. & Math. Sci., 24(2000) , 423-432.
    [58] B. van Keulen, H∞-control for Distributed Parameter Systems: A State Space Approach, Birkhavser, Boston, 1993,
    
    
    [59] J. U. Kim, On the energy decay of a linear therrnoclastic bar and plate, SI AM J. Math. Anal, 23(1992) , 889-899.
    [60] V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, Masson-John Wiley, Paris, 1994.
    [61] V. Komornik, Rapid boundary stabilization of linear distributed systems, SIAM J. Control Optim., 35(1997) , 1591-1613.
    [62] V. Komornik, On the nonlinear boundary stabilization of the wave equation, Chin. Ann. of Math, 2(1993) , 153-164.
    [63] V. Komornik, Well-posedness and decay estimated for a Petrovsy system by a semigroup approach, Acta Sci. Math., 60(1995) , 451-466.
    [64] V. Komornik. Rapid boundary stabilization of the wave equation. SIAM J. Control Optim., 29(1991) , 197-208.
    [65] J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA, 1989.
    [66] J. E. Lagnese, Boundary stabilization of linear elastodynamic systems. SIAM J. Control Optim., 21(1983) , 968-984.
    [67] J. E. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations, 50(1983) , 163-182.
    [68] J. E. Lagnese. Control of wave process with distributed controls supported on a subregion, SIAM J. Control Optim., 21(1983) , 68-85.
    [69] L. Lagnese AND J. L. Lions, Modeling, Analysis and Control of Thin Plates, Masson, Paris, 1988.
    [70] I. Lasiecka, Boundary stabilization of a 3-dimensional structural acoustic model, J. Math. Pures Appl, 78(1999) , 203-232.
    [71] I. Lasiecka, Uniform decay rates for full Von Karman system of dynamic ther-moelasticity with free boundary conditions and partial boundary dissipation, Comm. Part. Diff, Eq., 24(1999) , 1801-1847.
    
    
    [72] I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli equations with boundary dissipation occurring in the moments only, J. Differential Equations, 95(1992) , 169-182.
    [73] I. Lasiecka and C. Lebiedzik, Decay rates of interactive hyperbolic-parabolic PDE models with thermal effects on the interface, Appl. Math. Optim., 42(2000) , 127-167.
    [74] I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with L2(0,∞; L2(Γ))-Feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66(1987) , 34-390.
    [75] I. Lasiecka and R. Triggiani. Analyticity, and lack thereof, of thermo-elastic semigroups. ESIAM Proceedings, 4(1998) , 199-222.
    [76] I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25(1992) , 189-224.
    [77] I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler-Bernoulli equations, Appl. Math. Optim., 28(1993) , 277-306.
    [78] I. Lasiecka and R. Triggiani, Analyticity of thermoelastic semigroups with coupled B.C. Part II: the case of free boundary conditions. Annali di Scuola Normale di Pisa, Classe Scienze, Series IV, XXVII(1998) , 457-497.
    [79] I. Lasiecka and R. Triggiani, Control Theory for PDE: vol I, Abstract Parabolic Systems, Cambridge University Press, 2000.
    [80] S. Li, Y. Wang and Z. Liang, Stabilization of vibrating beam with a tip mass controlled by combined feedback forces, J. Math. Anal. Appl., 256(2001) , 13-38.
    [81] J. L. Lions, Exact Controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30(1988) , 1-68.
    [82] J. L. Lions, On the controllability of distributed systems, Proc. Natl. Acad. Sci. USA, Applied Mathematics, 94(1997) , 4828-4835.
    
    
    [83] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1971.
    [84] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, V.1, Springer-Verlag, New York, 1972.
    [85] W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow, SIAM J. Appl. Math., 59(1998) , 17-34.
    [86] W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping. Ann. Mat. Pura Appl., 152(1988) , 281-330.
    [87] K.S.Liu, Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., 35(1997) , 1574-1590.
    [88] 刘康生,分布参数系统的边界局部控制与镇定,博士论文,1991。
    [89] K.-S.Liu, F.-L. Huang and G. Chen. Exponential stability analysis of a long chain of coupled vibrating string with dissipative linkage. SIAM J. Appl. Math., 49(1989) , 1694-1707.
    [90] K.-S. Liu and Z.-Y. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48(1997) . 885-904.
    [91] K.-S. Liu and Z.-Y. Liu, Boundary stabilization of nonhomogeneous beam with rotatory inertia at the tip. J. Compu. Appl. Math., 114(2000) , 1-10.
    [92] K.-S. Liu and Z.-Y. Liu, On the type of C0-semigroup associated with the abstract linear viscoelastic system, Z. angew Math. Phys., 47(1996) .
    [93] K.-S. Liu and Z.-Y. Liu, Analyticity and differentiability of semigroups associated with elastic systems with damping and gyroscopic forces. J. Differential Equations, 141(1997) , 340-355.
    [94] K.-S. Liu and Z.-Y. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, to appear, 2001.
    [95] K.-S. Liu and Z.-Y. Liu, Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping. SIAM J. Control Optim., 36(1998) , 1086-1098.
    
    
    [96] K.-S. Liu and B.-P. Rao, Exponential stability for the high-dimensional wave equation with the local Kelvin-Voigt damping, to appear, 2001.
    [97] K.-S. Liu, Doping Ye and Qiong Zhang Spectrum and exponential stability for the abstract linear viscoelastic system, in preparation, 2002.
    [98] Z.-Y. Liu and M. Renardy, A note on the equations of a thcrmoelastic plate, Appl Math. Appl., 8, 3(1995) , 1-6.
    [99] Z.-Y. Liu and J.Yong, Qualitative properties of certain C0 semigroups arising in elastic ] systems with various dampings. Advance in Differential Equations.
    [100] Z.-Y. Liu and S.-M. ZHENG, Semigroups Associated With Dissipative Systems, CRC Press LLC, 1999.
    [101] Z.-Y. Liu and S.-M. ZHENG, Exponential stability of the semigroup associated with a thermoelastic system, Quart, Appl, Math., LI, 3(1993) , 535-545.
    [102] Z.-Y. Liu and S.-M. ZHENG, On the exponential stability of linear viscoelasticity and thermoelasticity, Quart. Appl. Math., LIV, 1(1996) , 21-31.
    [103] Z.-Y. Liu and S.-M. ZHENG, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping Quart, Appl. Math., 3(1997) , 551-564.
    [104] W.-J. Liu, The exponential stabilization of the higher-dimensional linear system of thermoviscoelasticity, J. Math. Pures Appl, 77(1998) , 355-386.
    [105] W.-J. Liu and M. A. Krstic, Strong stabilization of the system of linear elasticity by a Dirichlet boundary feedback, IMA J. Appl. Math,, 65(2000) , 109-121.
    [106] W.-J. Liu and G. H. Williams, Exact controllability for problems of transmission of the plate equation with lower-order terms, Quart. Appl. Math., LVIII(2000) , 37-68.
    [107] W.-J. Liu and E. Zuazua, Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback, Quart. Appl. Math., LIX(2001) , 269-314.
    [108] H. Logcmann, Circle criteria, small gain conditions and internal stability for infinite-dimensional systems, Automation, 27(1991) , 677-690.
    
    
    [109] H. Logemann and B. Martensson, Adaptive stabilization of infinite-dimensional systems, IEEE Trans. Auto. Control, 37(1992) , 1869-1883.
    [110] Y.-H. Luo and D.-X. Feng, On Exponential stability of C0 semigroup, J. Math. Anal. Appl, 217(1998) , 624-636.
    [111] L. Markus and Y. C. You, Dynamical boundary control for elastic plates of general shape, SIAM J. Control Optim., 31(1993) , 983-992.
    [112] P. Martines, Boundary stabilization of the wave equation in almost star-shaped domains. SIAM J. Control Optim., 37(1999) , 673-694.
    [113] S. Micu and E. Zuazua, Asymptotics for the spectrum of a fluid/structure hybrid system arising in the control of noise. SIAM J. Math. Anal., 29(1998) , 967-1001.
    [114] R. Nagle and J.Polano, The critical spectrum of a strongly continuous semigroup, Advances in Mathematics, 152(2000) , 120-133.
    [115] M.Nakao, Decay of solutions of the wave equation with a local degenerate dissipation, Isral J. Math, 95(1996) , 25-42.
    [116] C. B. Navarro, Asymptotic stability in linear thermoviscoelasticity, J. Math. Anal. Appl, 65(1978) , 399-431.
    [117] A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
    [118] A.J. Pritchard and D. Salamon, The linear quadratic control problem for retarded systems with delays in control and observation, IMA J. Math. Control & Information, 2(1985) , 335-362.
    [119] A.J. Pritchard and D. Salamon, The linear quadratic control problem for infinite-dimensional systems with unbounded input and output operators. SIAM J. Control Optim., 25(1987) : 121-144.
    [120] J.Pruss, On the spectrum of Co-semigroups, Trans. Amer. Math. Soc., 284(1984) ,847-857.
    [121] J-P. Puel and M. Tucsnak Boundary stabilization for the Von-Karman equations, SIAM J. Control Optim, 33(1995) , 256-273.
    
    
    [122] B.-P. Rao, Uniform stabilization of a hybrid system of elasticity, SI AM J. Control Optim., 33(1995) , 440.
    [123] B.-P. Rao, Stabilization of elastic plates with dynamical boundary control, SI AM J, Control Optim., 36(1998) , 148-163.
    [124] R. Rebarber, Exponential stability of coupled beams with dissipative points: a frequency domain approach, SIAM J. Control Optim., 33(1995) , 1-28.
    [125] R. Rebarber and H. Zwart, Open-loop stabilizability of infinite-dimensional systems. Math. Control Signals Systems, 11(1998) , 129-160.
    [126] M.Renardy, On the type of certian Co-semigroups, Comm.Part. Diff. Eq., 18(1993) , 1299-1307.
    [127] M.Renardy, On linear stability of hyperbolic PDEs and viscoelastic flows, Z. angew Math, Phys., 45(1994) ,854-865.
    [128] J. E. M. Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math., LII, 4(1994) , 629-648.
    [129] J. E. M. Rivera and D. Andrade, Exponential decay of non-linear wave equation with a viscoelastic boundary condition, Math. Meth. Appl, Sci, 23(2000) , 41-61.
    [130] J. E. M. Rivera and R, Racke, Smoothing properties, decay and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal, 36(1995) , 1547-1563.
    [131] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open problems, SIAM Rev., 20(1978) , 639-739.
    [132] D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173(1993) , 339-358.
    [133] D. L. Russell and G. Weiss, A general necessary condition for exact observability, SIAM Control Optim., 32(1994) . 1-23.
    [134] D. Salamon, Control and Observation of Neutral Systems, Research Notes in Mathematics 91, Pitman, London, 1984.
    
    
    [135] D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach, Trans. Amer. Math. Soc., 300(1987) , 383-431.
    [136] A.J. Sasane and R.F. Curtain. Optimal Hankel norm approximation for the Pritchard-Salamon class of infinite-dimensional systems, Integr. Equ. Oper. Theory, 39(2001) , 98-126.
    [137] D.-H. Shi and D.-X. Feng, Characteristic conditions of the generation of C0 semigroup in a Hilbert space, J. Math. Anal. Appl., 247(2000) . 356-376.
    [138] 司守奎,弹性系统的稳定性与精确能控性,博士论文,1999.
    [139] M. Slemrod, Feedback stabilization of a linear system in Hilbert space with an a priori bounded control, Math. Control Signals Systems, 2(1989) , 265-285.
    [140] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
    [141] S.H.Sun, On spectrum distribution of controllable linear systems, SI AM J. Control Optim, 19(1981) ,330-343.
    [142] L. R. T. Tebou. Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, 145(1998) , 502-524.
    [143] L. R. T. Tebou, On the decay estimates for the wave equation with local degenerate or nondegenerate dissipation. Portugaliae Mathematica, 55(1998) , 293-306.
    [144] L. R. T. Tebou, Well-posedness and energy decay estimates for the damped wave equation with Lr localized coefficient, Comm. Part. Diff. Eq., 23(1998) , 1839-1855.
    [145] G. Weiss, Weak Lp-stability of a linear semigroup on a Hilbert space implies exponential stability, J. Differential Equations, 76(1988) , 269-285. [
    146] G. Weiss, Admissibility of unbounded control operators, SI AM J. Control Optim. 27(1989) , 527-545. [
    147] G. Weiss, Admissible observation operators for linear semigroups. Israel J. Math. 65(1989) , 17-43.
    
    
    [148] G. Weiss, Transfer functions of regular linear systems, part I: characterizations of regularity, Trans. Amer. Math. Soc. 342(1994) , 827-854.
    [149] G. Weiss, The resolvent growth assumption for semigroup on Hilbert spaces, J. Math. Anal. Appl, 145(1990) , 154-171.
    [150] P.-F. Yao, On the observability inequalities for exact controllability of wave equations with variable coefficients, SIAM J. Control Optim., 37(1999) , 1568-1599.
    [151] K. Yosida, Functional Analysis, Springer-Verlag, New York, 1980.
    [152] 郑权,强连续算子半群,华中理工大学出版社,武汉,1994.
    [153] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping. Comm. Part. Diff. Eq., 15(1890) ,205-235.
    [154] E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math, pures et appl., 70(1991) , 513-529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700