苯妥英钠聚氰基丙烯酸正丁酯纳米微粒的制备及抗癫痫的药效学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     (1)初选苯妥英钠聚氰基丙烯酸正丁酯纳米微粒(DPH-PBCA-NPs)的制备方法,并对制备工艺进行优化,建立DPH-PBCA-NPs最佳的制备方法和工艺。
     (2)利用Tween-80对DPH-PBCA-NPs进行表面修饰,探讨Tween-80对DPH-PBCA-NPs进行表面修饰的可行性。考察DPH-PBCA-NPs和Tween-80修饰的DPH-PBCA-NPs体外释药规律,探讨其缓释效应。
     (3)利用癫痫动物模型评价DPH-PBCA-NPs和Tween-80修饰的DPH-PBCA-NPs的抗癫痫疗效,探讨纳米载药系统的优越性。
     方法:
     (1)选择α-氰基丙烯酸正丁酯(α-butylcyanoacrylate,α-BCA)为载体,应用乳化聚合包入法、乳化聚合吸附法和界面聚合法制备DPH-PBCA-NPs,考察DPH-PBCA-NPs的粒径、形状、载药量、包封率和Zeta电位等指标,初选出制备方法。
     (2)通过单因素试验结合正交试验对初选DPH-PBCA-NPs的制备方法进行工艺优化,确立DPH-PBCA-NPs最佳的制备方法和工艺。
     (3)利用Tween-80作为表面活性剂对DPH-PBCA-NPs进行表面修饰,比较Tween-80修饰前后纳米微粒的变化。
     (4)采用动态透析法进行体外释药,对DPH-PBCA-NPs和Tween-80修饰的DPH-PBCA-NPs体外释药规律进行研究。
     (5)构建氯化锂-匹罗卡品急性癫痫大鼠模型,利用视频脑电监测仪,观察脑电图动态变化过程和致痫大鼠的行为学改变,评估DPH-PBCA-NPs和Tween-80修饰的DPH-PBCA-NPs的抗癫痫疗效。
     (6)统计学处理:采用SPSS 12.0统计软件包对所有数据进行统计,计量资料以均数±标准差((?)±s)表示,用t检验和方差分析对各组数据进行比较;计数资料采用x~2检验。P<0.05有统计学意义。
     结果:
     (1)乳化聚合包入法制备的DPH-PBCA-NPs,透射电子显微镜显示纳米微粒相互粘连,形状不匀称,纳米粒度分析仪显示粒径分布不均匀,纳米胶体溶液中出现絮状物和沉淀。而乳化聚合吸附法和界面聚合法制备的DPH-PBCA-NPs,纳米微粒形状呈均匀球形,分散良好,呈现单一分布峰,分布集中。因此,初选出乳化聚合吸附法和界面聚合法,并对其制备工艺进行研究。
     (2)通过单因素试验考察了pH值、苯妥英钠用量、搅拌速度、搅拌时间以及反应物体积比(PBCA-NPs与苯妥英钠溶液)对乳化聚合吸附法制备的DPH-PBCA-NPs的粒径、载药量和包封率的影响,确定pH值为7、搅拌时间2h作为基本的制备条件。对苯妥英钠用量、PBCA-NPs胶体溶液体积和搅拌速度设计正交试验,确定苯妥英钠75mg、PBCA-NPs体积35ml、搅拌速度1,000rpm为最佳的制备条件。
     (3)优化后DPH-PBCA-NPs乳化聚合吸附法的制备工艺如下:当反应体积为40ml时,苯妥英钠用量75mg,PBCA-NPs用量35ml,搅拌速度1.000 rpm,反应体系的pH值为7,温度25℃,搅拌时间2h。该工艺条件制备的DPH-PBCA-NPs性状及各种指标如下:纳米微粒呈球形,形态均匀,分散性佳,平均粒径120.40±5.32nm,跨度0.57,载药量22.1+0.41%,包封率82.51±1.53%,Zeta电位-17.8mV。
     (4)通过单因素试验考察了pH值、苯妥英钠用量、三油酸甘油酯用量、水相与有机相体积比(W/O)以及搅拌速度对界面聚合法制备DPH-PBCA-NPs的粒径、载药量和包封率的影响,确定pH 7,搅拌速度800rpm作为基本的制备条件。对苯妥英钠用量、三油酸甘油酯用量以及水相与有机相体积比设计正交试验,确定苯妥英钠125mg、三油酸甘油酯0.15ml、水相与有机相体积比1:1为最佳的制备条件。
     (5)优化后DPH-PBCA-NPs界面聚合法制备工艺如下:当反应体积为30ml时,苯妥英钠量125mg,水相与有机相体积比(W/O)1:1,三油酸甘油酯0.15ml,反应体系pH值为7,搅拌速度800 rpm,1%(w/v)的Dextran-70,α-BCA为1%(v/v),温度25℃,搅拌时间3h。该工艺条件制备的DPH-PBCA-NPs性状及各种指标如下:纳米粒的形态均匀,呈球形,分散性佳。平均粒径189.80±3.45 nm,跨度0.47,载药量39.82±0.56%,包封率95.56±1.35%,Zeta电位-34.8mV。
     (6)Tween-80修饰后DPH-PBCA-NPs的粒径减小,与未修饰的DPH-PBCA-NPs相比具有显著性差异(t=3.813,P=0.001),Zeta电位也有明显的升高。体外释药结果表明乳化聚合吸附法和界面聚合法制备的DPH-PBCA-NPs及Tween-80修饰的DPH-PBCA-NPs均具有缓释性。
     (7)成功构建氯化锂-匹罗卡品急性癫痫大鼠模型,致痫大鼠在行为和脑电图上均表现出了癫痫持续状态。行为学结合脑电图考察DPH-PBCA-NPs和Tween-80修饰的DPH-PBCA-NPs对致痫大鼠的抗癫痫疗效,Tween-80修饰的DPH-PBCA-NPs组有效率为91.67%,DPH-PBCA-NPs组有效率为54.55%,Tween-80修饰的DPH-PBCA-NPs疗效优于DPH-PBCA-NPs(x~2=3.923,P=0.048)和苯妥英钠(x~2=4.557,P=0.033),DPH-PBCA-NPs的有效率高于苯妥英钠普通剂型(50%),二者相比无显著性差异(x~2=0.043,P=0.835)。
     结论
     (1)乳化聚合吸附法和界面聚合法均可以制备出粒径合适、形态均匀、载药量和包封率良好的DPH-PBCA-NPs,界面聚合法制备的DPH-PBCA-NPs稳定性优于乳化聚合吸附法。
     (2)Tween-80修饰后的DPH-PBCA-NPs粒径减小,Zeta电位升高,有利于透过血脑屏障。体外释药显示乳化聚合法吸附法和界面聚合法制备的DPH-PBCA-NPs和Tween-80修饰的DPH-PBCA-NPs具有较好的缓释性。
     (3)DPH-PBCA-NPs和Tween-80修饰的DPH-PBCA-NPs能够改善致痫大鼠的行为学和脑电图,具有抗癫痫疗效。Tween-80修饰的DPH-PBCA-NPs疗效优于DPH-PBCA-NPs和苯妥英钠普通剂型。
Objective:
     (1) To prepare Diphenylhydantoin sodium polybutylcyanoacrylatenanoparticles (DPH-PBCA-NPs) with three methods, then optimize theway of preparation and therefore to establish the best one.
     (2) To study the effect of the modification of DPH-PBCA-NPs bycoating with Tween-80 and the release characteristics ofdiphenylhydantoin sodium from the DPH-PBCA-NPs andsurface-modified DPH-PBCA-NPs with Tween-80 in vitro.
     (3) To evaluate the effects of DPH-PBCA-NPs and modifiedDPH-PBCA-NPs with Tween-80 in the epilepsy rat model and investigatethe advantages of nanoparticles drug delivery system.
     Methods:
     (1) Diphenylhydantoin sodium (DPH) was taken as the model drugand loaded by polybutylcyanoacrylate (PBCA) to prepareDPH-PBCA-NPs with the three methods of emulsion polymerizationincorporation, emulsion polymerization adsorption and interfacialpolymerization, respectively. The size and shape, drug loading, encapsulation ratio and Zeta potential of the DPH-PBCA-NPs wereevaluated to choose the better one.
     (2) One way experiment and orthogonal experiment were used tooptimize the methods and preparation condition.
     (3) DPH-PBCA-NPs were modified with Tween-80 and the differentcharacteristics between the DPH-PBCA-NPs and modifiedDPH-PBCA-NPs were compared.
     (4) The study of drug release behavior of the DPH-PBCA-NPs andmodified DPH-PBCA-NPs with Tween-80 in vitro were performed bydialysis method.
     (5) The lithium pilocarpine induced rat model of acute epilepsy wasestablished to investigate the changes of its behavior andelectroencephalogram (EEG) by using the Video-EEG monitoring, andtherefore to evaluate the effects of DPH-PBCA-NPs and modifiedDPH-PBCA-NPs with Tween-80 in controlling epilepsy.
     (6) Statistical treatment: The data was dealt with the StatisticalPackage for Social Sciences (SPSS 12.0 for Windows). The measurementdata were expressed as (?)±s, and t-test and ANOVA were used to assessthe differences between the groups, the x~2 test was used to assess thenumeration data, and P values below 0.05 were considered to bestatistically significant.
     Results:
     (1)A lot of floss and sediment could be were seen in theDPH-PBCA-NPs suspensions achieved by emulsion polymerizationincorporation. Transmission electron microscope (TEM) showed thatDPH-PBCA-NPs were adhered with each other, and nanoparticle sizeanalyzer displayed that the distribution of DPH-PBCA-NPs was wide. Onthe contrary, the DPH-PBCA-NPs made by emulsion polymerizationadsorption and interracial polymerization were spherical in shape andnarrow in distribution. Therefore, both the emulsion polymerizationadsorption and interfacial polymerization ought to be explored.
     (2) The pH, the amount of DPH, the stirring speed, the stirring timeand the reaction volume ratio (PBCA-NPs/DPH) were investigated asfactors influenced on the size and shape of the DPH-PBCA-NPs, the drugloading and encapsulation ratio by using one way experiment in theemulsion polymerization adsorption method. As a result, pH=7 and 2hours for stirring were chosen as the prepared condition. The amount ofDPH and PBCA-NPs, the stirring speed were optimized by theorthogonal-design experiment. We determined that the optimumconditions were: DPH, 75mg; PBCA-NPs, 35 ml and stirring speed,1,000rpm.
     (3) When reaction volume were 40ml, the optimized emulsionpolymerization adsorption method was as follows:①DPH, 75mg;②PBCA-NPs, 35ml;③stirring speed, 1,000rpm;④PH, 7;⑤temperature, 25℃;⑥stirring time, 2hours. In this condition, the DPH-PBCA-NPswere spherical in shape and narrow in distribution. The average size ofthe DPH-PBCA-NPs was about 120.40±5.32nm with a span of 0.57. Thedrug loading, encapsulation ratio was 22.1±0.41% and 82.51±1.53%,respectively, and the Zeta potential was-17.8mV.
     (4) The pH, the amount of DPH and olein, the phase volume ratio ofwater and oil (W/O) and the stirring speed were investigated on theparticle size and shape of the DPH-PBCA-NPs, the drug loading andencapsulation ratio by using one way experiment in interfacialpolymerization. As a result, the pH=7 and 800rpm of the stirring speedwere chosen as the prepared condition. The amount of DPH and olein andthe phase volume ratio of W/O were optimized by the orthogonal-designexperiment. We determined that the optimum conditions were: DPH,125mg; olein, 0.15ml; phase volume ratio of W/O, 1:1.
     (5) When reaction volume were 30ml, The optimized emulsioninterfacial polymerization method was as follows:①DPH,125mg;②phase volume ratio of W/O, 1:1;③olein, 0.15ml;④pH, 7;⑤stirringspeed, 800rpm;⑥Dextran-70, 1%(w/v);⑦α-BCA, 1%(v/v);⑧temperature, 25℃;⑨stirring time, 3hours. In this condition, theDPH-PBCA-NPs were spherical in shape and narrow in distribution. Theaverage grain size of the DPH-PBCA-NPs was about 189.80±3.45nmwith a span of 0.47. The drug loading and encapsulation ratio were 39.82±0.56% and 95.56±1.35%, respectively, and the Zeta potential was-34.8mV.
     (6) The particle size of modified DPH-PBCA-NPs withTween-80 was smaller than DPH-PBCA-NPs, there was significantdifference between them (t=3.813, P=0.001). The Zeta potential washigher after modified with Tween-80. The study of in vitro drug releasebehavior demonstrated that DPH-PBCA-NPs made by either the emulsionpolymerization adsorption or the interfacial polymerization and modifiedDPH-PBCA-NPs with Tween-80 show certain sustained releasecharacteristics.
     (7) The lithium pilocarpine induced rat model of acute epilepsy wassuccessfully established and its status epilepticus was confirmed by thenature of attack and EEG. The effects of DPH-PBCA-NPs and modifiedDPH-PBCA-NPs with Tween-80 to control status epilepticus were alsoinvestigated by the two indicators. The result showed that the effectiveratio of modified DPH-PBCA-NPs with Tween-80 and DPH-PBCA-NPswas 91.67% and 54.55%, respectively. The efficacy of modifiedDPH-PBCA-NPs with Tween-80 was better than DPH-PBCA-NPs(x~2=3.923, P=0.048) and DPH (x~2=4.557, P=0.033). The efficacy ofDPH-PBCA-NPs was higher than DPH (50%), there was no significantdifference between the two groups (x~2=0.043, P=0.835).
     Conelusion:
     (1) DPH-PBCA-NPs can be achieved by the emulsionpolymerization adsorption and interracial polymerization. DPH-PBCA-NPs possess suitable particles size, narrow distribution and high drugloading and encapsulation ratio, the stabilization of DPH-PBCA-NPsmade by interfacial polymerization is better than the emulsionpolymerization adsorption.
     (2) The particle size of modified DPH-PBCA-NPs with Tween-80are smaller than the DPH-PBCA-NPs, and the Zeta potential ofDPH-PBCA-NPs is higher after modified with Tween-80. It is easy topermeate into the BBB. The DPH-PBCA-NPs and modifiedDPH-PBCA-NPs with Tween-80 show certain sustained releasecharacteristics by the study the release characteristics ofdiphenylhydantoin sodium from the DPH-PBCA-NPs in vitro.
     (3) DPH-PBCA-NPs and modified DPH-PBCA-NPs withTween-80 can be used to improve the behavior and EEG of acute epilepsyrat model. The efficacy of modified DPH-PBCA-NPs with Tween-80 isbetter than DPH-PBCA-NPs and DPH.
引文
[1] Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem, 2006,384(3):620-630
    [2] Panyam J, Labhasetwar V, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev, 2003, 55:329-347
    [3] Mitra A, Lin S. Effect of surfactant on fabrication and characterization of paclitaxel-loaded polybutylcyanoacrylate nanoparticulate delivery systems. J Pharm Pharmacol, 2003, 55(7):895-902
    [4] Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis, 2004,16(1): 1-13
    [5] 王文志,吴建中,王德生,等.中国五省农村人群癫痫流行病学抽样调查.中华医学杂志,2002,82(7):449-452
    [6] Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med, 2000, 342(5):314-319
    [7] Li LF, Ma C. Epidemiologieal study of severe cutaneous adverse drug reactions in a city district of China. Clin Exp Dermatol, 2006, 31 (5):642-647
    [8] Robert S, Fisher, Jet Ho, et al. Potential new methods for antiepileptic drug delivery.CNS Drugs, 2002, 16(9):579-593
    [9] Ramge P, Unger RE, Oltrogge JB, et al. Polysorbate-80 coating enhances uptake of polybutyleyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci, 2000,12(6): 1931-1940
    [10] C. Vauthier, C. Dubernet, C. Chauvierre, et al. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. Journal of Controlled Release, 2003, 93(5): 151-160
    [11] Kreuter J, Alyautdin RN, Kharkevich DA,et al. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res, 1995,674(1):171-174
    [12] Schroeder U, Sommerfeld P, Sabel BA, et al. Efficacy of oral dalargin-loaded nanopartiele delivery across the blood-brain barrier. Peptides, 1998, 19(4):777-780
    [13] Aliautdin RN, Petrov VE, Ivanov AA, et al. Transport of the hexapeptide dalargin across the hemato-encephalic barrier into the brain using polymer nanoparticles. Eksp Klin Farmakol. 1996, 59(3):57-60
    [14] Schroeder U, Sommerfeld P, Ulrich S, et al. Nanoparticle technology for delivery of drags across the blood-brain barrier. J Pharm Sci, 1998,87(11): 1305-1307.
    [15] Alyautdin RN, Petrov VE, Langer K, et al. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res,1997,14(3):325-328
    [16] Alyautdin RN, Tezikov EB, Ramge P, et al. Significant entry of tubocurarine into the brain of rats by absorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J. Microencapsul, 1998,15 (1): 67-74
    [17] Ambruosi A, Gelperina S, Khalansky A, et al. Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsul, 2006,23(5):582-592
    [18] Friese, E. Seiler, G. Quack, B. Lorenz, and J. Kreuter. Enhancement of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacylate) nanoparticles as a parenteral controlled release delivery system. Eur. J. Pharm. Biopharm, 2000, 49 (2): 103-109
    [19] Gao K, Jiang X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm, 2006, 310(1-2):213-219
    [20] Basel AA, Petrov VE, Trofimov SS, et al. Antiamnesic activity of nerve growth factor adsorbed on poly(butyl) cyanoacrylate nanoparticles coated with polysorbate-80. Eksp Klin Farmakol, 2005, 68(6):3-8
    [21] Koziara JM, Lockman PR,Allen DD, et al. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release, 2004, 99(2):259-269
    [22] Koo OM, Rubinstein I, Onyuksel H. Camptothecin in stedcally stabilized phospholipid micelles: a novel nanomedicine. Nanomedicine, 2005, 1(1): 77-84
    [23] Kwan P, Sills GJ, Brodie MJ. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol Ther, 2001, 90(1):21-34
    [24] Alvarez-Nunez FA, Yalkowsky SH. Buffer capacity and precipitation control of pH solubilized phenytoin formulations. Int J Pharm, 1999,185 (1):45-49
    [25] Nation RL, Evans AM, Milne RW. Pharmacokinetic drug interactions with phenytoin (Part Ⅰ). Clin Pharmacokinet, 1990, 18(1):37-60
    [26] Craig S. Phenytoin poisoning. Neurocrit Care, 2005,3 (2): 161-170
    [27] 中华人民共和国药典.北京:化学工业出版社,2005,323-324
    [28] Couvereur P, Kante B, Roland, et al. Polycyanoacrylate nanopartieles as potential lysosomotropic carder: preparation, morphological and sorptive properties. J Pharm Pharmcol, 1979,31(5):331-332
    [29] Couvreur P, Kante B, Roland M, et al. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci, 1979, 68(12): 1521-1524
    [30] N. Al Khoury-Fallouh, L. Roblot-Treupel, H. Fessi, J.P, et al. Development of a new process for the manufacture of poly(isobutylcyanoacrylate) nanocapsules, Int. J. Pharm, 1986, 28:125-132
    [31] 李赛,钱志勇,刘晓蕾,等.聚a一氰基丙烯酸丁酯纳米微囊的制备研究.合成化学,2002,10(5):419-442
    [32] Serajuddin AT, Jarowski CI. Influence of pH on release of phenytoin sodium from slow-release dosage forms. J Pharm Sci, 1993, 82(3):306-310.
    [33] 赵祥成.纳米药物的制备及其给药途径的研究:[硕士论文].天津:天津大学,2005
    [34] 张中太,林元华,唐子龙,等.纳米材料及其技术的应用前景.材料工程,2000,3:42-48
    [35] Yong-Eun Lee Koo a, G. Ramachandra Reddy b, Mahaveer Bhojani c, et al. Brain cancer diagnosis and therapy with nanoplatforms. Advanced Drug Delivery Reviews, 2006, 58(14): 1556-1577
    [36] Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Bioteehnol, 2007,18(1):26-30
    [37] Sanjeeb k. Sahoo, Vinod Labhasetwar. Nanotech approaches to drug delivery and inaging, 2003, 24(8):1112-1120
    [38] 张阳德.纳米药物学.北京:化学工业出版社,2006,190-193
    [39] Shen LF, Zhang YD, Shen HJ, et al. Liver targeting and the delayed drug release of the nanoparticles of adriamycin polybutylcyanoacrylate in mice. Chin Med J (Engl), 2006,119(15): 1287-1293
    [40] 黄秀君,李顺强,郑振源,等.~3H-α氰基丙烯酸正丁基酯在大鼠体内的吸收,分布和排泄实验研究.生殖与避孕,1988,8(2):34-35
    [41] Vauthier C, Dubemet C, Fattal E, et al. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev, 2003, 55(4):519-548.
    [42] Chavany C, Le Doan T, Couvreur P, et al. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm Res, 1992,9(4):441-449.
    [43] Yang XX, Chen JH, Guo D. Study of biocompatibility of polybutylcyanoacrylate nanoparticles. Di Yi Jun Yi Da Xue Xue Bao, 2005,25 (10):1261-1263
    [44] Gelperina SE, Khalansky AS, Skidan IN, et al. Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol Lett,2002,126(2):131-141
    [45] Zhang Z, Feng SS. In vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy. Biomacromolecules, 2006, 7(4):1139-1146
    [46] Gonzalez-Martin G, Merino I, Rodriguez-Cabezas MN, et al. Characterization and trypanocidal activity of nifurtimox-containing and empty nanoparticles of polyethylcyanoacrylates. J Pharm Pharmacol, 1998, 50(1):29-35.
    [47] Alexander Bootz, Thomas Russ, Friedhelm Gores, et al. Molecular weights of poly(butyl cyanoacrylate) nanoparticles determined by mass spectrometry and size exclusion chromatography.European Journal of Pharmaceutics and Biopharmaceutics, 2005,60(3): 391-399
    [48] Feng SS, Mu L, Win KY, et al. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr Med Chem, 2004,11(4):413-424
    [49] C.E. Soma, C. Dubernet, D. Bentolila, et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials, 2000,21(1): 1-7
    [50] Chia-Lung Lin, Wen-Yen Chiu, Chia-Fen Lee. Thermal/pH-sensitive core-shell copolymer latex and its potential for targeting drug carrier application. Polymer, 2005,46(23): 10092-10101
    [51] Chansiri G, Lyons RT,Effect of surface charge on the stability of oil/water emulsion during steam sterilization,1999,88(4):454-458.
    [52] Calvo P, Remunan-Lopez C, Vila-Jato JL, et al. Chitosan and Chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carders for proteins and vaccines. Pharm Res, 1997,14(10):1431-1436
    [53] Hsu JP, Nacu A. Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant. J Colloid Interface Sci, 2003,259(2): 374-381
    [54] 廖工铁.靶向给药制剂.成都:四川科学技术出版社,1997,80-90.
    [55] Wu XG, Li G, Gao YL. Optimization of the preparation of nalmefene-loaded sustained-release microspheres using central composite design. Chem Pharm Bull (Tokyo), 2006, 54(7):977-981.
    [56] Reddy LH, Murthy RS. Phannacokinetics and biodistribution studies of Doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles synthesized by two different techniques. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2004,148 (2):161-166.
    [57] K. Krauel, N. M. Davies, S. Hook, et al. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. Journal of Controlled Release, 2005, 106 (1-2):76-87
    [58] Douglas SJ, Davis SS, Ilium L. Nanopartieles in drug delivery. Crit Rev Ther Drug Cartier Syst, 1987,3(3):233-261
    [59] Van Landuyt KL, De Munck J, Snauwaert J, et al. Monomer-solvent phase separation in one-step self-etch adhesives. J Dent Res, 2005, 84(2): 183-188.
    [60] Jiang B, Hu L, Gao C,et al. Crosslinked polysaeeharide nanoeapsules: preparation and drug release properties. Acta Biomater, 2006, 2(1):9-18.
    [61] Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev, 2001, 47(1):65-81.
    [62] Bouchemal K, Briancon S, Pertier E, et al. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm, 2004,280(1-2): 241-251
    [63] M.Fresta, G. Cavallaro, G. Giammona, et al. Preparation and characterization of polyethyl-2-cyanoacrylate nanocapsules containing antiepileptic drags. Biomaterials. 1996, 17(8):751-758.
    [64] M. Wohlgemuth, W. Machtle, C. Mayer, Improved preparation and physical studies of polybutylcyanoacrylate nanocap sules, J. Microencapsul, 2000,17(4): 437-448
    [65] Govender T, Stolnik S, Garnett MC, et al. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release, 1999,57 (2):171-185.
    [66] Alexandridou S, Kiparissides C. Production of oil-containing polyterephthalamide microcapsules by interfacial polymerization. An experimental investigation of the effect of process variables on the microcapsule size distribution. J Microencapsul, 1994,11(6):603-614.
    [67] Bonduelle S, Foucher C, Leroux JC, Association of cyclosporin to isohexylcyanoacrylate nanospheres and subsequent release in human plasma in vitro. J Microencapsul, 1992,9(2): 173-182
    [68] Kreuter J, Ramge P, Petrov V,et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res, 2003,20 (3):409-416.
    [69] Cariline O, Sullivan, Colin Birkinshaw. In vitro degradation of insulin-loaded poly (n-butylcyanoacrylate) nanoparticles, 2004,25(8): 4375-4382
    [70] Page-Clisson ME, Pinto-Alphandary H, Ourevitch M, et al. Development of ciprofloxacin-loaded nanoparticles: physicochemical study of the drug carrier.J Control Release, 1998 ,56(1-3):23-32
    [71] Reddy LH, Murthy RR. Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly(butylcyanoacrylate) nanoparticles. Acta Pharm, 2004,54(2):103-118
    [72] Reddy LH, Sharma RK, Murthy RS. Enhanced tumour uptake of doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles in mice bearing Dalton's lymphoma tumour.J Drug Target, 2004,12(7):443-451
    [73] Tan HS, Ng TH, Mahabadi HK. Interfacial polymerization encapsulation of a viscous pigment mix: emulsification conditions and particle size distribution . J Microencapsul, 1991,8(4):525-536
    [74] Etuk BR, Weatherley LR, Murray KR. Some factors affecting the size of nylon 6-10 microcapsules prepared by interfacial polymerization in a high-voltage electric field. J Microencapsul, 1995,12(2):173-183
    [75] Mayer C. Nanocapsules as drug delivery systems,Int J Artif Organs, 2005,28(11):1163-1171
    [76] Krauel K, Davies NM, Hook S, et al. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. J Control Release, 2005,106(1-2):76-87
    [77] Watnasirichaikul S, Davies NM, Rades T, et al. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm. Res, 2000,17(6):684-689
    [78] Hayes ME, Drummond DC, Hong K, et al. Increased target specificity of anti-HER2 genospheres by modification of surface charge and degree of PEGylation. Mol Pharm, 2006, 3(6):726-736
    [79] Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res, 1999, 16(10):1564-1569
    [80] Watnasiriehaikul S, Rades T, Tucker IG, et al. Effects of formulation variables on characteristics of poly (ethylcyanoacrylate) nanoeapsules prepared from w/o microemulsions. Int J Pharm, 2002,235(1-2):237-246
    [81] Yokoyama M. Drug targeting with nano-sized carder systems. J Artif Organs, 2005,8 (2):77-84
    [82] Agnihotri SA, Mallikarjuna NN, Aminabhavi TM, et al. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release, 2004,100(1):5-28
    [83] Simovic S, Prestidge CA. Nanoparticle layers controlling drug release from emulsions. Eur J Pharm Biopharm, 2007,30 (1): 1-9
    [84] Minicueci F, Bellini A, Fanelli G, et al. Status epilepticus. Neurol Sci, 2006, 27 (Suppl 1):52-54
    [85] Racine RJ. Modification of seizure activity by electrical stimulation Ⅱ Motor seizure. Electroencephogr Clin Neurophysiol, 1972,32 (3):281-294
    [86] Klitgaard H, Matagne A, Vanneste-Goemaere J, et al. Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res, 2002,51 (1-2):93-107
    [87] Nuwer MR, Comi C, Emerson R, et al. IFCN standards for digital recording of clinical EEG. Electroencephalogr Clin Neurophysiol, 1998, 106 (3): 259-261
    [88] Jones DM. Esmaeil N, Maren S, et al. Characterization of pharmacoresistance to benzodiazepines in the rat Li-pilocarpine model of status epilepticus. Epilepsy Research, 2002, 50 (3): 301-312
    [89] Honchar MP, Olney JW, Sherman, WR. Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science, 1983,220 (4594): 323-325
    [90] Peredery O, Persinger MA, Parker G, et al. Temporal changes in neuronal dropout following inductions of lithium/pilocarpine seizures in the rat. Brain Res, 2000,881 (1): 9-17
    [91] Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res, 2002, 50: 105-123
    [92] Morrisett RA, Jope RS, Snead OC 3rd. Effects of drugs on the initiation and maintenance of status epilepticus induced by administration of pilocarpine to lithium-pretreated rats. Exp Neurol, 1987,97(1): 193-200
    [93] Fisher RS. Animal models of the epilepsies. Brain Res Brain Res Rev, 1989, 14(3):245-278
    [94] Persinger MA, Dupont MJ. Emergence of spontaneous seizures during the year following lithium/pilocarpine-induced epilepsy and neuronal loss within the right temporal cortices. Epilepsy Behav, 2004, 5(4):440-445
    [95] Savolainen K, Hirvonen MR, Naarala J. Phosphoinositide second messengers in cholinergic excitotoxicity. Neurotoxicology, 1994,15(3):493-502
    [96] Clifford DB, Olney JW, Maniotis A, et al. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience, 1987,23(3):953-968
    [97] Freitas RM, Sousa FC, Viana GS, et al. Effect of gabaergic, glutamatergic, antipsychotic and antidepressant drugs on pilocarpine-induced seizures and status epilepticus. Neurosci Lett, 2006, 408(2):79-83
    [98] Foumier NM, Persinger MA, et al. The neuromatrix and the epileptic brain: behavioral and learning preservation in limbic epileptic rats treated with ketamine but not acepromazine. Epilepsy Behav, 2004, 5 (1): 119-127
    [99] Chaudhary G, Malhotra J, Chaudhari JD, et al. Effect of different lithium priming schedule on pilocarpine-induced status epilepticus in rats. Methods Find Exp Clin Pharmacol, 1999, 2(1):21-24
    [100] Persinger MA, Stewart LS, Richards PM, et al. Seizure onset times for rats receiving systemic lithium and pilocarpine: sources of variability. Pharmacol Biochem Behav, 2002, 71(1-2):7-17
    [101] Klitgaard H, Matagne A, Gobert J. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy, opean Journal of Pharmacology, 1998, 353(2-3):191-206
    [102] Tudor M, Tudor L, Tudor KI. Hans Berger (1873-1941)—the history of electroencephalography. Acta Med Croatica, 2005,59 (4):307-313
    [103] Mendez OE, Brenner RP, Increasing the yield of EEG. J Clin Neurophysiol, 2006,3(4):282-293
    [104] Betting LE, Mory SB, Lopes-Cendes I, et al. EEG features in idiopathic generalized epilepsy: clues to diagnosis. Epilepsia, 2006, 47(3):523-528
    [105] Ghougassian DF, d'Souza W, Cook MJ, et al. Evaluating the utility of inpatient video-EEG monitoring. Epilepsia, 2004,45(8):928-932
    [106] Acir N, Oztura I, Kuntalp M,et al. Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks. IEEE Trans Biomed Eng, 2005,2(1):30-40
    [107] Kaplan, Peter W. The EEG of Status Epilepticus. J Clin Neurophysiol, 2006, 23(3): 221-229
    [108] Steinlein OK, Noebels JL. Ion channels and epilepsy in man and mouse.Curr Opin Genet Dev, 2000,10(3):286-291
    [109] Kwan P, Sills GJ, Brodie MJ. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol Ther, 2001,90(1):21-34
    [110] Peredery O, Persinger MA. Herbal treatment following post-seizure induction in rat by lithium pilocarpine: Scutellaria lateriflora (Skullcap), Gelsemium sempervirens (Gelsemium) and Datura stramonium (Jimson Weed) may prevent development of spontaneous seizures. Phytother Res, 2004,15(9):700-705
    [111] Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis, 2004,16(1):1-13
    [112] Pliar Calvo, Bruno Goudtin, Helene Chacun, et al. Long-Circulating PEGylated Polycyanoacrylate as New Drug Carrier for Brain Delivery. Pharmaceutical Research, 2001, 18(8): 1157-1165
    [113] Ambruosi A, Khalansky AS, Yamamoto H, et al. Biodistribution of polysorbate 80-coated doxorubicin-loaded[14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target, 2006,14(2):97-105
    [114] Debanjan Das, Senshang Lin. Double-Coated Poly (Butylcynanoacrylate) Nanoparticulate Delivery Systems For Brain Targeting Of Dalargin Via Oral Administration. Journal Of Pharmaceutical Sciences, 2005,94(6): 1343-1353
    [115] 卢剑,常津,赵硕.等.载药纳米微粒表面性能与表面改性.化学通报,2003,66(50):1-6
    [116] Scherrmann JM. Drug delivery to brain via the blood-brain barrier.Vascular Pharmacology, 2002, 38(6):349-354
    [1] Panyam J, Labhasetwar V, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev, 2003, 55(3):329-347
    [2] Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis, 2004,16(1): 1-13
    [3] Peracchia MT, Harnisch S, Pinto-Alphandary H, et al. Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials, 1999,20(14): 1269-1275
    [4] Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.Int J Pharm, 2006, 307(1):93-102.
    [5] van Etten EW, van Vianen W, Hak J. et al. Activity ofliposomal amphotericin B with prolonged circulation in blood versus those of AmBisome and fungizone against intracellular Candida albicans in murine peritoneal macrophages. Antimicrob Agents Chemother, 1998, 42(9):2437-2439
    [6] Van Etten EW, Steame-Cullen LE, ten Kate M.et al. Efficacy of liposomal amphotedcin B with prolonged circulation in blood in treatment of severe pulmonary aspergillosis in leukopenic rats.Antimicrob Agents Chemother, 2000, 44 (3):540-545.
    [7] Barakat NS, Radwan MA. In vitro performance of carbamazepine loaded to various molecular weights of poly (D,L-lactide-co-glycolide). Drug Deliv, 2006, 13 (1):9-18.
    [8] Gang Liu, Matthew R. Garretta, Ping Men, et al. Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochimica et Biophysica Acta, 2005,1741 (3):246-252.
    [9] Kreuter J, Alyautdin RN, Kharkevich DA,et al. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res,1995,674(1): 171-174.
    [10] Schroeder U,Sommerfeld P, Sabel BA, et al. Efficacy of oral dalargin-loaded nanoparticle delivery across the blood-brain barrier. Peptides, 1998,19 (4):777-780.
    [11] Gao K, Jiang X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm, 2006,310(1-2):213-219
    [12] Aliautdin RN, Petrov VE, Ivanov AA, et al. Transport of the hexapeptide dalargin across the hemato-encephalic barrier into the brain using polymer nanoparticles. Eksp Klin Farmakol, 1996, 59(3):57-60
    [13] Schroeder U, Sommeffeld P, Ulrich S, et al. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci, 1998,87(11): 1305-1307
    [14] Alyautdin RN, Petrov VE, Langer K, et al. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res, 1997, 14(3):325-328.
    [15] Alyautdin RN, Tezikov EB, Ramge P, et al. Significant entry of tubocurarine into the brain of rats by absorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J. Microencapsul, 1998,15(1): 67-74
    [16] Ambruosi A, Gelperina S, Khalansky A, et al. Influence of surfactants, polymer and doxorubicin loading on the anti-turnout effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model.J Microencapsul, 2006,23(5):582-592.
    [17] Ffiese E, Seiler G, Quack B,et al. Enhancement of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly (butylcyanoacylate) nanoparticles as a parenteral controlled release delivery system. Eur. J. Pharm. Biopharm, 2000, 49(2): 103-109
    [18] Basel AA, Petrov VE, Trofirnov SS, et al. Antiamnesic activity of nerve growth factor adsorbed on poly(butyl) cyanoacrylate nanoparticles coated with polysorbate-80. Eksp Klin Farmakol, 2005, 68(6):3-8.
    [19] Koziara JM, Lockman PR, Allen DD, et al. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release, 2004, 99(2):259-269
    [20] Koo OM, Rubinstein I, Onyuksel H. Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine. Nanomedicine, 2005, 1(1):77-84
    [21] Jory Kreuter. Nanoparticulate systems for brain delivery of drugs.Drugs Delivery Reviews,2001,47(1): 65-81
    [22] Vauthier C, Dubernet C, Fattal E, et al. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev, 2003, 55(4):519-548
    [23] Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs.Biomatefials, 2005, 26(15):2713-2722
    [24] Couvreur P, Tulkens P, Roland M, et al. Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett,1977, 84(2):323-326
    [25] Pliar Calvo, Bruno Gouritin, Helene Chacun, et al. Long-Circulating PEGylated Polycyanoacrylate as New Drug Carder for Brain Delivery. Pharmaceutical Research, 2001, 18(8): 1157-1165
    [26] Suresh Reddy J, Venkateswarlu V, Koning GA. Radioprotective effect of transferrin targeted citicoline liposomes. J Drug Target, 2006,14(1):13-19
    [27] Das D, Lin S. Double-coated poly (boutylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J Pharm Sci, 2005, 94(6): 1343-1353
    [28] Zhong Ming qing, Hong Yanli, Kwokping Ho. Targeted drug delivery via the transferring receptor-mediate endocytosis pathway. Pharmacological reviews, 2002,54(4): 561-587
    [29] Olivier JC, Huertas R, Lee HJ. Synthesis of pegylated immunonanoparticles. Pharm Res, 2002,19(8): 1137-1143
    [30] Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A, 1996, 93(24):14164-14169
    [31] Robert S, Fisher, Jet Ho, et al. Potential new methods for antiepileptic drug delivery.CNS Drugs, 2002,16(9):579-593
    [32] Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem, 2006, 384(3):620-630.
    [33] Gao X, Yang L, Petros JA, et al. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol, 2005, 16(1):63-72.
    [34] X. Michalet FF, Pinaud LA, Bentolila et al. Quantum Dots for Live Cells,in Vivo Imaging, and Diagnostics. Science, 2005, 307(8):538-544
    [35] Dubertret B, Skouddes P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298(5599): 1759-1762.
    [36] Jaiswal JK, mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol, 2003, 21(1): 47-50
    [37] Gao XH, Cui YY, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 2004, 22(8): 969-976
    [38] Dahan M, Levi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 2003, 302(5644):442-445
    [39] Rosenthal SJ, Tomlinson A, Adkins EM, et al.Targeting cell surface receptors with ligand-eonjugated nanocrystals. J Am Chem Soc, 2002, 124(17):4586-4594
    [40] Ayyagari AL, Zhang X, Ghaghada KB,et al. Long-circulating liposomai contrast agents for magnetic resonance imaging. Magn Reson Med, 2006, 55(5):1023-1029
    [41] Dunning MD,Lakatos A, Loizou L, et al. Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci, 2004, 24(44):9799-9810
    [42] Ayyagari AL, Zhang X, Ghaghada KB, et al. Long-circulating liposomal contrast agents for magnetic resonance imaging. Magn Reson Med, 2006, 55(5):1023-1029
    [43] Eichman JD, Bielinska AU, Kukowska-Latallo JF, et al. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm. Sci. Technol. Today, 2000, 3 (7):232-245.
    [44] Bharali D J, Klejbor I, Stachowiak EK, et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A, 2005,102(32): 11539-11544.
    [45] 杨菁,宋存先,孙洪范,等.包载治疗基因的聚合物纳米粒子:Ⅰ.纳米粒子制备及动物模型基因治疗实验研究.生物医学工程学杂志,2005,22(3):438-442
    [46] Soong RK, Bachand GD, Neves HP, et al. Powering an inorganic nanodevice with a biomolecular motor. Science, 2000,290 (5496): 1555-1558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700