HIV-1 Vif中与APOBEC3G和APOBEC3F功能相关的保守结构域的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胞嘧啶脱氨酶APOBEC3G(或称A3G)和其他一些胞嘧啶脱氨酶例如APOBEC3F(或称A3F)都是有效的逆转录病毒抑制因子。人免疫缺陷病毒-1(HIV-1)需要存在于病毒粒子中的病毒感染子,即Vif(Virion infectivity factor)抑制人体内多种胞嘧啶脱氨酶的抗病毒作用才能获得感染能力。HIV-1 Vif蛋白抑制APOBEC3家族蛋白抗病毒功能的机制是相似的,即Vif蛋白通过结合Cullin5、ElonginB和ElonginC形成E3泛素连接酶复合体,从而导致靶蛋白APOBEC3家族蛋白被泛素化最终通过蛋白酶体系统将其降解。然而,介导HIV-1 Vif蛋白与胞嘧啶脱氨酶APOBEC3相互作用的蛋白结构域到目前为止尚不明确。
     本研究发现,HIV-1 Vif蛋白中含有一个VxIPLx_(4-5)LxΦx_2YwxL保守结构域。通过大量的实验研究,我们发现该结构域在介导Vif蛋白与APOBEC3的有效结合,由Vif介导的A3G蛋白降解,以及Vif对A3G抗病毒活性的抑制均起着十分重要的作用。该研究发现,由HIV-1 Vif蛋白的中52到72氨基酸残基序列构成的多肽片段(包含了VxIPLx_(4-5)LxΦx_2YWxL结构域)能有效的与A3G相互结合,然而对该多肽片段中两个疏水性氨基酸残基L64和I66进行突变后能破坏这种相互结合作用。我们还发现,当该结构域的某个氨基酸残基位点发生突变而导致Vif蛋白失去对A3G抗病毒功能的抑制作用时,该Vif蛋白仍然具有结合Cullin5-E3泛素复合体和A3G的能力。该结果提示,Vif与A3G的结合作用在其抑制A3G抗病毒作用中是必要但不充分的条件。与以往研究发现的HIV-1 Vif结构域中40到44氨基酸残基只抑制A3G的功能有所不同,该研究所发现的VxIPLx_(4-5)LxΦx_2YWxL结构域对Vif蛋白与A3G和A3F的结合以及功能抑制都十分重要。同时,我们还发现了另一个HIV-1 Vif蛋白结构域TG/PER/KxW,即74到79氨基酸残基,只对Vif与A3F的结合和功能抑制方面起重要作用,而对A3G的功能无明显影响。
     另外,Vif蛋白的N末端还存着一个保守的蛋白结构构域SLV/Ix_4Yx_9Y,即Vif蛋白23到40氨基酸残基区域。从1992年该被发现以来,人们对SLV/Ix_4Yx_9Y结构域的生物学功能仍不清楚。通过深入的研究,我们发现SLV/Ix_4Yx_9Y结构域在Vif蛋白抑制APOBEC3抗病毒作用中起着至关重要的作用。研究结果显示Vif蛋白的K26、Y30和Y40氨基酸残基对Vif介导的A3G的降解和功能抑制非常重要,而对APOBEC3家族另一主要成员A3F无明显影响。值得注意的是,在HIV和猿类免疫缺陷病毒(SIV)的Vif蛋白中,SLV/Ix_4Yx_9Y区域内的极性氨基酸残基K26总是高度保守,而且该氨基酸残基在Vif蛋白对A3G的功能抑制中非常重要,然而该氨基酸残基的突变不影响Vif对A3F的抑制能力。该研究还发现,Vif蛋白的S23、L24和V25三个氨基酸残基对介导Vif蛋白对A3F功能的抑制作用远远大于A3G,提示SLV/Ix_4Yx_9Y结构域中的SLV氨基酸残基是Vif介导对A3F功能抑制的主要位点。
     通过对Vif蛋白的氨基酸序列比对分析发现,Vif蛋白的结构域VxIPLx_(4-5)LxΦx_2YWxL、TG/PER/KxW和SLV/Ix_4Yx_9Y在HIV-1、HIV-2和SIV等病毒的Vif蛋白中均高度保守。我们的研究结果提示,灵长类慢病毒的Vif蛋白是通过这些保守的结构域识别宿主APOBEC3蛋白的。Vif蛋白这些保守的结构域为研制有效的抗HIV病毒的抑制剂提供了新的重要靶点。
Apolipoprotein B mRNA-editingi catalytic polypeptide-like 3G(APOBEC3G,or A3G) and related cytidine deaminases such as apolipoprotein B mRNA-editing catalytic polypeptide-like 3F(APOBEC3F,or A3F) are potent inhibitors of retroviruses. Formation of infectious human immunodeficiency virus(HIV)-1 requires suppression of multiple cytidine deaminases by Vif.HIV-1 Vif suppresses various APOBEC3 proteins through a common mechanism by recruiting Cullin5,ElonginB,and elonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation.Domains in Vif that mediate APOBEC3 recognition have not been fully characterized.
     In the present study part one,we identified a VxIPLx_(4-5)LxΦx_2YWxL motif in HIV-1 Vif,which is required for efficient interaction between Vif and A3G, Vif-mediated A3G degradation and virion exclusion,and functional suppression of the A3G antiviral activity.Amino acids 52 to 72 of HIV-1 Vif(including the VxIPLx_(4-5)LxΦx_2YWxL motif) alone could mediate interaction with A3G,and this interaction was abolished by mutatuins of two hydrophobic amino acids in this region. We have also observed that a Vif mutant was ineffective against A3G,yet it retained the ability to interact with Cullin5-E3 ubiquitin complex and A3G,suggesting that interaction with A3G is necessary but not sufficient to inhibit its antiviral function. Unlike the previously identified motif of HIV-1 Vif amino acids 40 to 44,which is only important for A3G suppression,the VxIPLx_(4-5)LxΦx_2YWxL motif is also required for efficient A3F interaction and suppression.On the other hand,another motif,TGERxW, of HIV-1 Vif amino acids 74 to 79 was found to be mainly important for A3F interaction and inhibition.
     The amino-terminal region of the HIV-1 Vif molecule contains a conserved SLV/Ix_4Yx_9Y motif that was first described in 1992,but the importance of this motif for Vif function has yet not been examined.In our study part two our characterization of the amino acids surrounding this motif in HIV-1 Vif indicated that this region is critical for APOBEC3 suppression.Amino acids K26,Y30 and Y40 were found to be important for the Vif-induced degradation and suppression of cellular APOBEC3G(A3G).In particular,the positively charged K26 of HIV-1 Vif is invariably conserved within the Vif SLV/Ix_4Yx_9Y motif of HIV/SIV Vif molecules and was the most critical residue for A3G inactivatin.However,mutation of these residues had little effect on the Vif-mediated suppression of A3F.The SLV portion of the Vif SLV/Ix_4Yx_9Y motif was found to be required for optimal suppression of A3F.Thus,the Vif SLV/Ix_4Yx_9Y motif represent an important functional domain in the Vif-mediated defense against APOBEC3.
     All the three Vif motifs VxIPLx_(4-5)LxΦx_2YWxL and TGERxW and SLV/Ix_4Yx_9Y are highly conserved among HIV-1,HIV-2 and various simian immunodeficiency virus (SIV) Vif proteins.Our data suggest that primate lentiviral Vif molecules recognize their autologous APOBEC3proteins through conserved structural features.These structural motifs in HIV-1 Vif represent attractive targets for the development of novel inhibitors to combat HIV infection.
引文
1. Gilbert, PB et al (2003). Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal". Statistics in Medicine 22 (4): 573-593.
    2. Reeves, J. D. and Doms, R. W (2002). Human Immunodeficiency Virus Type 2. J. Gen. Virol. 83 (Pt 6): 1253-65.
    3. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002). A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45 (8): 1712-22.
    4. Chan, DC, Fass, D., Berger, JM., Kim, PS. (1997).Core Structure of gp41 from the HIV Envelope Glycoprotein. Cell 89: 263-73.
    5. Miller JH, Presnyak V, Smith HC (2007). The dimerization domain of HIV-1 viral infectivity factor Vif is required to block APOBEC3G incorporation with virions. Retrovirology 4 (1): 81.
    6. Reuben S. Harris, Mark T, LIDDAMENT Retrovial restriction by APOBEC protein. Nature, 2004,4:868-877.
    7. Jarmuz A, Chester A, Bayliss J, et al. An anthropoid specific locus of orphan C to U RNA editing enzymes on chromosome 22. Genomics, 2002, 79:285-296.
    8. Cen S, Guo F, Niu M, et al. The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem, 2004, 279:33177-33184.
    9. Yu Q, Konig R, Pillai S, et al. Single strand specificity of APOBEC3G account for minus strand deaminatin of the HIV genome. Nat Struct Mol Biol, 2004, 11:435-442
    10. Reuben S, Harris. DNA Deamination Mediates Innate Immunity to Retroviral Infectin. Cell, 2003, 113: 803-809.
    11. Liddamenr, M. T. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vitro. Curr. Biol, 2004, 14: 1385-1391.
    12. Peters JM, Franke WW, Kleinschmidt JA. (1994) Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem, March 11;269(10):7709-18.
    13. Lodish, H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. (2004). Molecular Cell Biology, 5th ed., ch.3, pp 66-72. New York: WH Freeman
    14. Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268, 533-539.
    15. Haas AL, Warms JV, Hershko A, Rose IA. Ubiquitin-activating enzyme: Mechanism and role in protein-ubiquitin conjugation. J Biol Chem. 1982 March 10;257(5):2543-8.
    16. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. (2000). Recognition of the polyubiquitin proteolytic signal. EMBO J 19, 94-102.
    17. Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J. 2003 Jun; 34 (6): 753-67.
    18. Mehle A, Goncalves J, Santa marta M, et al. Phosphorylation of a novel SOCS box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes and Development, 2004, 18: 2861-2866.
    19. YuX, YuY, Liu B, et al. Inductin of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science, 2003, 302: 1056-1060.
    1. Bieniasz, P. D. (2004). Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5, 1109-15.
    2. Goff, S. P. (2004). Retrovirus restriction factors. Mol Cell 16, 849-59.
    3. Harris, R. S. & Liddament, M. T. (2004). Retroviral restriction by APOBEC proteins. Nat Rev Immunol 4, 868-77.
    4. Navarro, F. & Landau, N. R. (2004). Recent insights into HIV-1 Vif. Curr Opin Immunol 16,477-82.
    5. Rogozin, I. B., Basu, M. K., Jordan, I. K., Pavlov, Y. I. & Koonin, E. V. (2005). APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle 4, 1281-5.
    6. Rose, K. M., Marin, M., Kozak, S. L. & Kabat, D. (2004). Transcriptional regulation of APOBEC3G, a cytidine deaminase that hypermutates human immunodeficiency virus. J Biol Chem 279, 41744-9.
    7. Turelli, P. & Trono, D. (2005). Editing at the crossroad of innate and adaptive immunity. Science 307, 1061-5.
    8. Chiu, Y. L. & Greene, W. C. (2006). APOBEC3 cytidine deaminases: distinct antiviral actions along the retroviral life cycle. J Biol Chem 281, 8309-12.
    9. Cullen, B. R. (2006). Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J Virol 80, 1067-76.
    10. Malim, M. H. (2006). Natural resistance to HIV infection: The Vif-APOBEC interaction. C R Biol 329, 871-5.
    11. Yu, X. (2006). Innate cellular defenses of APOBEC3 cytidine deaminases and viral counter-defenses. Current Opinion in HIV and AIDS 1, 187-193.
    12. Luo, K., Liu, B., Xiao, Z., Yu, Y, Yu, X., Gorelick, R. & Yu, X. F. (2004). Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 78, 11841 -52.
    13. Zennou, V., Perez-Caballero, D., Gottlinger, H. & Bieniasz, P. D. (2004). APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol 78, 12058-61.
    14. Alce, T. M. & Popik, W. (2004). APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 279, 34083-6.
    15. Douaisi, M., Dussart, S., Courcoul, M., Bessou, G., Vigne, R. & Decroly, E. (2004). HIV-1 and MLV Gag proteins are sufficient to recruit APOBEC3G into virus-like particles. Biochem Biophys Res Commun 321, 566-73.
    16. Schafer, A., Bogerd, H. P. & Cullen, B. R. (2004). Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 328, 163-8.
    17. Cen, S., Guo, F., Niu, M., Saadatmand, J., Deflassieux, J. & Kleiman, L. (2004). The interaction between HIV-1 Gag and APOBEC3G J Biol Chem 279, 33177-84.
    18. Navarro, F., Bollman, B., Chen, H., Konig, R., Yu, Q., Chiles, K. & Landau, N. R. (2005). Complementary function of the two catalytic domains of APOBEC3G. Virology 333, 374-86.
    19. Wang, T., Tian, C, Zhang, W., Luo, K., Sarkis, P. T., Yu, L., Liu, B., Yu, Y. & Yu, X. F. (2007). 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virol 81, 13112-24.
    20. Svarovskaia, E. S., Xu, H., Mbisa, J. L., Barr, R., Gorelick, R. J., Ono, A., Freed, E. O., Hu, W. S. & Pathak, V. K. (2004). Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 279, 35822-8.
    21. Khan, M. A., Kao, S., Miyagi, E., Takeuchi, H., Goila-Gaur, R., Opi, S., Gipson, C. L., Parslow, T. G., Ly, H. & Strebel, K. (2005). Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol 79, 5870-4.
    22. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A. J. (2003). Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112.
    23. Mangeat, B., Turelli, P., Caron, G., Friedli, M., Perrin, L. & Trono, D. (2003). Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99-103.
    24. Zhang, H., Yang, B., Pomerantz, R. J., Zhang, C., Arunachalam, S. C. & Gao, L. (2003). The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94-8.
    25. Harris, R. S., Bishop, K. N., Sheehy, A. M., Craig, H. M., Petersen-Mahrt, S. K., Watt, I. N., Neuberger, M. S. & Malim, M. H. (2003). DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803-9.
    26. Mariani, R., Chen, D., Schrofelbauer, B., Navarro, F., Konig, R., Bollman, B., Munk, C., Nymark-McMahon, H. & Landau, N. R. (2003). Species-Specific Exclusion of APOBEC3G from HIV-1 Virions by Vif. Cell 114, 21-31.
    27. Yu, Q., Konig, R., Pillai, S., Chiles, K., Kearney, M., Palmer, S., Richman, D., Coffin, J. M. & Landau, N. R. (2004). Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11, 435-42.
    28. Suspene, R., Sommer, P., Henry, M., Ferris, S., Guetard, D., Pochet, S., Chester, A., Navaratnam, N., Wain-Hobson, S. & Vartanian, J. P. (2004). APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32, 2421-9.
    29. Guo, F., Cen, S., Niu, M., Saadatmand, J. & Kleiman, L. (2006). Inhibition of Formula-Primed Reverse Transcription by Human APOBEC3G during Human Immunodeficiency Virus Type 1 Replication. J Virol 80, 11710-22.
    30. Bishop, K. N., Holmes, R. K. & Malim, M. H. (2006). Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 80, 8450-8.
    31. Mbisa, J. L., Barr, R., Thomas, J. A., Vandegraaff, N., Dorweiler, I. J., Svarovskaia, E. S., Brown, W. L., Mansky, L. M., Gorelick, R. J., Harris, R. S., Engelman, A. & Pathak, V. K. (2007). Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 81, 7099-110.
    32. Luo, K., Wang, T., Liu, B., Tian, C., Xiao, Z., Kappes, J. & Yu, X. F. (2007). Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 81, 7238-48.
    33. Kaiser, S. M. & Emerman, M. (2006). Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G J Virol 80, 875-82.
    34. Schrofelbauer, B., Yu, Q., Zeitlin, S. G. & Landau, N. R. (2005). Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG uracil-DNA glycosylases. J Virol 79, 10978-87.
    35. Yang, B., Chen, K., Zhang, C., Huang, S. & Zhang, H. (2007). Virion-associated Uracil DNA Glycosylase-2 and Apurinic/Apyrimidinic Endonuclease Are Involved in the Degradation of APOBEC3G-edited Nascent HIV-1 DNA. J Biol Chem 282, 11667-75.
    36. Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P. & Yu, X. F. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056-60.
    37. Mehle, A., Goncalves, J., Santa-Marta, M., McPike, M. & Gabuzda, D. (2004). Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev 18, 2861-6.
    38. Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W. C. (2003). HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12, 591-601.
    39. Marin, M., Rose, K. M., Kozak, S. L. & Kabat, D. (2003). HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9, 1398-403.
    40. Conticello, S. G., Harris, R. S. & Neuberger, M. S. (2003). The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G Curr Biol 13, 2009-13.
    41. Sheehy, A. M., Gaddis, N. C. & Malim, M. H. (2003). The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9, 1404-7.
    42. Liu, B., Yu, X., Luo, K., Yu, Y & Yu, X. F. (2004). Influence of primate lentiviral Vif and proteasome inhibitors on human immunodeficiency virus type 1 virion packaging of APOBEC3G. J Virol 78, 2072-81.
    43. Liu, B., Sarkis, P. T., Luo, K., Yu, Y & Yu, X. F. (2005). Regulation of Apobec3F and human immunodeficiency virus type 1 Vif by Vif-Cul5-ElonB/C E3 ubiquitin ligase. J Virol 79, 9579-87.
    44. Yu, Y, Xiao, Z., Ehrlich, E. S., Yu, X. & Yu, X. F. (2004). Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev 18, 2867-72.
    45. Luo, K., Xiao, Z., Ehrlich, E., Yu, Y, Liu, B., Zheng, S. & Yu, X. F. (2005). Primate lentiviral virion infectivity factors are substrate receptors that assemble with cullin 5-E3 ligase through a HCCH motif to suppress APOBEC3G. Proc Natl Acad Sci U S A102, 11444-9.
    46. Kobayashi, M., Takaori-Kondo, A., Miyauchi, Y., Iwai, K. & Uchiyama, T. (2005). Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-Elongin B-Elongin C complex is essential for Vif function. J Biol Chem 280, 18573-8.
    47. Mehle, A., Thomas, E. R., Rajendran, K. S. & Gabuzda, D. (2006). A Zinc-binding Region in Vif Binds Cul5 and Determines Cullin Selection. J Biol Chem 281, 17259-65.
    48. Xiao, Z., Ehrlich, E., Yu, Y., Luo, K., Wang, T., Tian, C. & Yu, X. F. (2006). Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology 349, 290-9.
    49. Xiao, Z., Ehrlich, E., Luo, K., Xiong, Y. & Yu, X. F. (2007). Zinc chelation inhibits HIV Vif activity and liberates antiviral function of the cytidine deaminase APOBEC3G. Faseb J 21, 217-22.
    50. Xiao, Z., Xiong, Y., Zhang, W., Tan, L., Ehrlich, E., Guo, D. & Yu, X. F. (2007). Characterization of a Novel Cullin5 Binding Domain in HIV-1 Vif. J Mol Biol 373, 541-50.
    51. Simon, V., Zennou, V., Murray, D., Huang, Y., Ho, D. D. & Bieniasz, P. D. (2005). Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification. PLoS Pathog 1, e6.
    52. Tian, C., Yu, X., Zhang, W., Wang, T., Xu, R. & Yu, X. F. (2006). Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F. J Virol 80, 3112-5.
    53. Schrofelbauer, B., Senger, T., Manning, G & Landau, N. R. (2006). Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. J Virol 80, 5984-91.
    54. Russell, R. A. & Pathak, V. K. (2007). Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J Virol 81, 8201-10.
    55. Mehle, A., Wilson, H., Zhang, C., Brazier, A. J., McPike, M., Pery, E. & Gabuzda, D. (2007). Identification of an APOBEC3G Binding Site in HIV-1 Vif and Inhibitors of Vif-APOBEC3G Binding. J Virol 81:13235-41.
    56. Goila-Gaur, R., Khan, M. A., Miyagi, E., Kao, S., Opi, S., Takeuchi, H. & Strebel, K. (2008). HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes.Virology.372, 136-146
    57. Vodicka, M. A., Goh, W. C., Wu, L. I., Rogel, M. E., Bartz, S. R., Schweickart, V. L., Raport, C. J. & Emerman, M. (1997). Indicator cell lines for detection of primary strains of human and simian immunodeficiency viruses. Virology 233, 193-8.
    58. Xu, H., Svarovskaia, E. S., Barr, R., Zhang, Y., Khan, M. A., Strebel, K. & Pathak, V. K. (2004). A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc Natl Acad Sci U S A 101, 5652-7.
    59. Bogerd, H. P., Doehle, B. P., Wiegand, H. L. & Cullen, B. R. (2004). A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci U S A 101, 3770-4.
    60. Mangeat, B., Turelli, P., Liao, S. & Trono, D. (2004). A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem 279, 14481-3.
    61. Schrofelbauer, B., Chen, D. & Landau, N. R. (2004). A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci U S A 101, 3927-32.
    62. Zhang, W., Huang, M., Wang, T, Tan, L., Tian, C., Yu, X., et-al. Conserved and non-conserved features of HIV-1 and SIVagm Vif mediated suppression of APOBEC3 cytidine deaminases.Cell.Microbiol. In press. doi:10.1111/j. 1462-5822.2008.01157.x.
    1. Alce, T. M. & Popik, W. (2004). APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 279, 34083-6.
    2. Bieniasz, P. D. (2004). Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5, 1109-15.
    3. Bishop, K. N., Holmes, R. K. & Malim, M. H. (2006). Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 80, 8450-8.
    4. Bogerd, H. P., Doehle, B. P., Wiegand, H. L. & Cullen, B. R. (2004). A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci U S A 101, 3770-4.
    5. Cen, S., Guo, F., Niu, M., Saadatmand, J., Deflassieux, J. & Kleiman, L. (2004). The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 279, 33177-84.
    6. Chiu, Y. L. & Greene, W. C. (2006). APOBEC3 cytidine deaminases: distinct antiviral actions along the retroviral life cycle. J Biol Chem 281, 8309-12.
    7. Conticello, S. G, Harris, R. S. & Neuberger, M. S. (2003). The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol 13, 2009-13.
    8. Cullen, B. R. (2006). Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J Virol 80,1067-76.
    9. Douaisi, M., Dussart, S., Courcoul, M., Bessou, G., Vigne, R. & Decroly, E. (2004). HIV-1 and MLV Gag proteins are sufficient to recruit APOBEC3G into virus-like particles. Biochem Biophys Res Commun 321, 566-73.
    10. Goff, S. P. (2004). Retrovirus restriction factors. Mol Cell 16, 849-59.
    11. Goila-Gaur, R., Khan, M. A., Miyagi, E., Kao, S., Opi, S., Takeuchi, H. & Strebel, K. (2008). HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes. Virology.372, 136-146
    12. Gooch,B.D., and B.R.Cullen. 2008. Functional domain organization of human APOBEC3G. Virology 379:118-24.
    13. Guo, F., Cen, S., Niu, M., Saadatmand, J. & Kleiman, L. (2006). Inhibition of Formula-Primed Reverse Transcription by Human APOBEC3G during Human Immunodeficiency Virus Type 1 Replication. J Virol 80, 11710-22.
    14. Harris, R. S., Bishop, K. N., Sheehy, A. M., Craig, H. M., Petersen-Mahrt, S. K., Watt, I. N., Neuberger, M. S. & Malim, M. H. (2003). DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803-9.
    15. Harris, R. S. & Liddament, M. T. (2004). Retroviral restriction by APOBEC proteins. Nat Rev Immunol 4, 868-77.
    16. He, Z., W. Zhang, G, Chen, R. Xu, and X.F.Yu. 2008. Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. J Mol Biol 381:1000-11.
    17. Huthoff, H., and M. H. Malim. 2007. Identification of Amino Acid Residues in APOBEC3G Required for Regulation bu Human Immunodeficiency Virus Type 1 Vif and Virion Encapsidation. J Virol 81: 3807-15.
    18. Kaiser, S. M. & Emerman, M. (2006). Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G J Virol 80, 875-82.
    19. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A. J. (2003). Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112.
    20. Liu, B., Sarkis, P. T., Luo, K., Yu, Y. & Yu, X. F. (2005). Regulation of Apobec3F and human immunodeficiency virus type 1 Vif by Vif-Cul5-ElonB/C E3 ubiquitin ligase. J Virol 79, 9579-87.
    21. Liu, B., Yu, X., Luo, K., Yu, Y. & Yu, X. F. (2004). Influence of primate lentiviral Vif and proteasome inhibitors on human immunodeficiency virus type 1 virion packaging of APOBEC3G J Virol 78, 2072-81.
    22. Luo, K., Liu, B., Xiao, Z., Yu, Y, Yu, X., Gorelick, R. & Yu, X. F. (2004). Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 78, 11841-52.
    23. Luo, K., Wang, T., Liu, B., Tian, C., Xiao, Z., Kappes, J. & Yu, X. F. (2007). Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 81, 7238-48.
    24. Malim, M. H., and M. Emerman. 2008.HIV-1 accessory proteins—ensuring viral survival in a hostile environment. Cell Host Microbe 3:388-98.
    25. Mangeat, B., Turelli, P., Liao, S. & Trono, D. (2004). A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem 279, 14481-3.
    26. Mangeat, B., Turelli, P., Liao, S. & Trono, D. (2004). A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem 279, 14481-3.
    27. Mariani, R., Chen, D., Schrofelbauer, B., Navarro, F., Konig, R., Bollman, B., Munk, C, Nymark-McMahon, H. & Landau, N. R. (2003). Species-Specific Exclusion of APOBEC3G from HIV-1 Virions by Vif. Cell 114, 21-31.
    28. Marin, M., S. Golem, K. M. Rose, S. L. Kozad, and D. Kabat. 2008. Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of Mrna metabolism. J Virol 82:978-98.
    29. Marin, M., Rose, K. M., Kozak, S. L. & Kabat, D. (2003). HIV-1 Vif protein binds the editing enzyme AP0BEC3G and induces its degradation. Nat Med 9, 1398-403.
    30. Mbisa, J. L., Barr, R., Thomas, J. A., Vandegraaff, N., Dorweiler, I. J., Svarovskaia, E. S., Brown, W. L., Mansky, L. M., Gorelick, R. J., Harris, R. S., Engelman, A. & Pathak, V. K. (2007). Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 81, 7099-110.
    31.Mehle, A., Goncalves, J., Santa-Marta, M, McPike, M. & Gabuzda, D. (2004). Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev 18, 2861-6.
    32. Mehle, A., Wilson, H., Zhang, C, Brazier, A. J., McPike, M, Pery, E. & Gabuzda, D. (2007). Identification of an APOBEC3G Binding Site in HIV-1 Vif and Inhibitors of Vif-APOBEC3G Binding. J Virol 81:13235-41.
    33. Navarro, F., Bollman, B., Chen, H., Konig, R., Yu, Q., Chiles, K. & Landau, N. R. (2005). Complementary function of the two catalytic domains of APOBEC3G Virology 333, 374-86.
    34. Navarro, F. & Landau, N. R. (2004). Recent insights into HIV-1 Vif. Curr Opin Immunol 16,477-82.
    35. Oberste, M. S., and M. A. Gonda. 1992. Conservation of amino-acid sequence motifs in lentivirus Vif proteins. Virus Genes 6:95-102.
    36. Pery, E., K. S. Rajendran, A. J. Brazier, and D. Gabuzda. 2009. Regulation of APOBEC3 proteins by a novel YXXL motif in human immunodeficiency virus type 1 Vif and simian immunodeficiency virus SIVagm Vif. J Virol 83:2374-81.
    37. Rogozin, I. B., Basu, M. K., Jordan, I. K., Pavlov, Y. I. & Koonin, E. V. (2005). APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle 4, 1281-5.
    38. Rose, K. M., Marin, M., Kozak, S. L. & Kabat, D. (2004). Transcriptional regulation of APOBEC3G, a cytidine deaminase that hypermutates human immunodeficiency virus. J Biol Chem 279, 41744-9.
    39. Russell, R. A. & Pathak, V. K. (2007). Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J Virol 81, 8201-10.
    40. Russell, R. A., J. Smith, R. Barr, D. Bhattacharyya, and V. K. Pathak. 2009. Distinct domains within APOBED3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif. J Virol 83:1992-2003.
    41.Schafer, A., Bogerd, H. P. & Cullen, B. R. (2004). Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 328, 163-8.
    42. Schrofelbauer, B., Chen, D. & Landau, N. R. (2004). A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci U S A 101, 3927-32.
    43. Schrofelbauer, B., Senger, T., Manning, G & Landau, N. R. (2006). Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. J Virol 80, 5984-91.
    44. Schrofelbauer, B., Yu, Q., Zeitlin, S. G & Landau, N. R. (2005). Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG uracil-DNA glycosylases. J Virol 79, 10978-87.
    45. Schumacher, A. J., G. Hache, D. A. Macduff, W. L. Brown, and R. S. Harris. 2008. The DNA deaminase activity of human APOBEC3G is required for Tyl, MusD, and human immunodeficiency virus type 1 restriction. J Virol 82:2652-60.
    46. Sheehy, A. M., Gaddis, N. C. & Malim, M. H. (2003). The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9, 1404-7.
    47. Simon, V., Zennou, V, Murray, D., Huang, Y., Ho, D. D. & Bieniasz, P. D. (2005). Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification. PLoS Pathog 1, e6.
    48. Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W. C. (2003). HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12, 591-601.
    49. Suspene, R., Sommer, P., Henry, M., Ferris, S., Guetard, D., Pochet, S., Chester, A., Navaratnam, N., Wain-Hobson, S. & Vartanian, J. P. (2004). APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32, 2421-9.
    50. Tian, C., Yu, X., Zhang, W., Wang, T., Xu, R. & Yu, X. F. (2006). Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F. J Virol 80, 3112-5.
    51.Turelli, P. & Trono, D. (2005). Editing at the crossroad of innate and adaptive immunity. Science 307, 1061-5.
    52. Xu, H., Svarovskaia, E. S., Barr, R., Zhang, Y, Khan, M. A., Strebel, K. & Pathak, V. K. (2004). A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc Natl Acad Sci U S A 101, 5652-7.
    53. Yamashita, T., K. Kamada, K. Hatcho, A. Adachi, and M. Nomaguchi. 2008. Identification of amino acid residues in HIV-1 Vif critical for binding and exclusion of APOBEC3G/F. Microbes Infect 10:1142-9.
    54. Yang, Y., F. Guo, S. Cen, and L. Kleiman. 2007. Inhibition of initiation of reverse transcription in HIV-1 by human APOBEC3F. Virology 365:92-100.
    55. Yu, X. (2006). Innate cellular defenses of APOBEC3 cytidine deaminases and viral counter-defenses. Current Opinion in HIV and AIDS 1, 187-193
    56. Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P. & Yu, X. F. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056-60.
    57. Yu, Y, Xiao, Z., Ehrlich, E. S., Yu, X. & Yu, X. F. (2004). Selective assembly of HIV-l Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev 18, 2867-72.
    58. Zennou, V., Perez-Caballero, D., Gottlinger, H. & Bieniasz, P. D. (2004). APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol 78, 12058-61.
    59. Zhang, H., Yang, B., Pomerantz, R. J., Zhang, C., Arunachalam, S. C. & Gao, L. (2003). The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94-8.
    60. Zhang, W., G. Chen, A. M. Niewiadomska, R. Xu, and X. F. Yu. 2008. Distinct determinants in HIV-1 Vif and human APOBEC3 protein are required for the suppression of diverse host anti-viral proteins. PLoS ONE3:e3963.
    1. Kawakami T, Sherman L, Dahlberg J, Gazit A, Yaniv A, Tronick SR, Aaronson SA: Nucleotide sequence analysis of equine infectious anemia virus proviral DNA, Virology 1987, 158:300-312
    2. Oberste MS, Gonda MA: Conservation of amino-acid sequence motifs in lentivirus Vif proteins, Virus Genes 1992, 6:95-102
    3. Paul I, Cui J, Maynard EL: Zinc binding to the HCCH motif of HIV-1 virion infectivity factor induces a conformational change that mediates protein-protein interactions, Proc Natl Acad Sci U S A 2006, 103:18475-18480
    4. Xiao Z, Ehrlich E, Luo K, Xiong Y, Yu XF: Zinc chelation inhibits HIV Vif activity and liberates antiviral function of the cytidine deaminase APOBEC3G, FASEB J 2007,21:217-222
    5. Simon JH, Carpenter EA, Fouchier RA, Malim MH: Vif and the p55(Gag) polyprotein of human immunodeficiency virus type 1 are present in colocalizing membrane-free cytoplasmic complexes, J Virol 1999, 73:2667-2674
    6. Simon JH, Fouchier RA, Southerling TE, Guerra CB, Grant CK, Malim MH: The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells, J Virol 1997, 71:5259-5267
    7. Madani N, Millette R, Platt EJ, Marin M, Kozak SL, Bloch DB, Kabat D: Implication of the lymphocyte-specific nuclear body protein Sp140 in an innate response to human immunodeficiency virus type 1, J Virol 2002, 76:11133-11138
    8. Huvent I, Hong SS, Fournier C, Gay B, Tournier J, Carriere C, Courcoul M, Vigne R, Spire B, Boulanger P: Interaction and co-encapsidation of human immunodeficiency virus type 1 Gag and Vif recombinant proteins, J Gen Virol 1998,79(Pt5):1069-1081
    9. Bouyac M, Courcoul M, Bertoia G, Baudat Y, Gabuzda D, Blanc D, Chazal N, Boulanger P, Sire J, Vigne R, Spire B: Human immunodeficiency virus type 1 Vif protein binds to the Pr55Gag precursor, J Virol 1997, 71:9358-9365
    10. Friedler A, Zakai N, Karni O, Friedler D, Gilon C, Loyter A: Identification of a nuclear transport inhibitory signal (NTIS) in the basic domain of HIV-1 Vif protein, J Mol Biol 1999, 289:431-437
    11. Chatterji U, Grant CK, Elder JH: Feline immunodeficiency virus Vif localizes to the nucleus, J Virol 2000, 74:2533-2540
    12. Karczewski MK, Strebel K: Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein, J Virol 1996, 70:494-507
    13. Henzler T, Harmache A, Herrmann H, Spring H, Suzan M, Audoly G, Panek T, Bosch V: Fully functional, naturally occurring and C-terminally truncated variant human immunodeficiency virus (HIV) Vif does not bind to HIV Gag but influences intermediate filament structure, J Gen Virol 2001, 82:561-573
    14. Goncalves J, Shi B, Yang X, Gabuzda D: Biological activity of human immunodeficiency virus type 1 Vif requires membrane targeting by C-terminal basic domains, J Virol 1995, 69:7196-7204
    15. Wang H, Sakurai A, Khamsri B, Uchiyama T, Gu H, Adachi A, Fujita M: Unique characteristics of HIV-1 Vif expression, Microbes Infect 2005, 7:385-390
    16. Akari H, Fujita M, Kao S, Khan MA, Shehu-Xhilaga M, Adachi A, Strebel K: High level expression of human immunodeficiency virus type-1 Vif inhibits viral infectivity by modulating proteolytic processing of the Gag precursor at the p2/nucleocapsid processing site, J Biol Chem 2004, 279:12355-12362
    17. Zhang H, Pomerantz RJ, Dornadula G, Sun Y: Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process, J Virol 2000, 74:8252-8261
    18. Alexander L, Aquino-DeJesus MJ, Chan M, Andiman WA: Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by a two-amino-acid insertion in HIV-1 Vif from a nonprogressing mother and child, J Virol 2002, 76:10533-10539
    19. Inoshima Y, Miyazawa T, Mikami T: In vivo functions of the auxiliary genes and regulatory elements of feline immunodeficiency virus, Vet Microbiol 1998, 60:141-153
    20. Borman AM, Quillent C, Charneau P, Dauguet C, Clavel F: Human immunodeficiency virus type 1 Vif- mutant particles from restrictive cells: role of Vif in correct particle assembly and infectivity, J Virol 1995, 69:2058-2067
    21. Courcoul M, Patience C, Rey F, Blanc D, Harmache A, Sire J, Vigne R, Spire B: Peripheral blood mononuclear cells produce normal amounts of defective Vif-human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps, J Virol 1995, 69:2068-2074
    22. Gabuzda DH, Li H, Lawrence K, Vasir BS, Crawford K, Langhoff E: Essential role of vif in establishing productive HIV-1 infection in peripheral blood T lymphocytes and monocyte/macrophages, J Acquir Immune Defic Syndr 1994, 7:908-915
    23. Simon JH, Miller DL, Fouchier RA, Soares MA, Peden KW, Malim MH: The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross-species transmission, EMBO J 1998, 17:1259-1267
    24. Von Schwedler U, Song J, Aiken C, Trono D: Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells, J Virol 1993, 67:4945-4955
    25. Gaddis NC, Chertova E, Sheehy AM, Henderson LE, Malim MH: Comprehensive investigation of the molecular defect in vif-deficient human immunodeficiency virus type 1 virions, J Virol 2003, 77:5810-5820
    26. Dettenhofer M, Cen S, Carlson BA, Kleiman L, Yu XF: Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription, J Virol 2000, 74:8938-8945
    27. Madani N, Kabat D: An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein, J Virol 1998, 72:10251-10255
    28. Shehu-Xhilaga M, Kraeusslich HG, Pettit S, Swanstrom R, Lee JY, Marshall JA, Crowe SM, Mak J: Proteolytic processing of the p2/nucleocapsid cleavage site is critical for human immunodeficiency virus type 1 RNA dimer maturation, J Virol 2001,75:9156-9164
    29. Hill MK, Shehu-Xhilaga M, Crowe SM, Mak J: Proline residues within spacer peptide p1 are important for human immunodeficiency virus type 1 infectivity, protein processing, and genomic RNA dimer stability, J Virol 2002, 76:11245-11253
    30. Sheng N, Pettit SC, Tritch RJ, Ozturk DH, Rayner MM, Swanstrom R, Erickson-Viitanen S: Determinants of the human immunodeficiency virus type 1 p1 5NC-RNA interaction that affect enhanced cleavage by the viral protease, J Virol 1997,71:5723-5732
    31. Briggs JA, Grunewald K, Glass B, Forster F, Krausslich HG, Fuller SD: The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions, Structure 2006, 14:15-20
    32. Sova P, Volsky DJ: Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1, J Virol 1993, 67:6322-6326
    33. Dornadula G, Yang S, Pomerantz RJ, Zhang H: Partial rescue of the Vif-negative phenotype of mutant human immunodeficiency virus type 1 strains from nonpermissive cells by intravirion reverse transcription, J Virol 2000, 74:2594-2602
    34. Simon JH, Malim MH: The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes, J Virol 1996,70:5297-5305
    35. Ohagen A, Gabuzda D: Role of Vif in stability of the human immunodeficiency virus type 1 core, J Virol 2000, 74:11055-11066
    36. Huang Y, Khorchid A, Wang J, Parniak MA, Darlix JL, Wainberg MA, Kleiman L: Effect of mutations in the nucleocapsid protein (NCp7) upon Prl60(gag-pol) and tRNA(Lys) incorporation into human immunodeficiency virus type 1, J Virol 1997, 71:4378-4384
    37. Zhang H, Dornadula G, Pomerantz RJ: Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenviroments: an important stage for viral infection of nondividing cells, J Virol 1996, 70:2809-2824
    38. Goncalves J, Korin Y, Zack J, Gabuzda D: Role of Vif in human immunodeficiency virus type 1 reverse transcription, J Virol 1996, 70:8701-8709
    39. Ganser-Pornillos BK, Yeager M, Sundquist WI: The structural biology of HIV assembly, Curr Opin Struct Biol 2008, 18:203-217
    40. Paillart JC, Shehu-Xhilaga M, Marquet R, Mak J: Dimerization of retroviral RNA genomes: an inseparable pair, Nat Rev Microbiol 2004, 2:461-472
    41. Russell RS, Liang C, Wainberg MA: Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably?, Retrovirology 2004, 1:23
    42. Lever AM: HIV-1 RNA packaging, Adv Pharmacol 2007, 55:1-32
    43. Bardy M, Gay B, Pebernard S, Chazal N, Courcoul M, Vigne R, Decroly E, Boulanger P: Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag-Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing, J Gen Virol 2001, 82:2719-2733
    44. Sova P, Volsky DJ, Wang L, Chao W: Vif is largely absent from human immunodeficiency virus type 1 mature virions and associates mainly with viral particles containing unprocessed gag, J Virol 2001, 75:5504-5517
    45. Maglova LM, Crowe WE, Russell JM: Perinuclear localization of Na-K-Cl-cotransporter protein after human cytomegalovirus infection, Am J Physiol Cell Physiol 2004, 286:C1324-1334
    46. Lee YM, Liu B, Yu XF: Formation of virus assembly intermediate complexes in the cytoplasm by wild-type and assembly-defective mutant human immunodeficiency virus type 1 and their association with membranes, J Virol 1999, 73:5654-5662
    47. Zimmerman C, Klein KC, Kiser PK, Singh AR, Firestein BL, Riba SC, Lingappa JR: Identification of a host protein essential for assembly of immature HIV-1 capsids, Nature 2002, 415:88-92
    48. Khan MA, Aberham C, Kao S, Akari H, Gorelick R, Bour S, Strebel K: Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA, J Virol 2001, 75:7252-7265
    49. Guo F, Cen S, Niu M, Saadatmand J, Kleiman L: Inhibition of formula-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication, J Virol 2006, 80:11710-11722
    50. Blumenzweig I, Baraz L, Friedler A, Danielson UH, Gilon C, Steinitz M, Kotler M:HIV-1 Vif-derived peptide inhibits drug-resistant HIV proteases, Biochem Biophys Res Commun 2002, 292:832-840
    51. Gross I, Hohenberg H, Wilk T, Wiegers K, Grattinger M, Muller B, Fuller S, Krausslich HG: A conformational switch controlling HIV-1 morphogenesis, EMBO J 2000, 19:103-113
    52. Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H, Krausslich HG: Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites, J Virol 1998, 72:2846-2854
    53. Henriet S, Sinck L, Bec G, Gorelick RJ, Marquet R, Paillart JC: Vif is a RNA chaperone that could temporally regulate RNA dimerization and the early steps of HIV-1 reverse transcription, Nucleic Acids Res 2007, 35:5141-5153
    54. Bouyac M, Rey F, Nascimbeni M, Courcoul M, Sire J, Blanc D, Clavel F, Vigne R, Spire B: Phenotypically Vif- human immunodeficiency virus type 1 is produced by chronically infected restrictive cells, J Virol 1997, 71:2473-2477
    55. Yang B, Gao L, Li L, Lu Z, Fan X, Patel CA, Pomerantz RJ, DuBois GC, Zhang H: Potent suppression of viral infectivity by the peptides that inhibit multimerization of human immunodeficiency virus type 1 (HIV-1) Vif proteins, J Biol Chem 2003, 278:6596-6602
    56. Bernacchi S, Henriet S, Dumas P, Paillart JC, Marquet R: RNA and DNA binding properties of HIV-1 Vif protein: a fluorescence study, J Biol Chem 2007, 282:26361-26368
    57. Yang S, Sun Y, Zhang H: The multimerization of human immunodeficiency virus type I Vif protein: a requirement for Vif function in the viral life cycle, J Biol Chem 2001, 276:4889-4893
    58. Miller JH, Presnyak V, Smith HC: The dimerization domain of HIV-1 viral infectivity factor Vif is required to block virion incorporation of APOBEC3G, Retrovirology 2007, 4:81
    59. Yang X, Gabuzda D: Mitogen-activated protein kinase phosphorylates and regulates the HIV-1 Vif protein, J Biol Chem 1998, 273:29879-29887
    60. Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature 2002, 418:646-650
    61. Wiegand HL, Doehle BP, Bogerd HP, Cullen BR: A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins, EMBO J 2004,23:2451-2458
    62. Liddament MT, Brown WL, Schumacher AJ, Harris RS: APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo, Curr Biol 2004, 14:1385-1391
    63. Chiu YL, Greene WC: The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements, Annu Rev Immunol 2008, 26:317-353
    64. Chen KM, Harjes E, Gross PJ, Fahmy A, Lu Y, Shindo K, Harris RS, Matsuo H: Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G, Nature 2008, 452:116-119
    65. Goila-Gaur R, Khan MA, Miyagi E, Kao S, Strebel K: Targeting APOBEC3A to the viral nucleoprotein complex confers antiviral activity, Retrovirology 2007, 4:61
    66. Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, Malim MH: Cytidine deamination of retroviral DNA by diverse APOBEC proteins, Curr Biol 2004, 14:1392-1396
    67. Bourara K, Liegler TJ, Grant RM: Target cell APOBEC3C can induce limited G-to-A mutation in HIV-1, PLoS Pathog 2007, 3:1477-1485
    68. Dang Y, Wang X, Esselman WJ, Zheng YH: Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family, J Virol 2006, 80:10522-10533
    69. Dang Y, Siew LM, Wang X, Han Y, Lampen R, Zheng YH: Human cytidine deaminase APOBEC3H restricts HIV-1 replication, J Biol Chem 2008, 283:11606-11614
    70. Zennou V, Bieniasz PD: Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates, Virology 2006, 349:31-40
    71. Ribeiro AC, Maia e Silva A, Santa-Marta M, Pombo A, Moniz-Pereira J, Goncalves J, Barahona I: Functional analysis of Vif protein shows less restriction of human immunodeficiency virus type 2 by APOBEC3G, J Virol 2005, 79:823-833
    72. Stopak K, de Noronha C, Yonemoto W, Greene WC: HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability, Mol Cell 2003, 12:591-601
    73. Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF: Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex, Science 2003, 302:1056-1060
    74. Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L: The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA, Nature 2003, 424:94-98
    75. Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D: Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature 2003,424:99-103
    76. Yu Q, Konig R, Pillai S, Chiles K, Kearney M, Palmer S, Richman D, Coffin JM, Landau NR: Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome, Nat Struct Mol Biol 2004, 11:435-442
    77. Soros VB, Yonemoto W, Greene WC: Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H, PLoS Pathog 2007, 3:e15
    78. Suspene R, Sommer P, Henry M, Ferris S, Guetard D, Pochet S, Chester A, Navaratnam N, Wain-Hobson S, Vartanian JP: APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase, Nucleic Acids Res 2004, 32:2421-2429
    79. Caride E, Brindeiro RM, Kallas EG, de Sa CA, Eyer-Silva WA, Machado E, Tanuri A: Sexual transmission of HIV-1 isolate showing G-->A hypermutation, J Clin Virol 2002, 23:179-189
    80. Simon V, Zennou V, Murray D, Huang Y, Ho DD, Bieniasz PD: Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification, PLoS Pathog 2005, 1 :e6
    81. Nowarski R, Britan-Rosich E, Shiloach T, Kotler M: Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase, Nat Struct Mol Biol 2008, 15:1059-1066
    82. Mulder LC, Harari A, Simon V: Cytidine deamination induced HIV-1 drug resistance, Proc Natl Acad Sci U S A 2008, 105:5501-5506
    83. Pillai SK, Wong JK, Barbour JD: Turning up the volume on mutational pressure: is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3), Retrovirology 2008, 5:26
    84. Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, Munk C, Nymark-McMahon H, Landau NR: Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif, Cell 2003, 114:21-31
    85. Priet S, Gros N, Navarro JM, Boretto J, Canard B, Querat G, Sire J: HIV-1-associated uracil DNA glycosylase activity controls dUTP misincorporation in viral DNA and is essential to the HIV-1 life cycle, Mol Cell 2005, 17:479-490
    86. Yang B, Chen K, Zhang C, Huang S, Zhang H: Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA, J Biol Chem 2007, 282:11667-11675
    87. Langlois MA, Neuberger MS: Human APOBEC3G can restrict retroviral infection in avian cells and acts independently of both UNG and SMUG1, J Virol 2008, 82:4660-4664
    88. Shindo K, Takaori-Kondo A, Kobayashi M, Abudu A, Fukunaga K, Uchiyama T: The enzymatic activity of CEM15/APOBEC3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity, J Biol Chem 2003, 278:44412-44416
    89. Li J, Potash MJ, Volsky DJ: Functional domains of APOBEC3G required for antiviral activity, J Cell Biochem 2004, 92:560-572
    90. Newman EN, Holmes RK, Craig HM, Klein KC, Lingappa JR, Malim MH, Sheehy AM: Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity, Curr Biol 2005, 15:166-170
    91. Bishop KN, Holmes RK, Malim MH: Antiviral potency of APOBEC proteins does not correlate with cytidine deamination, J Virol 2006, 80:8450-8458
    92. Browne EP, Littman DR: Species-specific restriction of apobec3-mediated hypermutation, J Virol 2008, 82:1305-1313
    93. Holmes RK, Koning FA, Bishop KN, Malim MH: APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G, J Biol Chem 2007, 282:2587-2595
    94. Dettenhofer M, Yu XF: Highly purified human immunodeficiency virus type 1 reveals a virtual absence of Vif in virions, J Virol 1999, 73:1460-1467
    95. Li XY, Guo F, Zhang L, Kleiman L, Cen S: APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription, J Biol Chem 2007, 282:32065-32074
    96. Iwatani Y, Chan DS, Wang F, Maynard KS, Sugiura W, Gronenborn AM, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG: Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G, Nucleic Acids Res 2007, 35:7096-7108
    97. Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK: Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions, Virology 2007, 360:247-256
    98. Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prevost MC, Allen TD, Charneau P: HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore, EMBO J 2007, 26:3025-3037
    99. Iordanskiy S, Berro R, Altieri M, Kashanchi F, Bukrinsky M: Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin, Retrovirology 2006, 3:4
    100. Warrilow D, Meredith L, Davis A, Burrell C, Li P, Harrich D: Cell factors stimulate human immunodeficiency virus type 1 reverse transcription in vitro, J Virol 2008, 82:1425-1437
    101. Marin M, Rose KM, Kozak SL, Kabat D: HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation, Nat Med 2003, 9:1398-1403
    102. Yu Y, Xiao Z, Ehrlich ES, Yu X, Yu XF: Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines, Genes Dev 2004, 18:2867-2872
    103. Mehle A, Thomas ER, Rajendran KS, Gabuzda D: A zinc-binding region in Vif binds Cul5 and determines cullin selection, J Biol Chem 2006, 281:17259-17265
    104. Dang Y, Siew LM, Zheng YH: APOBEC3G is degraded by the proteasomal pathway in a Vif-dependent manner without being polyubiquitylated, J Biol Chem 2008,283:13124-13131
    105. Zhang W, Chen G, Niewiadomska AM, Xu R, Yu XF: Distinct determinants in HIV-1 Vif and human APOBEC3 proteins are required for the suppression of diverse host anti-viral proteins, PLoS One 2008, 3:e3963
    106. Mehle A, Wilson H, Zhang C, Brazier AJ, McPike M, Pery E, Gabuzda D: Identification of an APOBEC3G binding site in human immunodeficiency virus type 1 Vif and inhibitors of Vif-APOBEC3G binding, J Virol 2007, 81:13235-13241
    107. Russell RA, Pathak VK: Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F, J Virol 2007, 81:8201-8210
    108. Yamashita T, Kamada K, Hatcho K, Adachi A, Nomaguchi M: Identification of amino acid residues in HIV-1 Vif critical for binding and exclusion of APOBEC3G/F, Microbes Infect 2008, 10:1142-1149
    109. Tian C, Yu X, Zhang W, Wang T, Xu R, Yu XF: Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F, J Virol 2006, 80:3112-3115
    110. He Z, Zhang W, Chen G, Xu R, Yu XF: Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction, J Mol Biol 2008, 381:1000-1011
    111. Nathans R, Cao H, Sharova N, Ali A, Sharkey M, Stranska R, Stevenson M, Rana TM: Small-molecule inhibition of HIV-1 Vif, Nat Biotechnol 2008, 26:1187-1192
    112. Kao S, Khan MA, Miyagi E, Plishka R, Buckler-White A, Strebel K: The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity, J Virol 2003, 77:11398-11407
    113. Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabuzda D: Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway, J Biol Chem 2004, 279:7792-7798
    114. Opi S, Kao S, Goila-Gaur R, Khan MA, Miyagi E, Takeuchi H, Strebel K: Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant, J Virol 2007, 81:8236-8246
    115. Sheehy AM, Gaddis NC, Malim MH: The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif, Nat Med 2003, 9:1404-1407
    116. Russell RA, Wiegand HL, Moore MD, Schafer A, McClure MO, Cullen BR: Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors, J Virol 2005, 79:8724-8731
    117. Takeuchi H, Kao S, Miyagi E, Khan MA, Buckler-White A, Plishka R, Strebel K: Production of infectious SlVagm from human cells requires functional inactivation but not viral exclusion of human APOBEC3G, J Biol Chem 2005, 280:375-382
    118. Khan MA, Kao S, Miyagi E, Takeuchi H, Goila-Gaur R, Opi S, Gipson CL, Parslow TG, Ly H, Strebel K: Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes, J Virol 2005, 79:5870-5874
    119. Iwatani Y, Takeuchi H, Strebel K, Levin JG: Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect, J Virol 2006, 80:5992-6002
    120. Wang T, Tian C, Zhang W, Sarkis PT, Yu XF: Interaction with 7SL RNA but not with HIV-1 genomic RNA or P bodies is required for APOBEC3F virion packaging, J Mol Biol 2008, 375:1098-1112
    121. Bach D, Peddi S, Mangeat B, Lakkaraju A, Strub K, Trono D: Characterization of APOBEC3G binding to 7SL RNA, Retrovirology 2008, 5:54
    122. Guo F, Cen S, Niu M, Yang Y, Gorelick RJ, Kleiman L: The interaction of APOBEC3G with human immunodeficiency virus type 1 nucleocapsid inhibits tRNA3Lys annealing to viral RNA, J Virol 2007, 81:11322-11331
    123. Kao S, Miyagi E, Khan MA, Takeuchi H, Opi S, Goila-Gaur R, Strebel K: Production of infectious human immunodeficiency virus type 1 does not require depletion of APOBEC3G from virus-producing cells, Retrovirology 2004, 1:27
    124. Henriet S, Richer D, Bernacchi S, Decroly E, Vigne R, Ehresmann B, Ehresmann C, Paillart JC, Marquet R: Cooperative and specific binding of Vif to the 5' region of HIV-l genomic RNA, J Mol Biol 2005, 354:55-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700