胰岛素受体底物1通过PI3K/Akt通路下调大鼠成骨细胞NFκB和BAX表达促进成骨细胞增殖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     糖尿病影响骨代谢,诱发糖尿病性骨病。胰岛素受体底物1(insulin receptor substrate1, IRS1)是胰岛素信号转导通路中受体后水平的重要信号蛋白。研究发现IRS1不仅促进骨形成,而且影响骨吸收,IRS1主要作用于成骨细胞影响骨转换,但机制尚不完全清楚。抑制成骨细胞NFκB(nuclear factor kappa-B,NFκB)通路增强成骨细胞分化、矿化和骨形成,但直接调节成骨细胞NFκB的基因仍需确定。高糖环境导致凋亡蛋白BAX(Bcl2–associated X protein,BAX)表达增加。研究发现IRS1具有抗凋亡能力,但IRS1如何调控成骨细胞BAX尚不清楚。
     糖尿病影响骨代谢,诱发糖尿病性骨病。1型糖尿病病人骨密度降低,2型糖尿病病人骨密度正常、升高或降低。试验证据清楚表明无论1型还是2型糖尿病病人骨折风险性均增加。糖尿病病人骨折风险性增加与成骨细胞骨形成和破骨细胞骨吸收不平衡相关。多种机制参与糖尿病性骨病的发生。胰岛素和IGF1信号通路在糖尿病发挥重要作用,且与骨代谢密切相关。研究报导糖尿病病人骨量和胰岛素剂量、尿C肽呈正相关,外源性和内源性胰岛素可能影响糖尿病病人骨代谢平衡。胰岛素和IGF1通过经典细胞内信号转导途径影响骨代谢,下游IRS1/2、Akt(Protein Kinase B,Akt)和MEK(MAPK/ERK kinase,MEK)作用机制尚不清楚。除经典途径外,胰岛素和IGF1可能通过成骨细胞Wnt (wingless-int)和BMP2(bone morphogenic protein2)通路促进骨骼发育。胰岛素直接影响成骨细胞代谢。体外研究发现生理剂量胰岛素促进成骨细胞增殖、胶原合成、碱性磷酸酶产生,目前仍不完全清楚胰岛素促进骨形成机制。胰岛素促进成骨细胞发育和骨钙素表达,骨钙素参与骨矿化和钙离子的动态平衡。IGF1通过自分泌和旁分泌方式促进成骨细胞样细胞增殖、分化和细胞外基质产生,促进骨形成。青春期时期,IGF1决定长骨生长、骨骼发育和骨量增加,成年阶段维持骨量。IGF1增加成骨细胞数目和活性以增加骨形成;抑制破骨细胞分化以减少骨吸收。
     IRS1是胰岛素和IGF1信号通路重要靶分子,且对维持正常骨代谢有重要意义。IRS1基因敲除小鼠骨形成和骨吸收均减少。IRS1基因自发性突变影响成年后骨骼表型,表现为高胰岛素血症及低骨密度等。IRS1基因敲除小鼠骨折难愈合提示IRS1参与骨修复,而且其作用不能被IRS其他亚型和IGF通路替代。IRS1缺陷小鼠骨愈合受损,这种受损在IRS1重新表达后恢复。IRS1主要经成骨细胞调节骨转换,其中机制仍不完全清楚。大量体外研究已证明IGF1和IRS/PI3K/Akt通路促进成骨细胞骨分化。抑制IRS1减少成骨细胞寿命、增殖、矿化和分化。IRS1通过促进前成骨细胞增殖和分化增加骨形成,产生更多胶原增加骨基质;IRS1不仅促进骨形成和矿化,也经由MMPs(matrix metallopeptidases,MMPs)和RANKL/TNFRSF11B(tumor necrosis factor receptor superfamily, member11b)比率影响骨吸收,最终调节骨循环。此外,予以IRS1干扰RNA抑制RUNX2(runt-related transcription factor2, RUNX2)、 ALP(alkaline phosphatase, ALP)和BSP(bone sialoprotein, BSP)表达。
     PI3K/Akt通路与骨代谢关系密切。越来越多证据表明许多信号分子在骨发挥其特异性效应通过选择性激活成骨细胞PI3K/Akt通路。此外PI3K/Akt可以与其他信号通路和基因调控网络共同调控骨细胞发育,也有证据表明PI3K/Akt信号通路失控可能与某些骨骼病变相关。激活PI3K/Akt通路促进成骨细胞增殖。高糖诱导的氧化应激激活PI3K/Akt通路抑制成骨分化。破骨细胞产生趋化因子SIP (Sphingosine-1-Phosphate,S1P)激活PI3K/Akt信号通路,导致成骨细胞分化标记物包括碱性磷酸酶表达上调,并促进成骨细胞迁移。破骨细胞分泌骨吸收介质通过PI3K/Akt信号通路促进成骨细胞前体细胞分化和钙化。HGF(Hepatocyte growth factor,HGF)激活PI3K/Akt信号通路,增加骨桥蛋白(Osteopontin, OPN)表达调控骨矿化。在成骨细胞和钙化血管平滑肌细胞,Xie H等发现omentin1激活PI3K/Akt信号通路激活OPG和抑制RANKL产生,减轻OPG/小鼠动脉钙化和骨质流失。Akt磷酸化抑制糖皮质激素诱导的成骨细胞凋亡。胰岛素依赖型糖尿病通过抑制Akt,减弱骨形成。激活Akt,增加破骨细胞形成和增强破骨细胞分化。Akt蛋白家族有3个亚型:Akt1,Akt2和Akt3。Akt1和Akt2均在成骨细胞和破骨细胞大量表达,除了Akt3。虽然Akt蛋白单亚型敲除小鼠表现出温和的表型,但是Akt1和Akt2都敲除小鼠出现严重骨骼发育受损和侏儒症。Akt1促进成骨细胞和破骨细胞分化和存活,Akt1缺陷抑制成骨细胞RANKL表达,引起破骨细胞自主功能障碍,损害骨吸收功能。Akt1和Akt2都敲除下调RANKL诱导的NFκB p50的DNA结合能力,抑制破骨细胞分化。
     NFκB与骨代谢密切相关。由RANKL(nuclear factor kB ligand,RANKL)、肿瘤坏死因子(Tumor necrosis factor,TNF)或者白介素1(interleukin1,IL1)激活的NFκB信号通路能够诱导破骨分化基因表达,延长破骨细胞寿命,增加骨吸收。成骨细胞NFκB活性降低时,JNK活性增强,导致骨形成增强。抑制NFκB通路可以逆转TNFα抑制的成骨细胞分化。Julien M等发现在成熟成骨细胞NFκB通过一系列信号转导抑制成骨细胞矿化。体外抑制成骨细胞NFκB信号通路,增强了成骨细胞矿化,但是破骨细胞数量没有改变。NFκB激活导致成骨细胞释放IL6,成骨细胞释放IL6导致破骨细胞激活。但直接调节成骨细胞NFκB的基因仍需确定。
     研究发现凋亡可能是骨质疏松症第三大常见原因,估计60~80%成骨细胞正处于凋亡。成骨细胞凋亡增加松质骨生成。Bcl2(B-cell lymphoma2, Bcl2)家族长久以来被认为是凋亡主要调节机制,其中Bcl2抑制凋亡,BAX促进凋亡,二者独立调节凋亡。研究发现糖尿病大鼠凋亡显著增加。糖尿病时,高糖环境引起细胞损伤,BAX激活和引起其他促凋亡蛋白如细胞色素C释放。1型糖尿病小鼠骨中成骨细胞凋亡增加。一些研究表明IRS1具有抗凋亡能力,IRS1可通过调节Bcl2调控凋亡。
     本研究组前期试验显示2型糖尿病合并骨质疏松症的发病可能与骨组织IGF1、IRS1、IRS2表达受抑制有关,同时可能与骨组织PI3K、Akt表达降低、NFκB表达升高有关。
     本研究通过构建pEGFP-N1-IRS1表达载体,转染体外培养的大鼠成骨细胞,同时给予PI3K激酶特异性抑制剂LY294002,观察在有或无LY294002条件下成骨细胞NFκB、BAX表达变化及成骨细胞细胞周期变化,为阐明糖尿病骨病的发生机制提供一条新思路。
     方法:
     第一部分:提取Wister大鼠肝脏RNA,逆转录生成cDNA。根据NCBI提供的IRS1基因编码序列,委托DNA合成公司合成带适当酶切位点的引物,以cDNA作为模板合成IRS1,插入pEGFP-N1质粒,获得过表达IRS1的表达载体。体外转染人Hela细胞。
     第二部分:酶消化联合组织块法体外培养Wister大鼠成骨细胞,倒置显微镜下观察成骨细胞形态,传代至第二代时茜素红染色鉴定成骨细胞。传代至第二代时pEGFP-N1-IRS1表达载体脂质体法LipofectamineTM2000瞬时转染成骨细胞,同时应用PI3K激酶特异性抑制剂LY294002阻断PI3K/Akt通路,免疫荧光和Western blotting法观察成骨细胞NFκB表达变化。
     第三部分:酶消化联合组织块法体外培养Wister大鼠成骨细胞,传代至第二代时pEGFP-N1-IRS1脂质体法LipofectamineTM2000瞬时转染成骨细胞,同时应用LY294002阻断PI3K/Akt通路,观察成骨细胞IRS1/PI3K/Akt通路及BAX的表达变化。同时检测成骨细胞细胞周期。
     结果:
     第一部分:构建质粒经核酸内切酶酶切分析、PCR分析初步判断重组质粒中所插入的片段与预期长度一致。经过测序鉴定,合成的IRS1序列与登录在GenBank上的大鼠IRS1基因序列(GenBank登录号: NM_012969.1)高度同源,测序结果发现3个碱基与已发表的IRS1序列不同: NM_012969.1的第414、1824、2631位碱基分别是C、C和A,而合成的IRS1片段这3个碱基突变为T、T和G,但合成的IRS1序列翻译的蛋白质和NM_012969.1翻译的蛋白质一致。荧光显微镜下IRS1-GFP融合蛋白在Hela细胞成功表达。
     第二部分:酶消化联合组织块法体外培养Wister大鼠成骨细胞,经HE染色和茜素红染色证明成骨细胞培养成功。荧光显微镜下IRS1-GFP融合蛋白在成骨细胞成功表达;RT-PCR结果表明IRS1表达载体转染组IRS1mRNA表达水平明显增高;Western blotting结果显示IRS1组pAktThr308蛋白水平相对对照组显著增加,LY294002阻断这种作用。免疫荧光和Western Blotting结果均表明IRS1组NFκB p65蛋白水平相对对照组降低,IRS1+LY294002组NFκB p65蛋白表达水平相对IRS1组增加。
     第三部分:Western Blotting结果表明IRS1组BAX蛋白水平相对对照组显著降低,IRS1+LY294002组BAX蛋白表达水平相对IRS1组增加。细胞周期分析结果表明IRS1组S期增加,促进细胞增殖;IRS1+LY294002组S期降低。
     结论:
     1成功构建pEGFP-N1-IRS1表达载体,IRS1-GFP融合蛋白在体外成功表达。
     2pEGFP-N1-IRS1成功激活成骨细胞PI3K/Akt通路,抑制NFκBp65蛋白表达,PI3K抑制剂LY294002逆转这种作用,推断IRS1通过PI3K/Akt通路抑制NFκB通路。
     3pEGFP-N1-IRS1诱导的PI3K/Akt通路抑制BAX蛋白表达,PI3K抑制剂LY294002逆转这种作用,推断IRS1通过PI3K/Akt通路抑制BAX表达,促进细胞增殖。
Objective:
     Diabetes affects bone metabolism, and leads to diabetic osteopathy. Insulin receptor substrate1is an important receptor protein of insulin signal transduction pathway. IRS1not only promotes bone formation but also plays an important role in bone resorption, and IRS1regulates bone turnover mainly via osteoblasts, but the underlying mechanism is not clear. Inhibition of NFκB in osteoblast, promotes osteoblast differentiation, mineralization and increases bone formation. However, the genes that directly regulate NFκB in osteoblast remain to be determined. High concentration of glucose could up-regulate the expression of BAX. Several reports have already indicated that IRS1possesses an antiapoptotic activity. However, IRS1how to regulate BAX in osteoblast remains to be determined.
     Diabetes affects bone metabolism, and leads to diabetic osteopathy. Diabetes mellitus type1(DM1) patients have a lower bone mineral density than healthy individuals whereas diabetes mellitus type2(DM2) patients have a normal, lower or higher bone mass. Experimental evidence clearly demonstrated an increased fracture risk in T1DM and in T2DM. Patients with diabetes mellitus have an increased risk for fractures, which is related to an imbalance between osteoblastic bone formation and osteoclastic resorption. Several mechanisms are likely to be involved in the pathogenesis of diabetes osteopathy. Insulin and IGF1signaling pathway play an important role in diabetes, as well as in bone metabolism. In humans with diabetes, there is a positive correlation between bone mineral density and insulin dose or urinary C-peptide excretion, suggesting that endogenous and exogenous insulin may affect skeletal homeostasis in diabetes. Insulin and IGF1exert their cellular activities via conserved intracellular signaling proteins to affect bone metabolism. Genetic manipulation of these signaling proteins, such as IRS1/2、Akt and MEK, has uncovered a significant role for these signal transduction pathways in skeletal homeostasis. In addition to effect on skeletal physiology via canonical signaling pathways, insulin and IGF1may crosstalk with Wnt and BMP2signaling pathways in cells of the osteoblast lineage and thereby promote skeletal development. Insulin exerts direct anabolic actions in osteoblasts. Studies in vitro have shown that physiological dose of insulin promotes osteoblast proliferation, collagen synthesis, and alkaline phosphatase production; nevertheless, studies do not clarify what receptors or pathways insulin may use to promote osteogenesis. Insulin promotes osteoblast development and osteocalcin expression. Osteocalcin participates in mineralization and calcium ion homeostasis. IGF1acts in autocrine and paracrine ways, and stimulates proliferation, differentiation, and extracellular matrix production in osteoblastic like-cell lines and finally bone formation. IGF1plays important roles in stimulating longitudinal bone growth, skeletal maturation, and acquisition of bone mass in childhood, whereas in adults they are important in the maintenance of bone mass. IGF1can increase bone formation by stimulation of osteoblast number and activity, and reduce bone resorption by restriction of differentiation of osteoclast.
     IRS1, which is a main target molecule of insulin/IGF1receptor signaling, have been shown to play important roles in maintaining normal bone turn-over. Both bone formation and resorption are decreased in Irs1gene knockout mice. A novel spontaneous mutation of Irs1in mice results in hyperinsulinemlia and low bone mass. Irs1knockout mice Irs1/fractures fail to heal indicating that IRS1has a role in bone repair that cannot be compensated by other IGF signaling pathways or IRS isoforms. Bone healing impaired in IRS1deficient mice can be corrected with re-expression of IRS1within the fracture site. The IRS1regulates bone turnover mainly via osteoblast, but the underlying mechanism is not clear. Numerous in vitro studies have documented the ability of IGF1and IRS/PI3K/Akt to promote osteoblast differentiation. The downregulation of IRS1expression reduces osteoblast survival, proliferation, mineralization and differentiation. IRS1can increase the bone formation by promoting the proliferation and differentiation of preosteoblasts and increase the bone matrix by producing more collagen. IRS1not only promotes bone formation and mineralization but also might play roles in bone resorption partly via the regulation of MMPs and RANKL/TNFRSF11B ratio, thus regulates the bone turnover. Moreover, small interfering RNA (siRNA) against IRS1suppresses mRNA expression of RUNX2, ALP and BSP.
     PI3K/Akt pathway is closely related with bone metabolism. There is an increasing amount of evidence that the many signaling molecules exert some of their bone-specific effects in part via selectively activating the PI3K/Akt pathway in osteoblasts. There is further data demonstrating that PI3K/Akt has the capacity to specifically cross-talk with other signaling pathways and transcriptional networks controlling bone cells' development. There is also evidence that perturbations in the PI3K/Akt pathway may well be responsible for certain bone pathologies. PI3K/Akt activation induces osteoblasts proliferation. High glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation. Osteoclast-derived S1P activates the PI3K/Akt signaling pathway resulting in the upregulation of osteoblast differentiation markers including alkaline phosphatase, and promoting migration. The osteoclast bone resorption medium promotes the differentiation and calcification of MC3T3-E1cells through PI3K/Akt pathway activation. Hepatocyte growth factor has been demonstrated to enhance PI3K, Akt and stimulate Osteopontin (OPN) production. OPN is present during bone mineralization. Xie H et al. reported that omentin1activated the PI3K/Akt signalling pathway, which in turn stimulated OPG and decreased RANKL expression in calcifying vascular smooth muscle cells and osteoblasts, resulting in alleviation of arterial calcification and bone loss in the OPG/mice. Glucocorticoid-induced osteoblast apoptosis is mediated by suppression of Akt phosphorylation. Insulin-dependent diabetes mellitus decreases osteoblastogenesis through inhibition of Akt activation. There are three Akt family members—Akt1, Akt2, and Akt3. Akt1and Akt2, but not Akt3, are abundantly expressed in both bone cells: osteoblasts and osteoclasts. Although single KO mice of Akt isoform showed a mild phenotype, double KO mice of Akt1/Akt2showed severely impaired bone development and dwarfism. Akt1promotes differentiation and survival of osteoblast and osteoclast. Akt1deficiency caused impairment of bone resorption via cell autonomous dysfunction in osteoclasts because of reduced RANKL expression in osteoblasts. Knockdown of Akt1and Akt2inhibited osteoclast differentiation because of downregulation of RANKL-induced NFκB p50DNA binding activity.
     NFκB is closely related to bone metabolism. NFκB signaling pathway activated by RANKL, TNF or IL1induces osteoclast differentiation gene expression and prolongs the life of osteoclasts, and increases bone resorption. A reduction in NFκB activity in osteoblasts results in an increase in bone formation via an increase in JNK activity. Inhibition of NFκB pathways reverses the TNFα suppression of osteoblast differentiation. Julien et al have found that NFκB represses osteoblast mineralization through a series of transcriptional and signaling events in mature osteoblasts. Inhibition of NFκB in osteoblasts in vitro leads to an increase in osteoblast mineralization. Interestingly, there is no change in the number of osteoclasts. NFκB translocates to the nucleus of the osteoblast, which leads to release of interleukin6(IL6). Release of IL6from osteoblasts results in the activation of the osteoclasts. However, the genes that directly regulate NFκB in osteoblasts remain to be identified.
     Several studies have showed that apoptosis maybe the third most common cause of osteoporosis, and60–80%of osteoblasts are estimated to originally assembled at the resorption pit die by apoptosis. Dysapoptosis of osteoblasts increases cancellous bone formation. Members of the Bcl2family, including Bcl2and Bax, are the main regulators of apoptosis which promote (BAX) or inhibit (Bcl2) apoptosis. Each of them regulates apoptosis independently. Apoptosis is dramatically increased in diabetic rats. In diabetes, where the hyperglycemic environment causes cellular damage, BAX can become activated and form pores as a passage for other proapoptotic proteins, such as cytochrome c, to be released. Dying osteoblasts increases in bones of T1-diabetic mice. Several reports have already indicated that IRS1possesses an antiapoptotic activity, and IRS1modulates its antiapoptotic function by Bcl2.
     My group pre-study has showed that the incidence of type2diabetes with osteoporosis maybe associated with inhibition of IGF1, IRS1and IRS2, reduction of PI3K, Akt and increase of NFκB in bone tissue. In this study, we constructed pEGFP-N1-IRS1expression vector, transfected rat osteoblast in vitro, and observed the expression of NFκB p65, BAX and cell cycle, in absence or presence of PI3K inhibitor (LY294002), to clarify a new mechanism under diabetic osteopathy.
     Methods:
     Part I: To extract liver RNA of Wister rat, reverse transcriptase to generate cDNA. To synthesize IRS1using cDNA as template and primers with appropriate restriction sites, insert IRS1into pEGFP-N1resulting in overexpression IRS1vector. To transfect human Hela cell in vitro.
     Part II: We used enzymatic digestion-tissue explant in vitro to culture Wister rat osteoblast, observed osteoblast under microscope. Passaging to the second generation of osteoblast, alizarin red stained osteoblasts. We transfected the second generation osteoblast using LipofectamineTM2000, and observed the expression of IRS1/PI3K/Akt and NFκB p65, in absence or presence of PI3K inhibitor (LY294002).
     Part III: We used enzymatic digestion-tissue explant in vitro to culture Wister rat osteoblast, transfected the second generation of osteoblast with pEGFP-N1-IRS1, and observed the expression of BAX and cell cycle, in absence or presence of LY294002.
     Results:
     Part I: The fragment inserted into plasmid is consistent with the expected length, via endonuclease restriction analysis and PCR analysis. Constructed IRS1sequence via sequencing is highly homologous with rat IRS1gene sequence in GenBank (GenBank accession number: NM_012969.1). Three bases of IRS1sequences are different from the published IRS1sequence: the414,1824,2631nucleotide are C, C and A, yet in constructed IRS1the three bases are mutated to T, T and G, but the protein translation of synthetic IRS1fragments is consistent with the protein translation of published IRS1sequence. IRS1-GFP is successfully expressed in Hela cells under fluorescence microscope.
     Part II: To culture osteoblast from Wister rat in vitro by enzymatic digestion-tissue explant, osteoblasts are proved successfully cultured by HE staining and alizarin red staining. IRS1-GFP protein is successfully expressed in group (IRS1) under fluorescence microscope; RT-PCR results suggest that IRS1mRNA level is significantly increased in group (IRS1); western blotting results show that the level of pAktThr308protein, target receptor of IRS1signaling, was increased in group (IRS1), which was abolished by incubation of LY294002. Both immunofluorescence staining and western blotting results show that NFκBp65protein level is decreased in group (IRS1), compared to control; while NFκBp65protein level is increased in group (IRS1+LY294002), compared to group (IRS1).
     Part III: BAX protein level is decreased in group (IRS1) compared to control; the effect induced by pEGFP-N1-IRS1was abolished by incubation of LY294002. Cell cycle analysis result shows that IRS1on cell proliferation was observed as an increase in cells in the S phases.
     Conclusions:
     1Recombinant pEGFP-N1-IRS1is successfully constructed, and IRS1-GFP is successfully expressed in vitro.
     2pEGFP-N1-IRS1successfully activates PI3K/Akt pathway in osteoblasts, thus inhibites NFκBp65expression in osteoblasts, which was abolished by incubation of LY294002. IRS1-induced PI3K/Akt pathway inhibites NFκB pathway.
     3IRS1-induced PI3K/Akt pathway promotes osteoblasts proliferation and inhibites BAX expression in osteoblasts, which is abolished by incubation of LY294002. IRS1-induced PI3K/Akt pathway inhibites BAX expression, led to promoting osteoblasts proliferation.
引文
1Reiss K, Del Valle L, Lassak A, et al. Nuclear IRS-1and cancer. J CellPhysiol,2012,227(8):2992~3000
    2陈炳权,周燕丰.胰岛素受体底物1与肝硬化胰岛素抵抗的研究进展.浙江大学学报(医学版),2012,41(3):339~344
    3李晓,乔虹.基因多态性与2型糖尿病.中国临床医学,2012,19(1):87~88
    4Sun XJ, Rothenberg P, Kahn CR, et al. Structure of the insulin receptorsubstrate IRS-1defines a unique signal transduction portein. Nature,1991,352(6330):73~77
    5Fritsche L, Weigert C, H ring HU, et al. How insulin receptor substrateproteins regulate the metabolic capacity of the liver-implications forhealth and disease. Curr Med Chem,2008,15(13):1316~1329
    6Galkina EV, Butcher M, Keller SR, et al. Accelerated atherosclerosis inApoe-/-mice heterozygous for the insulin receptor and the insulin receptorsubstrate-1. Arterioscler Thromb Vasc Biol,2012,32(2):247~256
    7Geetha T, Zheng C, Vishwaprakash N, et al. Sequestosome1/p62, ascaffolding protein, is a newly identified partner of IRS-1protein. J BiolChem,2012,287(35):29672~29678
    8Walker RJ, Anderson NM, Bahouth S, et al. Silencing of insulin receptorsubstrate-1increases cell death in retinal Müller cells. Mol Vis,2012,18:271~279
    9Wainszelbaum MJ, Liu J, Kong C, et al. TBC1D3, a hominoid-specificgene, delays IRS-1degradation and promotes insulin signaling bymodulating p70S6kinase activity. PLoS One,2012,7(2):e31225
    10舒适,宋菊敏.胰岛素受体底物-1/-2与胰岛素信号转导.医学综述,2008,14(3):723~725
    11Benito M. Tissue specificity on insulin action and resistance: past to recentmechanisms. Acta Physiol(Oxf),2011,201(3):297~312
    12许国喜,沈飞.运动对胰岛素抵抗大鼠骨骼肌IRS-1与Tyr磷酸化及氧化应激的影响.西安体育学院学报,2012,29(1):89~93
    13牛燕媚,刘彦辉,李慧阁等.胰岛素受体底物蛋白1及其丝氨酸磷酸化活性在胰岛素抵抗发生中的作用.中国糖尿病杂志,2012,20(2):136~140
    14Bose SK, Shrivastava S, Meyer K, et al. Hepatitis C virus activates themTOR/S6K1signaling pathway in inhibiting IRS-1function for insulinresistance. J Virol,2012,86(11):6315~6322
    15Morini E, Prudente S, Succurro E, et al. IRS1G972R polymorphism andtype2diabetes: a paradigm for the difficult ascertainment of thecontribution to disease susceptibility of 'low-frequency-low-risk' variants.Diabetologia,2009,52(9):1852~1857
    16Kovacs P, Hanson RL, Lee YH, et al. The role of insulin receptorsubstrate-1gene (IRS1) in type2diabetes in Pima Indians. Diabetes,2003,52(12):3005~3009
    17Burguete-Garcia AI, Cruz-Lopez M, Madrid-Marina V, et al. Associationof Gly972Arg polymorphism of IRS1gene with type2diabetes mellitus inlean participants of a national health survey in Mexico: a candidate genestudy. Metabolism,2010,59(1):38~45
    18Martínez-Gómez LE, Cruz M, Martínez-Nava GA, et al. A replicationstudy of the IRS1, CAPN10, TCF7L2, and PPARG gene polymorphismsassociated with type2diabetes in two different populations of Mexico.Ann Hum Genet,2011,75(5):612~620
    19Bodhini D, Radha V, Mohan V. Association study of IRS1genepolymorphisms with type2diabetes in south Indians. Diabetes TechnolTher,2011,13(7):767~772
    20García-Escalante MG, Suárez-Solís VM, López-Avila MT, et al. Effect ofthe Gly972Arg, SNP43and Prol2Ala polymorphisms of the genes IRS1,CAPN10and PPARG2on secondary failure to sulphonylurea andmetformin in patients with type2diabetes in Yucatán, México. Invest Clin,2009,50(1):65~76
    21Wang Y, Nishina PM, Naggert JK. Degradation of IRS1leads to impairedglucose uptake in adipose tissue of the type2diabetes mouse modelTALLYHO/Jng. J Endocrinol,2009,203(1):65~74
    22Rung J, Cauchi S, AlbrechtsenA, et al. Genetic variant near IRS-1isassociated with type2diabetes, insulin resistance and hyperinsulinemia.Nat Genet,2009,41(10):1110~1115
    23Yiannakouris N, Cooper JA, Shah S, et al. IRS1gene variants,dysglycaemic metabolic changes and type-2diabetes risk. Nutr MetabCardiovasc Dis,2011,216(1):157~160
    24Tang Y, Han X, Sun X, et al. Association study of a common variant nearIRS1with type2diabetes mellitus in Chinese Han population. Endocrine,2013,43(1):84~91
    25Sharma R, Prudente S, Andreozzi F, et al. The type2diabetes andinsulin-resistance locus near IRS1is a determinant of HDL cholesterol andtriglycerides levels among diabetic subjects. Atherosclerosis,2011,216(1):157~160
    26Maekawa R, Sato S, Yamagata Y, et al. Genome-wide DNA methylationanalysis reveals a potential mechanism for the pathogenesis anddevelopment of uterine leiomyomas. PLoS One,2013,8(6):e66632
    27Chan SH, Kikkawa U, Matsuzaki H, et al. Insulin receptor substrate-1prevents autophagy-dependent cell death caused by oxidative stress inmouse NIH/3T3cells. J Biomed Sci,2012,19(1):64
    28Geng Y, Ju Y, Ren F, Qiu Y, et al. Insulin Receptor Substrate1/2(IRS1/2)Regulates Wnt/β-catenin Signaling through Blocking AutophagicDegradation of Dishevelled2. J Biol Chem,2014,[Epub ahead of print]
    29Wang Y, Hu C, Cheng J, et al. MicroRNA-145suppresses hepatocellularcarcinoma by targeting IRS1and its downstream Akt signaling. BiochemBiophys Res Commun,2014,[Epub ahead of print]
    30Tomasetti M, Nocchi L, Staffolani S, et al. MicroRNA-126SuppressesMesothelioma Malignancy by Targeting IRS1and Interfering withMitochondrial Function. Antioxid Redox Signal,2014,[Epub ahead ofprint]
    31Luo X, Fan S, Huang W, et al. Downregulation of IRS-1promotesmetastasis of head and neck squamous cell carcinoma. Oncol Rep,2012,28(2):659~667
    32Bu YH, He YL, Zhou HD, et al. Insulin receptor substrate1regulates thecellular differentiation and the matrix metallopeptidase expression ofpreosteoblastic cells. J Endocrinol,2010,206(3):271~277
    33DeMambro VE, Kawai M, Clemens TL, et al. A novel spontaneousmutation of Irs1in mice results in hyperinsulinemia, reduced growth, lowbone mass and impaired adipogenesis. J Endocrinol,2010,204(3):241~253
    34Granero-Moltó F, Myers TJ, Weis JA, et al. Mesenchymal stem cellsexpressing insulin-like growth factor-I(MSCIGF) promote fracture healingand restorenew bone formation in Irs1knockout mice: analyses ofMSCIGF autocrine and paracrine regenerative effects. Stem Cell,2011,29(10):1537~1548
    35Ochiai H, Okada S, Saito A, et al. Inhibition of insulin-like growth factor-1(IGF-1) expression by prolonged transforming growth factor-beta1(TGF-beta1) administration suppresses osteoblast differentiation. J BiolChem,2012,287(27):22654~22661
    1Thrailkill K M, Lumpkin C J, Bunn R C, et al. Is insulin an anabolic agentin bone? Dissecting the diabetic bone for clues. Am J Physiol EndocrinolMetab,2005,289(5):E735~E745
    2Ogata N, Kawaguchi H.[Involvement of insulin and IGF-1signalingmolecules in bone metabolism]. Clin Calcium,2008,18(5):614~622
    3Ochiai H, Okada S, Saito A, et al. Inhibition of insulin-like growth factor-1(IGF-1) expression by prolonged transforming growth factor-beta1(TGF-beta1) administration suppresses osteoblast differentiation. J BiolChem,2012,287(27):22654~22661
    4Gu Y X, Du J, Si M S, et al. The roles of PI3K/Akt signaling pathway inregulating MC3T3-E1preosteoblast proliferation and differentiation onSLA and SLActive titanium surfaces. J Biomed Mater Res A,2013,101(3):748~754
    5Xue P, Wu X, Zhou L, et al. IGF1promotes osteogenic differentiation ofmesenchymal stem cells derived from rat bone marrow by increasing TAZexpression. Biochem Biophys Res Commun,2013,433(2):226~231
    6Chen J R, Zhang J, Lazarenko O P, et al. Soy protein isolates prevent lossof bone quantity associated with obesity in rats through regulation ofinsulin signaling in osteoblasts. FASEB J,2013,27(9):3514~3523
    7Pramojanee SN, Phimphilai M, Chattipakorn N, et al. Possible rolesof insulin signaling in osteoblasts. Endocr Res,2014,[Epub ahead ofprint]
    8Bu YH, He YL, Zhou HD, et al. Insulin receptor substrate1regulates thecellular differentiation and the matrix metallopeptidase expression ofpreosteoblastic cells. J Endocrinol,2010,206(3):271~277
    9DeMambro VE, Kawai M, Clemens TL, et al. A novel spontaneousmutation of Irs1in mice results in hyperinsulinemia, reduced growth, lowbone mass and impaired adipogenesis. J Endocrinol,2010,204(3):241~253
    10Ma P, Xiong W, Liu H, et al. Extrapancreatic roles of glimepirideon osteoblasts from rat manibular bone in vitro: Regulation ofcytodifferentiation through PI3-kinases/Akt signalling pathway. Arch OralBiol,2011,56(4):307~316
    11Katz S, Ayala V, Santillán G, et al. Activation of the PI3K/Akt signalingpathway through P2Y receptors by extracellular ATP is involved inosteoblastic cell proliferation. Arch Biochem Biophys,2011,513(2):144~152
    12Wang Y, Li LZ, Zhang YL, et al. LC, a novel estrone-rhein hybridcompound, promotes proliferation and differentiation and protects againstcell death in human osteoblastic MG-63cells. Mol Cell Endocrinol,2011,344(1-2):59~68
    13Adinolfi E, Amoroso F, Giuliani AL. P2X7Receptor Function inBone-Related Cancer. J Osteoporos,2012,2012:637863
    14Wang Y, Wang WL, Xie WL, et al. Puerarin stimulates proliferation anddifferentiation and protects against cell death in human osteoblasticMG-63cells via ER-dependent MEK/ERK and PI3K/Akt activation.Phytomedicine,2013,20(10):787~796
    15Duan XY, Xie PL, Ma YL, et al. Omentin inhibits osteoblasticdifferentiation of calcifying vascular smooth muscle cells throughthe PI3K/Aktpathway. Amino Acids,2011,41(5):1223~1231
    16Lian N, Lin T, Liu W, et al. Transforming growth factor β suppressesosteoblast differentiation via the vimentin activating transcription factor4(ATF4) axis. J Biol Chem,2012,287(43):35975~35984
    17Chen L, Huang M, Tan J, et al. PI3K/AKT pathway involvement in theosteogenic effects of osteoclast culture supernatants on pre-osteoblastcells.Tissue Eng Part A,2013[Epub ahead of print]
    18Ayala-Pe a VB, Scolaro LA, Santillán GE. ATP and UTP stimulate bonemorphogenetic protein-2,-4and-5gene expression and mineralization byrat primary osteoblasts involving PI3K/AKTpathway. Exp Cell Res,2013,319(13):2028~2036
    19Chen HT, Tsou HK, Chang CH, et al. Hepatocyte growth factor increasesosteopontin expression in human osteoblasts through PI3K, Akt, c-Src, andAP-1signaling pathway. PLoS One,2012,7(6):e38378
    20Wu CM, Chen PC, Li TM, et al. Si-Wu-tang extract stimulates boneformation through PI3K/Akt/NF-κB signaling pathways in osteoblasts.BMC Complement Altern Med,2013,13(1):277
    21Granero-Moltó F, Myers TJ, Weis JA, et al. Mesenchymal stem cellsexpressing insulin-like growth factor-I (MSCIGF) promote fracturehealing and restore new bone formation in Irs1knockout mice: analyses ofMSCIGF autocrine and paracrine regenerative effects. Stem Cells,2011,29(10):1537~1548
    22Krum S A, Chang J, Miranda-Carboni G, et al. Novel functions forNFkappaB: inhibition of bone formation. Nat Rev Rheumatol,2010,6(10):607~611
    23Li Y, Li A, Strait K, et al. Endogenous TNFalpha lowers maximum peakbone mass and inhibits osteoblastic Smad activation through NF-kappaB.J Bone Miner Res,2007,22(5):646~655
    24Eyckmans J, Roberts S J, Bolander J, et al. Mapping calcium phosphateactivated gene networks as a strategy for targeted osteoinduction of humanprogenitors. Biomaterials,2013,34(19):4612~4621
    25Chang J, Wang Z, Tang E, et al. Inhibition of osteoblastic bone formationby nuclear factor-kappaB. Nat Med,2009,15(6):682~689
    26Ruland J. Return to homeostasis: downregulation of NF-κB responses. NatImmunol,2011,12(8):709~714
    27Zhang Y, Wang XC, Bao XF, et al. Effects of Porphyromonas gingivalislipopolysaccharide on osteoblast-osteoclast bidirectional EphB4-EphrinB2signaling. Exp Ther Med,2014,7(1):80~84
    28Tang SY, Alliston T. Regulation of postnatal bone homeostasis byTGFβBonekey Rep.2013,2:255
    29Zerbini CA, McClung MR. Odanacatib in postmenopausal women withlow bone mineral density: a review of current clinical evidence. Ther AdvMusculoskelet Dis,2013,5(4):199~209
    30Jensen PR, Andersen TL, Pennypacker BL, et al. The bone resorptioninhibitors odanacatib and alendronate affect post-osteoclastic eventsdifferently in ovariectomized rabbits. Calcif Tissue Int,2014,94(2):212~222
    31Sbaraglini ML, Molinuevo MS, Sedlinsky C, et al. Saxagliptin affectslong-bone microarchitecture and decreases the osteogenic potential ofbone marrow stromal cells. Eur J Pharmacol,2014,727:8~14
    32Li Y, Liu H, Sato Y. The association between the serum C-peptide leveland bone mineral density. PLoS One,2013,8(12):e83107
    33Veldhuis-Vlug AG, Fliers E, Bisschop PH. Bone as a regulator of glucosemetabolism. Neth J Med,2013,71(8):396~400
    34Lechleitner M, Pils K, Roller-Wirnsberger R, et al.[Diabetes andosteoporosis: pathophysiological interactions and clinical importance forgeriatric patients]. Z Gerontol Geriatr,2013,46(5):390~397
    35Fowlkes JL, Bunn R C, Thrailkill KM. Contributions of theInsulin/Insulin-Like Growth Factor-1Axis to Diabetic Osteopathy. JDiabetes Metab,2011,1(3):S1~003
    36Fulzele K, DiGirolamo DJ, Liu Z, et al. Disruption of the insulin-likegrowth factor type1receptor in osteoblasts enhances insulin signaling andaction. J Biol Chem,2007,282(35):25649~25658
    37Namvaran F, Rahimi-Moghaddam P, Azarpira N, et al. Changes in bonebiological markers after treatment of Iranian diabetic patients withpioglitazone: No relation to polymorphism of PPAR-γ (Pro12Ala). J ResMed Sci,2013,18(4):277~282
    38Tsuchiya Y, Sakuraba K, Ochi E. High force eccentric exercise enhancesserum tartrate-resistant acid phosphatase-5b and osteocalcin. JMusculoskelet Neuronal Interact,2014,14(1):50~57
    39Shinoda Y, Kawaguchi H, Higashikawa A, et al. Mechanisms underlyingcatabolic and anabolic functions of parathyroid hormone on bone bycombination of culture systems of mouse cells. J Cell Biochem,2010,109(4):755~763
    40Montagnani A, Gonnelli S. Antidiabetic therapy effects on bonemetabolism and fracture risk. Diabetes Obes Metab,2013,15(9):784~791
    41Ogata N, Chikazu D, Kubota N, et al. Insulin receptor substrate-1inosteoblast is indispensable for maintaining bone turnover. J Clin Invest,2000,105(7):935~943
    42Shimoaka T, Kamekura S, Chikuda H, et al. Impairment of bone healingby insulin receptor substrate-1deficiency. J Biol Chem,2004,279(15):15314~15322
    43McGonnell IM, Grigoriadis AE, Lam EW, et al. A specific role forphosphoinositide3-kinase and AKT in osteoblasts? Front Endocrinol(Lausanne),2012,3:88
    44Wu SS, Liang QH, Liu Y, et al. Omentin-1Stimulates Human OsteoblastProliferation through PI3K/Akt Signal Pathway. Int J Endocrinol,2013,2013:368970
    45Li G, Xu J, Li Z. Receptor for advanced glycation end products inhibitsproliferation in osteoblast through suppression of Wnt,PI3K and ERKsignaling Biochem Biophys Res Commun,2012,423(4):684~689
    46Hie M, Iitsuka N, Otsuka T, et al. Insulin-dependent diabetes mellitusdecreases osteoblastogenesis associated with the inhibition of Wntsignaling through increased expression of Sost and Dkk1and inhibitionof Akt activation. Int J Mol Med,2011,28(3):455~462
    47Taniguchi R, Fukushima H, Osawa K, et al. RelB-induced Expression ofCot, an MAP3K Family Member, Rescues RANKL-inducedOsteoclastogenesis in Alymphoplasia Mice by Promoting NF-κB2Processing by IKKα. J Biol Chem,2014,289(11):7349~7361
    48Sen R, Baltimore D. Multiple nuclear factors interact with theimmunoglobulin enhancer sequences. Cell,1986,46(5):705~716
    49Duckett CS, Perkins ND, Kowalik TF, et al. Dimerization of NF-KB2with RelA(p65) regulates DNA binding, transcriptional activation, andinhibition by an I kappa B-alpha (MAD-3). Mol Cell Biol,1993,13(3):1315~1322
    50Gupta SC, Sundaram C, Reuter S, et al. Inhibiting NF-κB activation bysmall molecules as a therapeutic strategy. Biochim Biophys Acta,2010,1799(10-12):775~787
    51Vaira S, Johnson T, Hirbe AC, et al. RelB is the NF-kappaB subunitdownstream of NIK responsible for osteoclast differentiation. Proc NatlAcad Sci U S A,2008,105(10):3897~3902
    52Nicolin V, Dal Piaz F, Nori SL, et al. Inhibition of bone resorption byTanshinone VI isolated from Salvia miltiorrhiza Bunge. Eur J Histochem,2010,54(2):e21
    53Julien M, Khoshniat S, Lacreusette A, et al. phosphate-dependentregulation of MGP in osteoblasts: role of ERK1/2and Fra-1. J Bone MinerRes,2009,24:1856~1868
    54Takano M, Otsuka F, Matsumoto Y, et al. Peroxisomeproliferator-activated receptor activity is involved in the osteoblasticdifferentiation regulated by bone morphogenetic proteins and tumornecrosis factor-alpha. Mol Cell Endocrinol,2012,348(1):224~232
    55Claro T, Widaa A, McDonnell C. Staphylococcus aureus protein A bindingto osteoblast tumour necrosis factor receptor1results in activation ofnuclear factor kappa B and release of interleukin-6in bone infection.Microbiology,2013,159(Pt1):147~154
    56Li XH, Ha CT, Fu D, et al. REDD1protects osteoblast cells from gammaradiation-induced premature senescence. PLoS One,2012,7(5):e36604
    57Galkina EV, Butcher M, Keller SR, et al. Accelerated atherosclerosis inApoe-/-mice heterozygous for the insulin receptor and the insulin receptorsubstrate-1. Arterioscler Thromb Vasc Biol,2012,32(2):247~256
    58Kovacs P, Hanson RL, Lee YH, et al. The role of insulin receptorsubstrate-1gene (IRS1) in type2diabetes in Pima Indians. Diabetes,2003,52(12):3005~3009
    59Li B, Wang Y, Liu Y, Ma J, et al. Altered gene expression involved ininsulin signaling pathway in type II diabetic osteoporosis rats model.Endocrine,2013,43(1):136~146
    60Wang XF, Jin X, Wang X, et al. Effects of L1-ORF2fragments on greenfluorescent protein gene expression. Genet Mol Biol,2009,32(4):688~696
    61Duan XC, Jin X, Xie Y, et al.[Different effects on reporter geneexpression by distinct L1-ORF2segements]. Yi Chuan,2009,31(1):50~56
    62Pentecost BT, Song R, Luo M, et al. Upstream regions of the estrogenreceptor alpha proximal promoter transcript regulate ER proteinexpression through a translational mechanism. Mol Cell Endocrinol,2005,229(1-2):83~94
    63Viallet PM, Vo-Dinh T. Monitoring intracellular proteins using
    fluorescence techniques: from protein synthesis and localization to activity.
    Curr Protein Pept Sci,2003,4(5):375~388
    1Thrailkill K M, Lumpkin C J, Bunn R C, et al. Is insulin an anabolic agentin bone? Dissecting the diabetic bone for clues. Am J Physiol EndocrinolMetab,2005,289(5):E735~E745
    2Ogata N, Kawaguchi H.[Involvement of insulin and IGF-1signalingmolecules in bone metabolism]. Clin Calcium,2008,18(5):614~622
    3Ceccarelli E, Guarino EG, Merlotti D, et al. Beyond glycemic control indiabetes mellitus: effects of incretin-based therapies on bone metabolism.Front Endocrinol (Lausanne),2013,18;4:73
    4Ochiai H, Okada S, Saito A, et al. Inhibition of insulin-like growth factor-1(IGF-1) expression by prolonged transforming growth factor-beta1(TGF-beta1) administration suppresses osteoblast differentiation. J BiolChem,2012,287(27):22654~22661
    5Gu Y X, Du J, Si M S, et al. The roles of PI3K/Akt signaling pathway inregulating MC3T3-E1preosteoblast proliferation and differentiation onSLA and SLActive titanium surfaces. J Biomed Mater Res A,2013,101(3):748~754
    6Xue P, Wu X, Zhou L, et al. IGF1promotes osteogenic differentiation ofmesenchymal stem cells derived from rat bone marrow by increasing TAZexpression. Biochem Biophys Res Commun,2013,433(2):226~231
    7Chen J R, Zhang J, Lazarenko O P, et al. Soy protein isolates prevent lossof bone quantity associated with obesity in rats through regulation ofinsulin signaling in osteoblasts. FASEB J,2013,27(9):3514~3523
    8Liu LJ, Liu LQ, Bo T, et al. Puerarin Suppress Apoptosis of HumanOsteoblasts via ERK Signaling Pathway. Int J Endocrinol,2013,786574
    9Jilka RL, O'Brien CA, Roberson PK, et al. Dysapoptosis of osteoblasts andosteocytes increases cancellous bone formation but exaggerates corticalporosity with age. J Bone Miner Res,2014,29(1):103~117
    10Walker RJ, Anderson NM, Bahouth S, et al. Silencing of insulin receptorsubstrate-1increases cell death in retinal Müller cells. Mol Vis,2012,18:271~279
    11Fuentes M, Andrews M, Arredondo-Olguín M. Effects of high iron andglucose concentrations over the relative expression of Bcl2, Bax, andMfn2in MIN6cells. Biol Trace Elem Res,2013,153(1-3):390~395
    12Ye P, Lin K, Li Z, et al.(-)-Epigallocatechin gallate regulates expression ofapoptotic genes and protects cultured human lens epithelial cells underhyperglycemia. Mol Biol (Mosk),2013,47(2):251~257
    13Qi H, Cao Y, Huang W, et al. Crucial role of calcium-sensing receptoractivation in cardiac injury of diabetic rats. PLoS One,2013,8(5):e65147
    14Coe LM, Lippner D, Perez GI, et al. Caspase-2deficiency protects micefrom diabetes-induced marrow adiposity. J Cell Biochem,2011,112(9):2403~2411
    15Katz S, Ayala V, Santillán G, et al. Activation of the PI3K/Akt signalingpathway through P2Y receptors by extracellular ATP is involved inosteoblastic cell proliferation. Arch Biochem Biophys,2011,513(2):144~152
    16Wang Y, Li LZ, Zhang YL, et al. LC, a novel estrone-rhein hybridcompound, promotes proliferation and differentiation and protects againstcell death in human osteoblastic MG-63cells. Mol Cell Endocrinol,2011,344(1-2):59~68
    17Adinolfi E, Amoroso F, Giuliani AL. P2X7Receptor Function inBone-Related Cancer. J Osteoporos,2012,2012:637863
    18Wang Y, Wang WL, Xie WL, et al. Puerarin stimulates proliferation anddifferentiation and protects against cell death in human osteoblasticMG-63cells via ER-dependent MEK/ERK and PI3K/Akt activation.Phytomedicine,2013,20(10):787~796
    19Candelario J, Tavakoli H, Chachisvilis M. PTH1receptor is involved inmediating cellular response to long-chain polyunsaturated fatty acids.PLoS One,2012,7(12):e52583
    20Kim DY, Jung SY, Kim CJ, et al. Treadmill exercise amelioratesapoptotic cell death in the retinas of diabetic rats. Mol Med Rep,2013,7(6):1745~1750
    21Li B, Wang Y, Liu Y, Ma J, et al. Altered gene expression involved ininsulin signaling pathway in type II diabetic osteoporosis rats model.Endocrine,2013,43(1):136~146
    22Ueno H, Kondo E, Yamamoto-Honda R, et al. Association of insulinreceptor substrate proteins with Bcl-2and their effects on itsphosphorylation and antiapoptotic function. Mol Biol Cell,2000,11(2):735~746
    23Wu CM, Chen PC, Li TM, et al. Si-Wu-tang extract stimulates boneformation through PI3K/Akt/NF-κB signaling pathways in osteoblasts.BMC Complement Altern Med,2013,13(1):277
    24Marie PJ. Signaling pathways affecting skeletal health. Curr OsteoporosRep,2012,10(3):190~198
    25Quint P, Ruan M, Pederson L, et al. Sphingosine1-phosphate (S1P)receptors1and2coordinately induce mesenchymal cell migration throughS1P activation of complementary kinase pathways. J Biol Chem,2013,288(8):5398~5406
    26Jensen PR, Andersen TL, Pennypacker BL, et al. The bone resorptioninhibitors odanacatib and alendronate affect post-osteoclastic eventsdifferently in ovariectomized rabbits. Calcif Tissue Int,2014,94(2):212~222
    27Lechleitner M, Pils K, Roller-Wirnsberger R, et al.[Diabetes andosteoporosis: pathophysiological interactions and clinical importance forgeriatric patients]. Z Gerontol Geriatr,2013,46(5):390~397
    28Oltvai ZN, Milliman CL, Korsmeyer SJ, et al. Bcl-2heterodimerizes invivo with a conserved homolog, Bax, that accelerates programmed celldeath. Cell,1993,74(4):609~619
    29Xu F, Ye YP, Dong YH, et al. Inhibitory effects of highglucose/insulin environment on osteoclast formation and resorption invitro. J Huazhong Univ Sci Technolog Med Sci,2013,33(2):244~249
    30McGonnell IM, Grigoriadis AE, Lam EW, et al. A specific role forphosphoinositide3-kinase and AKT in osteoblasts? Front Endocrinol(Lausanne),2012,3:88
    31Gu YX, Du J, Si MS, et al. The roles of PI3K/Akt signaling pathway inregulating MC3T3-E1preosteoblast proliferation and differentiation onSLA and SLActive titanium surfaces. J Biomed Mater Res A,2013,101(3):748~754
    32Wu SS, Liang QH, Liu Y, et al. Omentin-1Stimulates Human OsteoblastProliferation through PI3K/Akt Signal Pathway. Int J Endocrinol,2013,2013:368970
    33Li G, Xu J, Li Z. Receptor for advanced glycation end products inhibitsproliferation in osteoblast through suppression of Wnt,PI3K and ERKsignaling Biochem Biophys Res Commun,2012,423(4):684~689
    34Duan XY, Xie PL, Ma YL, et al. Omentin inhibits osteoblasticdifferentiation of calcifying vascular smooth muscle cells throughthe PI3K/Aktpathway. Amino Acids,2011,41(5):1223~1231
    35Lian N, Lin T, Liu W, et al. Transforming growth factor β suppressesosteoblast differentiation via the vimentin activating transcription factor4(ATF4) axis. J Biol Chem,2012,287(43):35975~35984
    36Ayala-Pe a VB, Scolaro LA, Santillán GE. ATP and UTP stimulate bonemorphogenetic protein-2,-4and-5gene expression and mineralization byrat primary osteoblasts involving PI3K/AKTpathway. Exp Cell Res,2013,319(13):2028~2036
    37Zhang Y, Yang JH. Activation of the PI3K/Akt pathway by oxidative stressmediates high glucose-induced increase of adipogenic differentiation inprimary rat osteoblasts. J Cell Biochem,2013,114(11):2595-602
    38Matsuzaki E, Hiratsuka S, Hamachi T, et al. Sphingosine-1-phosphatepromotes the nuclear translocation of β-catenin and thereby inducesosteoprotegerin gene expression in osteoblast-like cell lines. Bone,2013,S8756~3282
    39Chen L, Huang M, Tan J, et al. PI3K/AKT pathway involvement in theosteogenic effects of osteoclast culture supernatants on pre-osteoblastcells.Tissue Eng Part A,2013,19(19-20):2226~2232
    40Chen HT, Tsou HK, Chang CH, et al. Hepatocyte growth factor increasesosteopontin expression in human osteoblasts through PI3K, Akt, c-Src, andAP-1signaling pathway. PLoS One,2012,7(6):e38378
    41Zhang J, Fu M, Myles D, et al. PDGF induces osteoprotegerin expressionin vascular smooth muscle cells by multiple signal pathways. FEBS Lett,2002,521(1-3):180~184
    42Xie H, Xie PL, Wu XP, et al. Omentin-1attenuates arterial calcificationand bone loss in osteoprotegerin-deficient mice by inhibition of RANKLexpression. Cardiovasc Res,2011,92(2):296~306
    43Tsubaki M, Komai M, Itoh T, et al. Nitrogen-containing bisphosphonatesinhibit RANKL-and M-CSF-induced osteoclast formation through theinhibition of ERK1/2and Akt activation. J Biomed Sci,2014,21(1):10
    44Tawara K, Oxford JT, Jorcyk CL. Clinical significance of interleukin(IL)-6in cancer metastasis to bone: potential of anti-IL-6therapies. CancerManag Res,2011,3:177~89
    45Adapala NS, Barbe MF, Tsygankov A, et al. Loss of Cbl-PI3K interactionenhances osteoclast survival due to p21-Ras mediated PI3K activationindependent of Cbl-b. J Cell Biochem,2014,[Epub ahead of print]
    46Kameda Y, Takahata M, Komatsu M, et al. Siglec-15regulates osteoclastdifferentiation by modulating RANKL-induced phosphatidylinositol3-kinase/Akt and Erk pathways in association with signaling AdaptorDAP12. J Bone Miner Res,2013,28(12):2463~2475
    47Suh KS, Rhee SY, Kim YS, et al. Xanthohumol modulates the expressionof osteoclast-specific genes during osteoclastogenesis in RAW264.7cells.Food Chem Toxicol,2013,62:99~106
    48Kim TH, Choi SJ, Lee YH, et al. Combined therapeutic application ofmTOR inhibitor and vitamin D(3) for inflammatory bone destruction ofrheumatoid arthritis. Med Hypotheses,2012,79(6):757~760
    49Shugg RP, Thomson A, Tanabe N, et al. Effects of isoform-selectivephosphatidylinositol3-kinase inhibitors on osteoclasts: actions oncytoskeletal organization, survival, and resorption. J Biol Chem,2013,288(49):35346~35357
    50Hie M, Iitsuka N, Otsuka T, et al. Insulin-dependent diabetes mellitusdecreases osteoblastogenesis associated with the inhibition of Wntsignaling through increased expression of Sost and Dkk1and inhibitionof Akt activation. Int J Mol Med,2011,28(3):455~462
    51Taniguchi R, Fukushima H, Osawa K, et al. RelB-induced Expression ofCot, an MAP3K Family Member, Rescues RANKL-inducedOsteoclastogenesis in Alymphoplasia Mice by Promoting NF-κB2Processing by IKKα. J Biol Chem,2014,289(11):7349~7361
    52Yeon JT, Kim KJ, Choi SW, et al. Anti-osteoclastogenic activity ofpraeruptorin A via inhibition of p38/Akt-c-Fos-NFATc1signaling andPLCγ-independent Ca2+oscillation. PLoS One,2014,9(2):e88974
    53Jang HD, Noh JY, Shin JH, et al. PTEN regulation by the Akt/GSK-3β axisduring RANKL signaling. Bone,2013,55(1):126~131
    54Kim JY, Kim JY, Cheon YH, et al.9-Hydroxy-6,7-dimethoxydalbergiquinol inhibits osteoclast differentiation throughdown-regulation of Akt, c-Fos and NFATc1. Int Immunopharmacol,2014,20(1):213~220
    55Yue L, Haroun S, Parent JL, et al. Prostaglandin D(2) induces apoptosis ofhuman osteoclasts through ERK1/2and Akt signaling pathways. Bone,2014,60:112~121
    56Moon JB, Kim JH, Kim K, et al. Akt induces osteoclast differentiationthrough regulating the GSK3β/NFATc1signaling cascade. J Immunol,2012,188(1):163~169
    57Kawamura N, Kugimiya F, Oshima Y, et al. Akt1in osteoblasts andosteoclasts controls bone remodeling. PLoS One,2007,2(10):e1058
    58Peng XD, Xu PZ, Chen ML, et al. Dwarfism, impaired skin development,skeletal muscle atrophy, delayed bone development, andimpededadipogenesis in mice lacking Akt1and Akt2. Genes Dev,2003,17(11):1352~1365
    59Sugatani T, Hruska KA. Akt1/Akt2and mammalian target ofrapamycin/Bim play critical roles in osteoclast differentiation survival,respectively, whereas Akt is dispensable for cell survival in isolatedosteoclast precursors. J Biol Chem,2005,280(5):3583~3589
    60Montagnani A, Gonnelli S. Antidiabetic therapy effects on bonemetabolism and fracture risk. Diabetes Obes Metab,2013,15(9):784~791
    61Yang J, Wang T, Zhang Y, et al. Altered expression of mitofusin2in peniletissues of diabetic rats. Andrologia.2013,[Epub ahead of print]
    62Xiang J, Zhao Y, Chen J, et al. Expression of basic fibroblast growth factor,protein kinase C and members of the apoptotic pathway in skeletal muscleof streptozotocin-induced diabetic rats. Tissue Cell,2014,46(1):1~8
    1Wu H, Qi Q, Yu Z, et al. Independent and opposite associations of trunkand leg fat depots with adipokines, inflammatory markers, and metabolicsyndrome in middle-aged and older Chinese men and women. J ClinEndocrinol Metab,2010,95(9):4389~4398
    2Reiss K, Del Valle L, Lassak A, et al. Nuclear IRS-1and cancer. J CellPhysiol,2012,227(8):2992~3000
    3Lee YH, White MF. Insulin receptor substrate proteins and diabetes. ArchPharm Res,2004,27(4):361~370
    4Shiraki M, Terakura Y, Iwasa J, et al. Elevated serum tumor necrosisfactor-alpha and soluble tumor necrosis factor receptors correlate withaberrant energy metabolism in liver cirrhosis. Nutrition,2010,26(3):269~275
    5Myers MG Jr, Grammer TC, Brooks J, et al. The pleckstrin homologydomain in IRS-1sensitizes insulin signling. J Biol Chem,1995,270(20):11715~11718
    6Sun XJ, Rothenberg P, Kahn CR, et al. Structure of the insulin receptorsubstrate IRS-1defines a unique signal transduction portein. Nature,1991,352(6330):73~77
    7Fritsche L, Weigert C, H ring HU, et al. How insulin receptor substrateproteins regulate the metabolic capacity of the liver-implications forhealth and disease. Curr Med Chem,2008,15(13):1316~1329
    8Hoy AJ,Brandon AE,Turner N, et al. Lipid and insulin infusion-inducedskeletal muscle insulin resistance is likely due to metabolic feedback andnot changes in IRS-1,Akt,or AS160phosphorylation. AmJ PhysionEndocrinol Metab,2009,297(1):67~75
    9Ibá ez L, Suárez L, Lopez-Bermejo A, et al. Early development of visceralfat excess following spontaneous catch-up growth in children with lowbirthweight. J Clin Endocrinol Metab,2008,93(3):925~928
    10许国喜,沈飞.运动对胰岛素抵抗大鼠骨骼肌IRS-1与Tyr磷酸化及氧化应激的影响.西安体育学院学报,2012,29(1):89~93
    11Geetha T, Zheng C, Vishwaprakash N, et al. Sequestosome1/p62, ascaffolding protein, is a newly identified partner of IRS-1protein. J BiolChem,2012,287(35):29672~29678
    12Walker RJ, Anderson NM, Bahouth S, et al. Silencing of insulin receptorsubstrate-1increases cell death in retinal Müller cells. Mol Vis,2012,18:271~279
    13Wainszelbaum MJ, Liu J, Kong C TBC1D3, et al. a hominoid-specificgene, delays IRS-1degradation and promotes insulin signaling bymodulating p70S6kinase activity. PLoS One,2012,7(2):e31225
    14唐伟,朱剑,武晓泓等.胰岛素信号转导及其调节机制.实用糖尿病杂志,2005,1(3):43~49
    15Aspinwall CA, Qian WJ, Roper MG, et al. Roles of insulin receptorsubstrate-1, phosphatidylinositol3-kinase,and release of intracellularCa2+storesin insulin stimulated insulin secretion in β cells. J Biol Chem,2000,275(29):22331~22338
    16Rondinone C M, Wang L M, Lonnroth P, et al. Insulin receptorsubstrate(IRS)1is reduced and IRS-2is the main docking protein forphosphatidylinositol32kinase in adipocytes from subjects withnon-insulin-dependent diabetes mellitus. Proc Natl Acac Sci USA,1997,94(8):4171~4175
    17Takano A, Haruta T, Iwata M, et al. Growth hormone induces cellularinsulin resistance by uncoupling phosphatidylinositol3-kinase and itsdownstream signals in3T3-L1adipocytes. Diabetes,2001,50(8):1891~1900
    18Benito M. Tissue specificity on insulin action and resistance: past to recentmechanisms. Acta Physiol(Oxf),2011,201(3):297~312
    19牛燕媚,刘彦辉,李慧阁等.胰岛素受体底物蛋白1及其丝氨酸磷酸化活性在胰岛素抵抗发生中的作用.中国糖尿病杂志,2012,20(2):136~140
    20Bose SK, Shrivastava S, Meyer K. Hepatitis C virus activates themTOR/S6K1signaling pathway in inhibiting IRS-1function for insulinresistance. J Virol,2012,86(11):6315~6322
    21田莉娜.2型糖尿病伴非酒精性脂肪肝相关因素分析.新乡医学院学报,2010,27(4):394~396
    22Biddinger SB, Kahn CR. From mice to men: insights into the insulinresistance syndromes. Annu Rev Physiol,2006,68:123~158
    23叶娟,王群,郑瑞丹等.生长追赶宫内发育迟缓大鼠肝细胞细胞因子信号转导抑制因子3表达与胰岛素抵抗的发生机制.实用儿科临床杂志,2012,27(8):566~569
    24谭莺,张佳妮,王清勇等.动态观察肝脏JNK信号通路在非酒精性脂肪肝病中的表达.中国现代医学杂志,2012,26(16):19~24
    25Alberstein M, Zornitzki T, Zick Y, et al. Hepatitis C core protein impairsinsulin downstream signalling and regulatory role of IGFBP-1expression.J Viral Hepat.2012,19(1):65~71
    26Shi J, Luo L, Eash J, et al. The SCF-Fbxo40complex induces IRS1ubiquitination in skeletal muscle, limiting IGF1signaling. Dev Cell,2011,21(5):835~847
    27Danielsson A, Ost A, Lystedt E, et al. Insulin resistance in humanadipocytes occurs downstream of IRS1after surgical cell isolation but atthe level of phosphorylation of IRS1in type2diabetes. FEBS J,2005,272(1):141~151
    28Morini E, Prudente S, Succurro E, et al. IRS1G972R polymorphism andtype2diabetes: a paradigm for the difficult ascertainment of thecontribution to disease susceptibility of 'low-frequency-low-risk' variants.Diabetologia,2009,52(9):1852~1857
    29李晓,乔虹.基因多态性与2型糖尿病.中国临床医学,2012,19(1):87~88
    30Galkina EV, Butcher M, Keller SR, et al. Accelerated atherosclerosis inApoe-/-mice heterozygous for the insulin receptor and the insulin receptorsubstrate-1. Arterioscler Thromb Vasc Biol,2012,32(2):247~256
    31Kovacs P, Hanson RL, Lee YH, et al. The role of insulin receptorsubstrate-1gene (IRS1) in type2diabetes in Pima Indians. Diabetes,2003,52(12):3005~3009
    32Burguete-Garcia AI, Cruz-Lopez M, Madrid-Marina V, et al. Associationof Gly972Arg polymorphism of IRS1gene with type2diabetes mellitus inlean participants of a national health survey in Mexico: a candidate genestudy. Metabolism,2010,59(1):38~45
    33Martínez-Gómez LE, Cruz M, Martínez-Nava GA, et al. A replicationstudy of the IRS1, CAPN10, TCF7L2, and PPARG gene polymorphismsassociated with type2diabetes in two different populations of Mexico.Ann Hum Genet,2011,75(5):612~620
    34Bodhini D, Radha V, Mohan V. Association study of IRS1genepolymorphisms with type2diabetes in south Indians. Diabetes TechnolTher,2011,13(7):767~772
    35García-Escalante MG, Suárez-Solís VM, López-Avila MT, et al. Effect ofthe Gly972Arg, SNP43and Prol2Ala polymorphisms of the genes IRS1,CAPN10and PPARG2on secondary failure to sulphonylurea andmetformin in patients with type2diabetes in Yucatán, México. Invest Clin,2009,50(1):65~76
    36Wang Y, Nishina PM, Naggert JK. Degradation of IRS1leads to impairedglucose uptake in adipose tissue of the type2diabetes mouse modelTALLYHO/Jng. J Endocrinol,2009,203(1):65~74
    37Rung J, Cauchi S, AlbrechtsenA, et al. Genetic variant near IRS-1isassociated with type2diabetes, insulin resistance and hyperinsulinemia.Nat Genet,2009,41(10):1110~1115
    38Yiannakouris N, Cooper JA, Shah S, et al. IRS1gene variants,dysglycaemic metabolic changes and type-2diabetes risk. Nutr MetabCardiovasc Dis,2011,216(1):157~160
    39Tang Y, Han X, Sun X, et al. Association study of a common variant nearIRS1with type2diabetes mellitus in Chinese Han population. Endocrine,201,43(1):84~91
    40Sharma R, Prudente S, Andreozzi F, et al. The type2diabetes andinsulin-resistance locus near IRS1is a determinant of HDL cholesterol andtriglycerides levels among diabetic subjects. Atherosclerosis,2011,216(1):157~160
    1Pramojanee SN, Phimphilai M, Chattipakorn N, et al. Possible rolesof insulin signaling in osteoblasts. Endocr Res,2014,[Epub ahead ofprint]
    2Li Y, Liu H, Sato Y. The association between the serum C-peptide leveland bone mineral density. PLoS One,2013,8(12):e83107
    3Fowlkes JL, Bunn R C, Thrailkill KM. Contributions of theInsulin/Insulin-Like Growth Factor-1Axis to Diabetic Osteopathy. JDiabetes Metab,2011,1(3):S1~003
    4Campos RM, de Mello MT, Tock L, et al. Aerobic plus resistance trainingimproves bone metabolism and inflammation in adolescents who are obese.J Strength Cond Res,2014,28(3):758~766
    5Jang HB, Lee HJ, Park JY, et al. Association between serum vitamind and metabolic risk factors in korean schoolgirls. Osong Public HealthRes Perspect,2013,4(4):179~186
    6Namvaran F, Rahimi-Moghaddam P, Azarpira N, et al. Changes in bonebiological markers after treatment of Iranian diabetic patients withpioglitazone: No relation to polymorphism of PPAR-γ (Pro12Ala). J ResMed Sci,2013,18(4):277~282
    7Fulzele K, DiGirolamo DJ, Liu Z, et al. Disruption of the insulin-likegrowth factor type1receptor in osteoblasts enhances insulin signaling andaction. J Biol Chem,2007,282(35):25649~25658
    8Veldhuis-Vlug AG, Fliers E, Bisschop PH. Bone as a regulator of glucosemetabolism. Neth J Med,2013,71(8):396~400
    9Bollerslev J, Henriksen K, Nielsen MF, et al. Autosomal dominantosteopetrosis revisited: lessons from recent studies. Eur J Endocrinol,2013,169(2):R39~57
    10Basu R, Peterson J, Rizza R, et al. Effects of physiological variations incirculating insulin levels on bone turnover in humans. J Clin EndocrinolMetab,2011,96(5):1450~1455
    11Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblastsintegrates bone remodeling and energy metabolism. Cell,2010,142(2):296~308
    12Killinger Z, Ku ma M, Steran áková L, et al. Osteoarticular changes inacromegaly. Int J Endocrinol,2012,2012:839282
    13Joung YH, Lim EJ, Darvin P, et al. MSM enhances GH signaling via theJak2/STAT5b pathway in osteoblast-like cells and osteoblastdifferentiation through the activation of STAT5b in MSCs. PLoS One,2012,7(10):e47477
    14Morcov C, Vulpoi C, Br ni teanu D. Correlation between adiponectin,leptin, insulin growth factor-1and bone mineral density in pre andpostmenopausal women. Rev Med Chir Soc Med Nat Iasi,2012,116(3):785~789
    15Liu HC, Zhao H, Chen J, et al. Role of recombinant plasmidpEGFP-N1-IGF-1transfection in alleviating osteoporosis inovariectomized rats. J Mol Histol,2013,44(5):535~544
    16Tenta R, Bourgiezi I, Aliferis E, et al. Bone metabolism compensates forthe delayed growth in small for gestational age neonates. Organogenesis,2013,9(1):55~59
    17Sun HB, Chen JC. Prevention of bone loss by injection of insulin-likegrowth factor-1after sciatic neurectomy in rats. Chin J Traumatol,2013,16(3):158~162
    18Bosetti M, Sabbatini M, Nicolì E, et al. Effects and differentiation activityof IGF-I, IGF-II, insulin and preptin on human primary bone cells. GrowthFactors,2013,31(2):57~65
    19Logan JG, Sophocleous A, Marino S, et al. Selective tyrosine kinaseinhibition of insulin-like growth factor-1receptor inhibits human andmouse breast cancer-induced bone cell activity, bone remodeling, andosteolysis. J Bone Miner Res,2013,28(5):1229~1242
    20Ogata N, Chikazu D, Kubota N, et al. Insulin receptor substrate-1inosteoblast is indispensable for maintaining bone turnover. J Clin Invest,2000,105(7):935~943
    21DeMambro VE, Kawai M, Clemens TL, et al. A novel spontaneousmutation of Irs1in mice results in hyperinsulinemia, reduced growth, lowbone mass and impaired adipogenesis. J Endocrinol,2010,204(3):241~253
    22Granero-Moltó F, Myers TJ, Weis JA, et al. Mesenchymal stem cellsexpressing insulin-like growth factor-I(MSCIGF) promote fracture healingand restorenew bone formation in Irs1knockout mice: analyses of MSCIGF autocrine and paracrine regenerative effects. Stem Cells.2011,29(10):1537–1548
    23Shimoaka T, Kamekura S, Chikuda H, et al. Impairment of bone healingby insulin receptor substrate-1deficiency. J Biol Chem,2004,279(15):15314~15322
    24Bu YH, He YL, Zhou HD, et al. Insulin receptor substrate1regulates thecellular differentiation and the matrix metallopeptidase expression ofpreosteoblastic cells. J Endocrinol.2010,206(3):271–277
    25Ochiai H, Okada S, Saito A, et al. Inhibition of insulin-like growth factor-1(IGF-1) expression by prolonged transforming growth factor-beta1(TGF-beta1) administration suppresses osteoblast differentiation. J BiolChem,2012,287(27):22654~22661
    26McGonnell IM, Grigoriadis AE, Lam EW, et al. A specific role forphosphoinositide3-kinase and AKT in osteoblasts? Front Endocrinol(Lausanne),2012,3:88
    27Gu YX, Du J, Si MS, et al. The roles of PI3K/Akt signaling pathway inregulating MC3T3-E1preosteoblast proliferation and differentiation onSLA and SLActive titanium surfaces. J Biomed Mater Res A,2013,101(3):748~754
    28Katz S, Ayala V, Santillán G, et al. Activation of the PI3K/Akt signalingpathway through P2Y receptors by extracellular ATP is involved inosteoblastic cell proliferation. Arch Biochem Biophys,2011,513(2):144~152
    29Wang Y, Li LZ, Zhang YL, et al. LC, a novel estrone-rhein hybridcompound, promotes proliferation and differentiation and protects againstcell death in human osteoblastic MG-63cells. Mol Cell Endocrinol,2011,344(1-2):59~68
    30Adinolfi E, Amoroso F, Giuliani AL. P2X7Receptor Function inBone-Related Cancer. J Osteoporos,2012,2012:637863
    31Wang Y, Wang WL, Xie WL, et al. Puerarin stimulates proliferation anddifferentiation and protects against cell death in human osteoblasticMG-63cells via ER-dependent MEK/ERK and PI3K/Akt activation.Phytomedicine,2013,20(10):787~796
    32Wu SS, Liang QH, Liu Y, et al. Omentin-1Stimulates Human OsteoblastProliferation through PI3K/Akt Signal Pathway. Int J Endocrinol,2013,2013:368970
    33Li G, Xu J, Li Z. Receptor for advanced glycation end products inhibitsproliferation in osteoblast through suppression of Wnt,PI3K and ERKsignaling Biochem Biophys Res Commun,2012,423(4):684~689
    34Duan XY, Xie PL, Ma YL, et al. Omentin inhibits osteoblasticdifferentiation of calcifying vascular smooth muscle cells throughthe PI3K/Aktpathway. Amino Acids,2011,41(5):1223~1231
    35Lian N, Lin T, Liu W, et al. Transforming growth factor β suppressesosteoblast differentiation via the vimentin activating transcription factor4(ATF4) axis. J Biol Chem,2012,287(43):35975~35984
    36Ayala-Pe a VB, Scolaro LA, Santillán GE. ATP and UTP stimulate bonemorphogenetic protein-2,-4and-5gene expression and mineralization byrat primary osteoblasts involving PI3K/AKTpathway. Exp Cell Res,2013,319(13):2028~2036
    37Zhang Y, Yang JH. Activation of the PI3K/Akt pathway by oxidative stressmediates high glucose-induced increase of adipogenic differentiation inprimary rat osteoblasts. J Cell Biochem,2013,114(11):2595-602
    38Matsuzaki E, Hiratsuka S, Hamachi T, et al. Sphingosine-1-phosphatepromotes the nuclear translocation of β-catenin and thereby inducesosteoprotegerin gene expression in osteoblast-like cell lines. Bone,2013,S8756~3282
    39Quint P, Ruan M, Pederson L, et al. Sphingosine1-phosphate (S1P)receptors1and2coordinately induce mesenchymal cell migration throughS1P activation of complementary kinase pathways. J Biol Chem,2013,288(8):5398~5406
    40Chen L, Huang M, Tan J, et al. PI3K/AKT pathway involvement in theosteogenic effects of osteoclast culture supernatants on pre-osteoblastcells.Tissue Eng Part A,2013,19(19-20):2226~2232
    41Chen HT, Tsou HK, Chang CH, et al. Hepatocyte growth factor increasesosteopontin expression in human osteoblasts through PI3K, Akt, c-Src, andAP-1signaling pathway. PLoS One,2012,7(6):e38378
    42Zhang J, Fu M, Myles D, et al. PDGF induces osteoprotegerin expressionin vascular smooth muscle cells by multiple signal pathways. FEBS Lett,2002,521(1-3):180~184
    43Xie H, Xie PL, Wu XP, et al. Omentin-1attenuates arterial calcificationand bone loss in osteoprotegerin-deficient mice by inhibition of RANKLexpression. Cardiovasc Res,2011,92(2):296~306
    44Tsubaki M, Komai M, Itoh T, et al. Nitrogen-containing bisphosphonatesinhibit RANKL-and M-CSF-induced osteoclast formation through theinhibition of ERK1/2and Akt activation. J Biomed Sci,2014,21(1):10
    45Tawara K, Oxford JT, Jorcyk CL. Clinical significance of interleukin(IL)-6in cancer metastasis to bone: potential of anti-IL-6therapies. CancerManag Res,2011,3:177~89
    46Adapala NS, Barbe MF, Tsygankov A, et al. Loss of Cbl-PI3K interactionenhances osteoclast survival due to p21-Ras mediated PI3K activationindependent of Cbl-b. J Cell Biochem,2014,[Epub ahead of print]
    47Kameda Y, Takahata M, Komatsu M, et al. Siglec-15regulates osteoclastdifferentiation by modulating RANKL-induced phosphatidylinositol3-kinase/Akt and Erk pathways in association with signaling AdaptorDAP12. J Bone Miner Res,2013,28(12):2463~2475
    48Suh KS, Rhee SY, Kim YS, et al. Xanthohumol modulates the expressionof osteoclast-specific genes during osteoclastogenesis in RAW264.7cells.Food Chem Toxicol,2013,62:99~106
    49Kim TH, Choi SJ, Lee YH, et al. Combined therapeutic application ofmTOR inhibitor and vitamin D(3) for inflammatory bone destruction ofrheumatoid arthritis. Med Hypotheses,2012,79(6):757~760
    50Shugg RP, Thomson A, Tanabe N, et al. Effects of isoform-selectivephosphatidylinositol3-kinase inhibitors on osteoclasts: actions oncytoskeletal organization, survival, and resorption. J Biol Chem,2013,288(49):35346~35357
    51Ceccarelli E, Guarino EG, Merlotti D, et al. Beyond glycemic control indiabetes mellitus: effects of incretin-based therapies on bone metabolism.Front Endocrinol (Lausanne),2013,18;4:73
    52Candelario J, Tavakoli H, Chachisvilis M. PTH1receptor is involved inmediating cellular response to long-chain polyunsaturated fatty acids.PLoS One,2012,7(12):e52583
    53Kim DY, Jung SY, Kim CJ, et al. Treadmill exercise amelioratesapoptotic cell death in the retinas of diabetic rats. Mol Med Rep,2013,7(6):1745~1750
    54Hie M, Iitsuka N, Otsuka T, et al. Insulin-dependent diabetes mellitusdecreases osteoblastogenesis associated with the inhibition of Wntsignaling through increased expression of Sost and Dkk1and inhibitionof Akt activation. Int J Mol Med,2011,28(3):455~462
    55Taniguchi R, Fukushima H, Osawa K, et al. RelB-induced Expression ofCot, an MAP3K Family Member, Rescues RANKL-inducedOsteoclastogenesis in Alymphoplasia Mice by Promoting NF-κB2Processing by IKKα. J Biol Chem,2014,289(11):7349~7361
    56Yeon JT, Kim KJ, Choi SW, et al. Anti-osteoclastogenic activity ofpraeruptorin A via inhibition of p38/Akt-c-Fos-NFATc1signaling andPLCγ-independent Ca2+oscillation. PLoS One,2014,9(2):e88974
    57Jang HD, Noh JY, Shin JH, et al. PTEN regulation by the Akt/GSK-3β axisduring RANKL signaling. Bone,2013,55(1):126~131
    58Kim JY, Kim JY, Cheon YH, et al.9-Hydroxy-6,7-dimethoxydalbergiquinol inhibits osteoclast differentiation throughdown-regulation of Akt, c-Fos and NFATc1. Int Immunopharmacol,2014,20(1):213~220
    59Yue L, Haroun S, Parent JL, et al. Prostaglandin D(2) induces apoptosis ofhuman osteoclasts through ERK1/2and Akt signaling pathways. Bone,2014,60:112~121
    60Moon JB, Kim JH, Kim K, et al. Akt induces osteoclast differentiationthrough regulating the GSK3β/NFATc1signaling cascade. J Immunol,2012,188(1):163~169
    61Kawamura N, Kugimiya F, Oshima Y, et al. Akt1in osteoblasts andosteoclasts controls bone remodeling. PLoS One,2007,2(10):e1058
    62Peng XD, Xu PZ, Chen ML, et al. Dwarfism, impaired skin development,skeletal muscle atrophy, delayed bone development, andimpededadipogenesis in mice lacking Akt1and Akt2. Genes Dev,2003,17(11):1352~1365
    63Sugatani T, Hruska KA. Akt1/Akt2and mammalian target ofrapamycin/Bim play critical roles in osteoclast differentiation survival,respectively, whereas Akt is dispensable for cell survival in isolatedosteoclast precursors. J Biol Chem,2005,280(5):3583~3589

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700