水稻抽穗开花期耐热性和重要农艺性状的遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候的快速变暖,极端高温出现的频率不断增加,高温热害已经成为世界稻作生产的制约因子之一。高温热害不仅导致水稻减产和稻米品质的降低,同时还将引起整个稻作制度的改变,因此水稻的耐热性研究变得日趋重要。水稻耐热性机制较为复杂,其耐热性遗传基础以及水稻耐热性育种进展缓慢。水稻许多重要农艺性状都是数量性状,水稻遗传改良的大部分工作就是改良这些数量性状,但由于其容易受环境的影响,遗传基础很复杂,所以水稻重要农艺性状的遗传基础研究及其遗传改良至今仍未取得突破性进展。因此,水稻重要农艺性状的遗传基础研究也一直倍受关注。
     本研究以2个优良的籼型恢复系材料T219和T226为亲本构建了202个株系的重组自交系(RILs)群体,利用人工气候室模拟自然条件下的高温环境(温度设置:30~37℃的日变温,33.5℃日平均温度),进行抽穗开花时期的耐热处理,以耐热系数为水稻耐热性指标,对其抽穗开花期耐热性进行遗传分析。与此同时,在武汉和海南陵水两地不同的年份、不同的土壤类型、不同的气候条件、不同的田间管理条件以及在武汉的不同年份、不同的栽培季节和不同的栽培方式等多种不同环境下,分别考察了重组自交系的株高、抽穗期、单株产量、有效穗数、穗长、每穗颖花数、每穗实粒数、结实率、千粒重和穗着粒密度共10个重要农艺性状,剖析了在不同环境下各性状的遗传基础。主要研究结果如下:
     1.利用该RILs群体构建了遗传连锁图谱,该图谱包含189个SSR标记、14个连锁群,图谱总长1559.6cM,相邻标记平均遗传距离为8.3cM。标记顺序与已经发表的图谱有很好的一致性。
     2.利用人工气候室对RILs进行抽穗开花时期的耐热处理,以耐热系数为耐热性指标,利用混合线性模型复合区间作图法对水稻抽穗开花期耐热性进行了QTL定位分析,两年共定位7个耐热性QTL,分别位于第2、3、8、9和12染色体上,其LOD值为4.5~13.6,贡献率7.0-12.0%。其中位于第3染色体的RM570-RM148N段qHT3在两年同时检测到,且保持一致的效应方向。
     3.两年共发现有7对抽穗开花期耐热上位性QTL,分别位于第2、3、4、7、8和9染色体上,LOD值为5.9-7.4,贡献率较小,为0.4-1.4%。
     4.不同环境下的重要农艺性状相关性分析发现,除了千粒重与穗长、千粒重与有效穗数以及结实率与穗长之间的相关系数在5个环境下均未达到显著水平外,其余各性状间的相关系数均至少在1个环境中达到显著或极显著水平。其中有11对性状之
     间在所有5个环境下均表现一致的显著或极显著的正相关,5对性状之间在所有5个环境下均表现一致的显著或极显著的负相关。同时另有4对性状之间在不同的环境下出现正负完全相反的极显著相关性。
     5.AMMI模型进行的基因型和环境互作效应分析表明,RILs所有10个性状的基因型、环境以及基因型与环境互作效应均为极显著。其中每株有效穗数、结实率和单株产量存在较大的基因型与环境互作效应,而株高、抽穗期和千粒重的基因型与环境互作效应均较小。AMMI模型将10个性状的基因型与环境互作效应均分解为2个主成分,分别解释了它们在各性状的基因型与环境互作效应中的比例。其中以株高、抽穗期、穗长和每穗实粒数的AMMI1和AMMI2所能解释的基因型与环境互作效应为最高,分别为80.24%、80.09%、77.33%和70.72%。,而以每穗颖花数的为最小,为55.59%。
     6.采用区间作图法,在5个不同环境下对10个重要农艺性状(结实率为8个环境)进行了QTL定位分析,总共检测到129个QTL。不同性状在不同环境中所检测到的QTL数目和位置均有不同程度的差异。
     7.从定位的QTL数量来看,在不同的环境中所检测到的各性状的QTL总数不同。总数最多为45个,最少的为41个。在各个性状中,以穗长在所有环境中检测到的QTL总数目最多,共计为19个,最少的为千粒重,共7个QTL。
     8.从结果中发现,部分性状的某些QTL在不同环境下的表现较稳定,而且有的QTL的效应还较大。如结实率的qSR3-1、抽穗期的qHD12-1、千粒重的qKGW5-1等。同时某些性状如千粒重的QTL,在各不同环境间表现很小的差异。
Study on heat tolerance in rice is getting more and more important, for high temperature stress has become one of the major factors exerting serious influence on rice production. And the genetic basis of heat tolerance in rice is very complex due to different mechanisms mixed together which resulted in slow progress on heat tolerance breeding in rice. Most of the important agronomic traits in rice are quantitatively inherited. Improvement of these quantitative traits is one of the major objectives in rice genetic breeding program. By now, progress on the reseach of the genetic basis and improvement of the major agronomic traits was not significant because of their complex mechanisms and environment effect. So researches on the genetic basis of the major agronomic traits in rice are always given much attention. In this study, we have developed a set of novel population with 202 recombinant inbred lines (RIL) derived from a cross between two indica varieties, T226 and T219, and then treated the RIL population under high temperature regimes in growth chamber during flowering stage, so as to assess the genetic effect of quantitative trait loci (QTLs) conferring heat tolerance at flowering stage in rice with coefficient of heat tolerance. And to dissect the genetic basis of the major agronomic traits in rice, genotype by environment (GxE) interaction and QTLs for ten agronomic traits under various environments including local, year, soil type and nurse manner were analyzed using the population with 202 RILs. The main results are summarized as following:
     1. A genetic linkage map consisting of 189 SSR markers, covering 1559.6 cM in whole genome, was constructed using the RIL population, with an average interval of 8.3 cM. 189 SSR markers were separated into fourteen groups. The linear order of markers in the linkage map was in good agreement with that published previously.
     2. Treated the RIL population under high temperature regimes in growth chamber during flowering stage and measured heat tolerance with the relative ratio of spikelet fertility of treated plants with high temperature in growth chamber and with optimal temperature in natural environment during flowering time, QTLs for heat tolerance at flowering stage were analysed by using a mixed linear-model. Seven main effect QTLs controlling heat tolerance during flowering time, located in chromosome 2, 3, 8, 9 and 12were detected in two-year experiments. A QTL, qHT3, located at RM570-RM148 on chromosome 3, was detected in two years, respectively.
     3. Epistatic interaction analysis showed seven pairs of epistatic QTL which involved 12 loci located in chromosome 2, 3,4, 7, 8 and 9 were detected.
     4. The correlation between traits was also analyzed. Most of the correlation coefficient between traits were significant at least at one environment. Eleven pairs of traits were with the same significant positive correlation and five pairs with the same significant negative correlation under all five environments. However there were four pairs with different direction of correlation at various environments. The direction of correlation between some traits was stable and some were changeable at different environment.
     5. GxE interaction was detected using AMMI statistical model. GxE interaction for all ten traits under five environments was significant. The AMMI model dissected the interaction component in two sects and explained the extent of interaction. Plant height (PH), heading date (HD) and 1000 grains weight (KGW) had the least GxE interaction, while Tillers per plant (TP), seed setting ratio(SR), spikelet density (SD) and yield per plant (YD) had higher GxE interaction. Of the total GxE interaction effect, the AMMI model explained 80.24% for PH, 80.09% for HD and 77.33% for panicle length (PL) and 70.72% for grains per panicle (GP). This model explained at least 55.59% of the total interaction effects for the traits observed.
     6. Interval mapping was used to detect QTL. 129 QTL for ten traits were detected under all various envirnments. The number and location of QTLs for defferent traits varied with various environments.
     7. Of QTL numbers, medium season at Wuhan in 2005 (E4) had detected forty five QTLs, the most in all various environments; Field environment at Lingshui in 2005 (E2) had detected forty one QTLs, the least in all various environments.. Of all traits, the most QTLs were for PL with nineteen, and the least QTLs was for KGW with seven. To the difference of detected location of QTL in all traits, PL and YD were larger and KGW was the least.
     8. The QTLs in some agronomic traits with biger LOD value and explanning higher parts of the variation, such as the QTLs for SR at qSR3-1, HD at qHD12-1 and KGW at qKGW5-1, were stable and detected under various environments. Some QTLs were only detected under special environments. The QTLs for KGW had little difference among environments.
引文
1.鲍根良,小林麻子,富田桂,金庆生,张小明,严文潮,叶胜海.粳稻近缘品种的SR分析.中国水稻科学,2005,19(1):21-24
    2.曹钢强,朱军,何慈信,高用明,吴平.水稻穗长上位性效应和QE互作效应的QTL遗传研究.浙江大学学报(农业与生命科学版),2001,27:55-61
    3.曹立勇,赵建根,占小登,李登楼,何立斌,程式华.水稻耐热性的QTL定位及耐热性与光合速率的相关性.中国水稻科学,2003,17(3):223-227
    4.曹立勇,朱军,赵松涛,何立斌,颜启传.水稻籼粳交DH群体耐热性的QTLs定位.农业生物技术学报,2002,10(3):210-214
    5.褚良银.中杂Ⅱ优63的高温伤害与播期调整.湖南农业科学,1995,(2):16-17
    6.戴陆元,叶昌荣,熊建华,王怀义.稻耐冷性鉴定评价方法.中国水稻科学,1999,12(1):62
    7.伏军,徐庆国.水稻育种新技术演技进展.长沙:湖南科学技术出版社.1999,139-141
    8.高吉寅.水稻等品种苗期抗旱生理指标的探讨.中国农业科学,1984,(4):41-45
    9.郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响.植物学报,2000,42(7):673-678
    10.黄英金,罗永锋,黄兴作,饶志明,刘宜柏.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,13(4):205-210
    11.黄英金,张宏玉,郭进耀,漆映雪,彭耀东,李长生,刘宜柏,徐正进.水稻耐高温逼熟的生理机制及育种应用研究初报.科学技术与工程,2004,4(8):655-658
    12.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999,(4):19-22
    13.李建雄.一个优良杂交组合的杂种优势遗传成因的分子标记分析.[博士学位论文].武汉:华中农业大学图书馆,1998
    14.李太贵,沈波.水稻品种开花期抗热性鉴定研究.作物品种资源,1995,(1):35-36
    15.李祥洲,任昌福,陈晓玲.水稻亚种间杂种一代籽粒充实的气温条件研究.作物学报,1996,22(2):247-250
    16.罗丽华,刘国华,肖应辉,唐文帮,陈立云.高温胁迫对水稻花粉和小穗育性及稻谷粒重的影响.湖南农业大学学报,2005,31(6):593-596
    17.穆俊祥.水稻重叠导入系的创建及其产量相关OTL的遗传研究.[硕士学位论文].武汉:华中农业大学图书馆,2005
    18.气候变化对农业的影响及其对策课题组.气候变化对农业的影响及其对策.北京大学出版社,1993
    19.任昌福,陈安和,刘保国.高温影响水稻开花结实的生理生化基础.西南农业大学学报,1990,12(5):440-443
    20.宋洪元,雷建军,李成琼.植物热胁迫反应及抗热性鉴定与评价.中国蔬菜.1998,(1):48-50
    21.王才林,钟维功.高温对水稻结实率的影响及其防御对策.江苏农业科学.2004,(1):15-18
    22.魏丽.“高温逼熟”和“小满寒”对江西省早稻产量的影响.气象,1991,17(10):47-49
    23.吴宪章,李林,李路平.中国稻区的风土环境和种植区划.见熊振民,蔡洪法.中国水稻,北京:中国农业科技出版社,1992,777-793
    24.邢永忠,徐才国,华金平,谈移芳.水稻穗部性状的QTL与环境互作分析.遗传学报,2001,28:439-446
    25.邢永忠.用分子标记剖析水稻重要农艺性状的遗传基础.[博士学位论文].武汉:华中农业大学图书馆,1999
    26.徐海波,王光明,隗溟,周文彪.高温胁迫下水稻花粉粒性状与结实率的相关分析.西南农业大学学报,2001,23(3):205-207
    27.徐云碧,石春海,申宗坦.热害对早稻结实率的影响.浙江农业科学,1989,(2):14-18
    28.严长杰,梁国华,陈峰,李欣,汤述翥,裔传灯,田舜,陆驹飞,顾铭洪.利用籼粳回交群体分析水稻粒形性状相关OTLs.遗传学报,2003,30(8):711-716
    29.严建兵.玉米杂种优势遗传基础及玉米与水稻比较基因组研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    30.杨纯明,James L H..短期高温对水稻生长发育和产量的影响.国外作物育种,1994,(2):4-5
    31.岳兵.水稻后期抗旱性遗传基础研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    32.曾汉来,卢开阳,贺道华,潘雪祥,张端品.中籼杂交水稻新组合结实性的高温适应性鉴定.华中农业大学学报,2000,9(1):1-4
    33.张方方.湖北省水稻高温热害发生规律的研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    34.张桂莲,陈立云,雷东阳,张顺堂.水稻耐热性研究进展.杂交水稻,2005,20(1):1-5
    35.张旭.水稻生态育种.北京:农业出版社,1991
    36.张玉山.水稻重要农艺性状的QTL分析和主效QTL近等基因系的构建.[博士学位论文].武汉:华中农业大学图书馆,2006
    37.赵志刚,江玲,肖应辉,张文伟,翟虎渠,万建民.水稻孕穗期耐热性QTLs分析.作物学报,2006,32(5):640-644
    38.郑小林,董任瑞.水稻热激反应的研究Ⅰ幼苗叶片的膜透性和游离脯氯酸含量的变化.湖南农业大学学报,1997,23(2):109-112
    39.朱昌兰,肖应辉,王春明,江玲,翟虎渠,万建民.水稻灌浆期耐热害的数量性状基因位点分析.中国水稻科学,2005,19(2):117-121
    40.朱兴明,曾庆曦,宁清利.自然高温对杂交稻开花受精的影响.中国农业科学,1983,(2):37-44
    41. Ahn S N, Bollich C N, McClung A M, Tanksley S D. RFLP analysis of genomic regions associated with cooked-kernel elongation in rice. Theor Appl Genet, 1993, 87: 27-32
    42. Andaya V C, Mackill D J. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica & indica cross. Theor Appl Genet, 2003, 106:1084-1090
    43. Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G. Restrictin fragment length polymorphisms as genetic markers in soybean, Glycine max (L) Merrill. Theor Appl Genet, 1988, 75:889-901
    44. Ashikari M, sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 29, 309:741-745
    45. Beavis W, Grant D, Alberson M, Fincher R. Quantitative trait loci for plant height in four maize populations and their association with qualitative genetic loci. Theor Appl genet, 1991, 83:141-145
    46. Bose A, Ghosh B. Effect of heat stress on ribulose 1, 5-biphosphate carboxylase in rice. Phytochemistry, 1995, 38:1115-1118
    47. Botstein B, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphism. Am J Hum Genet, 1980, 32: 314-331
    48. Burr B, Burr F A, Thompson K H, Albertson M C, Stuber C W. Gene mapping with recombinant inbreds in maize. Genetics, 1988,118:519-526
    49. Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K, Xiao J, Yu Z H, Ronald P C, Hamington S E, Second G, Mccouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994,138:1251-1274
    50. Cheng F. Effect of air temperature on rice quality and its regional distribution in china. Abstract, An International Workshop on "Cool Rice for a Warmer World", 2007, Wuhan
    51. Chen S, Lin X H, Xu C G, Zhang Q F. Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Science, 2000,40: 239-244
    52. Chu Z H, Fu B Y, Yang H, Xu C G, Li Z K, Sanchez A, Park Y J, Bennetzen J L, Zhang Q F, Wang S P. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet, 2005,112:455-461
    53. Crasta O R, Xu W W, Rosenow D T, Mullet J, Nguyen H T. Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet, 1999, 262:579-588
    54. Craufurd P.Q., Jagadish S.V.K., Wheeler T.R., Bennett J. and Lafitte R. Heat tolerance at flowering. Abstract, An International Workshop on "Cool Rice for a Warmer World", 2007, Wuhan
    55. Cui K H, Peng S B, Xing Y Z, Yu S B, Xu C G, Zhang Q. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet, 2003,106:649-658
    56. DeVicente M C, Tanksley S D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics, 1993,134:585-596
    57. Dilbirligi M, Erayman M, Campbell B T, Randhawa H S, Baenziger P S, Dweikat I, Gill K S. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics, 2006, 88:74-87
    58. Edwards M D, Stuber C W, Wendel J F. Molecular marker facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics, 1987,116:113-125
    59. Fan C C, Yu X Q, Xing X Y, Xu C G, Luo L J, Zhang Q F. The main effects, epistatic effects and environmental interations of QTLs on the cooking and eating quality of rice in a double-haploid line population. Theor Appl Genet, 2005, 110: 1445-1452
    60. Gauch H G. Model selection and validation for yield trials with interaction (J). Biometrics, 1992,44:705-712
    61. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S, Antonio B, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Sasaki T A. High-density rice genetic linkage map with 2275 markers using a single F2 Population. Genetics, 1998,148:479-494
    62. Hayes P M, Liu B H, Knapp S J, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich S E, Wesenberg D, Kleinhofs A. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Apple Genet, 1993, 87:392-401
    63. Hittalmani S, Foolad M R, Mew T, Rodriguez R L, Huang N. Development of a PCR-based marker to identify rice blast resistance gene, pi-2(t), in a segregating population. Theor Appl Genet, 1995,91:9-14
    64. Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H E, Zhuang J Y, Zheng K L, Liu G F, Wang G C, Sidhu J S, Srivantaneeyakul S, Singh V P, Bagali P G, Prasanna H C, McLaren G and Khush G S. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia (J). Theor Appl Genet, 2003,107:679-690
    65. Huang Z, He G, Shu L, Li X, Zhang Q. Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet, 2001,102:929-934
    66. IPCC. Climate Change 2007: The Physical Science Basis Summary for Policymakers Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007, Paris, France
    67. Ishii T, Brar D S, Multani D S, Khush G S. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza autraliensis into cultivated rice O. sativa. Genome, 1994,37:217-221
    68. Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 2002,129:440-450
    69. Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1993,10:7-39
    70. Kinshita T. Report of the committee on gene symbolization, nomenclature and linkage group. Rice Genet Newl, 1991,8(1):2-37
    71. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antoni B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuta A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L. 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 1994, 8:365-376
    72. Lander E S and Botstein D. Mapping Mendelian factors underlyong quantitative traits using RFLP linkage maps. Genetics, 1989,121:185-199
    73. Lebowitz R L, Soller M, Beckmann J S. Trait-based analysis for the detection of linkage between marker loci and quantitative trait loci in cross between in bred lines. Theor Appl Genet, 1987, 73:556-562
    74. Lemieux B. Overview of DNA chip technology. Mol Breed, 1998,4:277-289
    75. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo, D, Han B, Li J. Control of tillering in rice. Nature, 2003,422:618-621
    76. Li Z, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci (QTLs) for heading time and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91:374-381
    77. Lian X M, Xing Y Z, Yan H, Xu C G, Li X H, Zhang Q F. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2005,112:85-96
    78. Lin H X, Zhu M Z, Yana M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108(2):253-260
    79. Lin X H, Zhang D P, Xie Y F, Gao H P, Zhang Q. Identifying and mapping a new gene for bacteria blight resistance in rice based on RFLP markers. Phytopathology, 1996, 86:1156-1159
    80. Lincoln S E, Daly M J, Lander E S. Mapping genes controlling quantitative traits with MAPMAKER/QTL1.1: a tutorial and reference manual, 2nd edn. Whitehead Institute Technical Report. Cambridge, Massaachusetts, 1993
    81. Lincoln S E, Daley M J, Lander E S. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 3rd edn, Whitehead Institute, Cambridge, Mass, 1992
    82. Litt M, Luty J A. Hypervariable microsatellite revealed by in vitro amplification of adinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet, 1989, 44:399-401
    83. Liu G M, Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Identification of QTLs on substituted segments in single segment substitution lines of rice. Acta Genet Sin, 2004,31(12):1395-1400
    84. Liu K D, Wang J, Li H B, Xu C G, Liu A M, Li X H, Zhang Q. A genome-wide analysis of wide compatibility in rice and the precise location of the 55 locus in the molecular map. Theor Appl Genet, 1997, 95:809-814
    85. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet, 2002,105:622-628
    86. Mackill D J, Coffinan E R, Rutger J N. Pollen shedding and combining ability for high temperature tolerance in rice. Crop Sci, 1982, 22:730-733
    87. Manigbas N.L. and Sebastian L.S. Breeding for high temperature tolerance in the Philippines. Abstract, An International Workshop on "Cool Rice for a Warmer World", 2007, Wuhan, China
    88. Maribel L, Dionisio S, Mariko S, et al. Effects of proline and betaine on heat inactivation of ribulose 1,5-bisphosphate carboxylase from rice seedlings. JIRCAS Working Rep, 1999, (14):67-75
    89. Matsui T, Kobayasi K, Kagata H, Horie T. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot-and-humid condition. Plant Production Science, 2005, 8(2): 109-114
    90. Matsui T, Omasa K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Annals of Botany, 2002, 89:683-687
    91. McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13
    92. McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, and Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002,9:199-207
    93. Mew T W, Parco A R, Hittalmani S, Inukai T, Nelson R, Zeigler R S, Huang N. Fine mapping of major genes for blast resistance in rice. Rice Genet Newsl, 1994, 11:126-128
    94. Mohan M, Nair S, Bentur J S, Prasada R U, Bennett J. RFLP and RAPD mapping of the rice Gm2 gene that confers resistance to biotype 1 of gall midge (Orseolia oruzae). Theor Appl Genet, 1994, 87:782-788
    95. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9(1):11-17
    96. Morgant E M and Olivieri A M. PCR-amplified microsatellites as markers in plany genetics. Plant J, 1993,3:175-182
    97. Nair S, Kumar A, Srivastava M N, Mohan M. PCR-based DNA markers linked to a gall midge resistance gene, Gm4t, has potential for marker-aided selection in rice. TheorAppl Genet, 1996, 92:660-665
    98. Paran I, Kesseli R, Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce using near-isogenic lines. Genetics, 1997, 34:1021-1027
    99. Paterson A H, Domon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generation, and environments. Genetics, 1991, 127:181-197
    100.Paterson A H, Landre E S, Hewitt J D, et al. Resolutuion of quantitative traits into Mendelian factors by using a comlete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721-726
    101.Peng S B, Huang J L, Sheeny J E. Rice yields decline with high temperature from global warming. Proc Natl Acad Sci USA, 2004,101(27):9971-9975
    102.Pereira M G and Lee M. Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet, 1995,90:380-388
    103.Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A, The comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Mol Breed, 1996,2:225-238
    104.Prasad P V V, Boote K J, Allen Jr. L H, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res, 2006,95:398-411
    105.Price A H, Townend J, Jones M P, Audebert A, Courtois B. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol, 2002,48:683-695
    106.Redona E D, Mackill D J. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet, 1998, 96:957-963
    107.Redona E D, Laza M A, and Manigbas N.L. Breeding rice for adaptation and tolerance to high temperatures. Abstract, An International Workshop on "Cool Rice for a Warmer World", 2007, Wuhan, China
    108.Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet. 2005, 37:1141-1146
    109.Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano Matsuoka H M. Green revolution: a mutant gibberellin-synthesis gene in rice- new insight into the rice variant that helped to avert famine over thirty years ago. Nature, 2002,416:701-702
    110.Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of Genome-Wide DNA Polymorphism Database for Map-Based Cloning of Rice Genes. Plant Physiology, 2004,135:1198-1205
    111.Shi C H, Zhu J, Zang R C, Chen G L. Genetic and heterosis analysis for cooking quality traits of indica rice in different environments. Theor Appl Genet, 1997, 95:294-300
    112.Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99:9043-9048
    113.StatSoft, Statistica. StatSoft Incorporated, 1997, Tusla, Oklahoma
    114.Sun X, Cao Y, Yang Z, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37(4):517-527
    115.Tan Y F, Sun M, Xing Y Z, Hua J P, Sun X L, Zhang Q F, Corke H. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. TheorAppl Genet, 2001,103:1037-1045
    116.Tan Y F, Xing Y Z, Li J X, Yu S B, Xu C G, Zhang Q. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet, 2000, 101:823-829
    117.Tanksley S D, Ganai M W, Prince J C, de Vicente M C, Bonierbale M W, Broun P, Fulton T M. Giovannoni J, Grandillo S, Martin G B, Messeguer R, Miller JC, MillerL, Paterson A H, Pinedo O, Roder M S, Wing R A, Wu W, Young N D. High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. Genetics, 1992,132:1141-1160
    118.Temnykh S, DeCklerck G, Lukashova A, Lipovich L, Cartinhiur S, McCouch S. Computaional and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length, variation, transpon associations, and genetic marker potential. Genome Res, 2001,11:1441-1452
    119.Temnykh W D, Park N, Ayres S, Cartinhour N, Hauck L, Lipovich Y G, Cho T, Ishii S R. McCouch. Mapping and genome organization of microsatellite sequencesin rice (Oryza sativa L.). Theor Appl Genet, 2000,100:697-712
    120.Thomson M J, Edwards J D, Septiningsih E M, Harrington S E, McCouch S R. Substitution mapping of dthl.l, a flowering time QTL associated with transgressive variation in rice, reveals multiple sub-QTLs. Genetics, 2006,172:2501-2514
    121.Uga Y, Fukuta Y, Cai HW, Iwata H, Ohsawa R, Morishima H, Fujimura T. Mapping QTLs influencing rice floral morphology using recombinant inbred lines derived from a cross between Oryza sativa L. and Oryza rufipogon Griff. Theor Appl Genet, 2003,107:218-226
    122.Wallace D H, Yourstone K S, Masaya P N, Zobel R W. Photoperiod gene control over partitioning between reproductive and vegetative growth. Theor Appl Genet, 1993, 86:6-16
    123.Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J L, Zhang X, Cheng Z J, Guo X P. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112:1258-1270
    124.Wang D L, Zhu J, Li Z K and Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet, 1999,99:1255-1264
    125.Wang G L, Mackill D J, Bonman J M, McCouch S R., Champous M C and Nelson R J. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994,136:1421-1434
    126.Wassmann R. and Dobermann A. Direct and indirect consequences of global wanning on rice growing regions in Asia. Abstract, An International Workshop on "Cool Rice for a Warmer World", 2007, Wuhan, China
    127.Wu W R, Li W M, Tang D Z, Lu H B, Worland A J. Timed-related mapping of quantitative trait loci underlying tiller number in rice. Genetics, 1999,151:297-303
    128.Xiao J, Li J, Yuan L, Tanksley S D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. TheorAppl Genet, 1996, 92:230-244
    129.Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002,105:248-257
    130.Xiong L, Liu K, Dai X, Xu C, Zhang Q. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet, 1999, 98:243-251
    131.Xu W W, Subudhi P K, Crasta O R, Rosenow D T, Mullet J E, Nguyen H T. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L Moench). Genome, 2000,43:461-469
    132.Xu Y. Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev, 1997,15:85-139
    133.Yamamoto T, Kubiki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998,97:37-42
    134.Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T. Genetic manipulation and quantitative-trait loci mapping for mitrogen recycling in rice. J Exp Bot, 2002,53:917-925
    135.Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998, 150:1257-1265
    136.Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Molecular marker assisted dissection of genotypexenvironment interaction for plant type traits in rice (Oryza sativa L.). Crop Sci, 1999,39:538-544
    137.Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date of rice using a high-density linkage map. TheorAppl Genet, 1997, 95:1025-1032
    138.Yano M, Katayose Y, Ashikari M, Yamaniuchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to arabidopsis floweting time gene CONSTANS. Plant cell, 2000,12:2473-2483
    139.Yin X. Modelling the effects of high temperature on crop photosynthesis, respiration, and growth. Abstract, An International Workshop on "Cool Rice for a Warmer World", 2007, Wuhan, China
    140.You A, Lu X, Jin H, Ren X, Liu K, Yang G, Yang H, Zhu L, He G. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics, 2006,172(2):1287-1300
    141.Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94:9226-9231
    142.Yue B, Xiong L, Xue W, Xing Y, Luo L, Xu C. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor Appl Genet, 2005a, 111:1127-36
    143.Yue B, Xue W Y, Xiong L Z, Yu X Q, Luo L J, Cui K H, Jin D M, Xing Y Z, Zhang Q F. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics, 2005b, 172:1213-1228
    144.Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457- 1468
    145.Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA, 1993, 90:10972-10976
    146.Zhang Q F, Shen B Z, Dai X K, Mei M H, Saghai Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photo-sensitive genic male sterility in rice. Proc Natl Acad Sci USA, 1994, 91:8675-8679
    147.Zhang Q, Lin S C, Zhao B Y, Wang C L, Yang W C, Zhou Y I, Li D Y, Chen C B, Zhu L H. Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. Oryzae) from O rufipogon. Rice Genet Newsl, 1998, 15:138-142
    148.Zhu J, Weir B S. Mixed model approaches for genetic analysis of quantitative traits. In: Chen L S, Ruan S G, Zhu J eds., Advanced topics in biomathematics: proceedings of international conference on mathematical biology. Singapore: World Scientific Publishing Co., 1998,321-330
    149.Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995,141:1633-1639
    150.Zhuang J, Lin H, Lu J, Qian H. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997,95:799-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700