1890~2029年白城市土地利用/覆被变化与土壤碳库研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤碳库在陆地生态系统碳循环中起着关键性的作用,而土地利用/覆被变化(Land use/cover change, LUCC)是影响土壤碳库最主要的驱动力之一。目前,全球尺度和区域尺度LUCC的历史重建与预测以及陆地生态系统碳循环研究已成为全球变化研究的焦点领域。本研究选择白城市进行长时间尺度的LUCC及其影响下的土壤碳库研究。首先,通过汇总历史文献资料、土地利用调查数据、近30年的卫星遥感影像数据和相关专题图件,采用多种技术手段,构建了历史时期LUCC时空格局重建的技术方法体系和LUCC预测方法,综合分析1890~2029年白城市LUCC的数据系列变化和时空格局演变特征,分别研究白城市所辖各县市在不同产业结构、地貌类型和土壤分布条件下LUCC的时空演化规律,系统分析了大规模土地整理工程对未来LUCC的影响。然后,基于第二次全国土壤普查和野外现场采样的土壤剖面数据,构建研究区土壤碳密度和碳储量的估算模型,分析土壤碳密度的时空演化特征以及LUCC对土壤碳收支的影响。最后,综合考虑自然和人为驱动因素,在对国内外相关研究成果进行综述的基础上,揭示研究区在不同历史阶段下的LUCC和土壤碳收支的驱动机制。本论文不但具有鲜明的区域特色,而且建立了历史时期LUCC时空格局重建的技术方法,并提高了区域土壤碳储量估算的精度。其研究成果不但有利于完善典型退化农牧交错区生态系统碳循环的研究案例和理论方法,而且可以为缓解生态脆弱区陆地生态系统碳收支不平衡状况和区域碳减排措施的制定提供重要的科学依据。
Soil carbon pool played an vital role in the land ecosystem carbon cycle, and land use/land cover change (LUCC) is one of the most dominate driving forces which have notable impact on the soil carbon pool. Currently, the reconstruction and prediction of historical LUCC and land ecosystem carbon cycle in global scale and regional scale have become vital areas of scientific focus in the global change research. The researches of LUCC and soil carbon stock in regional scale, not only help reduce the uncertainty in large spatial scale, but also provide substantial data for the study in large spatial scale. The influences of intensive LUCC on regional soil carbon stock in typical sensitive area are the key question in regional researches, and Baicheng city where we focus on is a typical case combing sensibility and variability. Aimed at notable regional features of Baicheng city, by ways of constructing the technology system for reconstruction of historical spatial and temporal pattern of LUCC and estimation model for regional carbon stock, this paper analyzed the characteristics of LUCC and soil organic carbon (SOC) changes during 1890 to 2029, and researched the variable pattern of soil carbon budget under different land use management and LUCC, and also investigated the driving mechanism of natural conditions and human induced factors on LUCC and soil carbon pool.
     As the research of historical LUCC in China had just begun, many researches focused on national scale study. Because of vast territory and abundant resources in China, many studies had decreased the estimate accuracy, so the regional LUCC in historical period research was absolutely necessary. Based on historical data, land use survey, satellite remote sensing images and relevant thematic map, by means of constructing technology system of historical LUCC, interpretation of remote sensing image and LUCC model, this paper systemically analyzed the spatial and temporal variation of LUCC between 1890 and 2029. The results indicated that, there were notable changes in LUCC in Baicheng city during this period, and the primary trend contained increase of cropland area, decrease of grassland, wetland and water area, sharply increase of saline-alkali land. The conversion of grassland to cropland was main characteristic in LUCC before 1950s, and after then, grassland degradation, sand land and saline-alkali land increase, wetland and water area shrink became the dominant characteristic in LUCC during 1950 to 2004. The development of paddy field began in 1980s, and the land consolidation projects in study area would substantially increase the area of paddy field.
     There was remarkable spatial heterogeneity in LUCC spatial and temporal pattern, and the environment became more adverse to agriculture from north to south and from west to east. Except for expansion of cropland in the whole region, the grassland degenerated and wetland shrank in northern Zhenlai county, almost all of grassland degenerated to saline-alkali land in middle-eastern Da’an city, and ecosystem extremely degenerated in southern Tongyu county because of blind reclamation and intensive resource exploitation from 1950s.
     Geomorphic conditions and soil types played an important role in the reclamation, and inhabitants had a tendency to develop the region with better natural conditions in the land exploitation process. In the first half of 20th century, the new cropland began occurred in advantageous soil types. Because of total limit of suitable land for farming, the proportion of suitable cropland became saturated, and the following reclamation appeared in the worse soil areas. In the recent 50 years, animal husbandry developed rapidly in Baicheng city, and long term resources exploitation had converted plenty of grassland to sand land and saline-alkali land.
     Currently, although there are abundant researches focused on the impact of LUCC on SOC in academic community, the differences of regional features resulted in high uncertainty because of diversities of natural conditions and human induced factors, and almost no scholar has made study in highly landscape-fragmented agro-pastoral zone, as most of current researches pointed at single ecosystem.
     Based on second national soil census and field samplings, by the way of weighted depth average SOC content, the impacts of LUCC on SOC vertical distribution in soil profiles had been analyzed. The characteristics of SOC vertical distribution in soil profiles under different land use/cover types could be divided into three kinds, containing downward sloping, unchangeable sloping and upward sloping. In the downward sloping profiles, SOC decreased with depth, and the profiles contained dry cropland, degenerated dry cropland, paddy field, grassland, degenerated grassland, woodland and wetland. In the unchangeable sloping profiles, SOC remain unchangeable with depth, and the profiles contained sand land and saline-alkali land. In upward sloping profiles, SOC increased with depth, and only beach land profiles belonged to this type. The characteristics of SOC vertical distribution in different profile types closely related to soil texture, vegetation biomass, SOC decomposition and hydro-geological condition.
     On the strength of long term spatial and temporal pattern of LUCC, soil map and effective soil layer map, the land use/cover-soil type-effective soil layer SOC densities (SOD) estimation classes had been established, and based on second national soil census and field samplings, the SOD had been estimate for every classes, and by the way of spatial analysis function in GIS, the characteristics of spatial and temporal pattern of SOD during 1890 to 2029 were analyzed. The results indicated that, the SOD spatial distribution had changed remarkably during this period under sharply LUCC, and it decreased notably from north to south, from west to north. The SOD in northwestern Taonan city and Taobei district was highest in the whole region, and that in southern Tongyu county was lowest. In the past 100 years, SOD in Tongyu county and Da’an county had decreased most rapidly, and current land consolidation project will plentifully increase the average SOD in Zhenlai county and Da’an city.
     During 1890 to 2004, SOC stock in study area had reduced 8.11×107tC, amount to 32.44% of that in 1890, and most of SOC release distributed in last half of 20th century, the SOC stock reduced 6.83×107tC between 1950 and 2004, amount to 84.20% of the total decrement. In the past 100 years, the study area was a huge carbon source. The SOC flux increased year after year. Before 1950s, the SOC flux remained low and steady, but from then on, the SOC flux increased rapidly, which reached to the peak in 1980s. Although the carbon sequestration increased from 1990s, the SOC stock remained decreased in the recent 20 years. The current land consolidation project will add large area paddy fields to Zhenlai county and Da’an city, which will convert the study area from carbon source to carbon sink.
     By summarizing the domestic and international publications, this paper made a qualitative analysis on driving factors of LUCC and SOC budgets. The results indicated that, plenty of natural conditions and social human factors had induced the LUCC and SOC budget in Baicheng city, and social human factors played the main dominant role. Improvements of agriculture and animal husbandry management would be effective methods to increase SOC stock in study area.
     The features and innovations of this thesis reflected in two aspects containing notable regional feature and innovational technology methods. Although many academic achievements had published about land ecosystem carbon budget under historical LUCC, almost all of these researches focused on the conversion of forests and cropland and grassland ecosystem which was very important in global carbon cycle had been disregarded. The study area of this thesis that located in intensively degenerated agro-pastoral zone had notable regional feature compared with other researches. The technology system that constructed in the reconstruction of historical spatial and temporal LUCC pattern, not only innovated in research method, but can also be applied in other regional studies. The methods for SOC stock estimation synthetically considered the impacts of land use/cover types, soil types and vegetation conditions, with the spatial pattern of vertical SOC distribution, which could effectively improved the estimate accuracy. This thesis can not only improve and enrich the research and theory of typical degenerated agro-pastoral ecosystem carbon cycle, but also help to establish the effective measures to relief the unbalance of carbon budget and reduce the regional carbon emission in frangible ecosystem.
引文
[1] Arce-Nazario JA. Human landscapes have complex trajectories: reconstructing Peruvian Amazon landscape history from 1948 to 2005 [J]. Landscape ecology, 2007,22:89-101.
    [2] Angert A, Biraud S, Bonfils C, et al. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs [J]. Proc. Natl. Acad. Sci, 2005,102:1023-1027.
    [3] Batjes NH. Total carbon and nitrogen in the soil of the world [J]. European journal of soil science, 1996,47:151-163.
    [4] Batjes NH, Dijkshoorn JA. Carbon and nitrogen stocks in the soils of the Amazon region [J].Geoderma, 1999, 89: 273-286.
    [5] Blagodatskaya E, Blagodatsky S, Dorodnikov M, et al. Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments [J]. Global change biology, 2010,16(2):836-848.
    [6] Boehm M, Junkins B, Desjardins R, et al. Sink potential of Canadian agricultural soils [J]. Climatic change, 2004,65(3):297-314.
    [7] Bohn HL. Estimate of organic carbon in world soils [J]. Soil Science society of America journal, 1976, 40: 468-470.
    [8] Bohn HL. Estimate of organic carbon in world soils [J]. Soil Science society of America journal, 1982, 46:1118-1119.
    [9] Bolin B. Changes of land biota and their importance for the carbon cycle [J]. Science, 1977,196(4290):613-615.
    [10] Bowman RA, Vigil MF, Nielsen DC, et al. Soil organic matter change in intensively cropped dryland system [J]. Soil science society of American journal, 1999, 63 : 186-191.
    [11] Brovkin V, Sitch S, von Bloh W, et al. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years [J]. Global change biology, 2004,10(8):1253-1266.
    [12] Brown S. Biomass of tropical forest: a new estimate based on forest volumes [J]. Science, 1984, 223: 1290-1293.
    [13] Burke IC, Yonkr CM, Parton WJ, et al. Texture, climate, and cultivation effects on soilorganic matter content in U.S. grassland soils [J]. Soil Science society of America journal, 1989, 53:800~805.
    [14] Canadell JG, Raupach MR, Houghton RA. Anthropogenic CO2 emissions in Africa [C]. Biogeosciences, 2009,6(3):463-468. Kruger natl pk South Africa: Joint meeting on global carbon budget and trends, 2007.
    [15] Canadell JG, Kirschbaum MUF, Kurz WA, et al. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks [J]. Environmental science and policy, 2007,10(4):370-384.
    [16] Chang L, Tang ZH. Using remote sensing technology to assess land-use changes after the Northridge earthquake [J]. Disaster advances, 2010,3(1):5-10.
    [17] Ciais P, Janssens I, Shvidenko A, et al. The potential for rising CO2 to account for the observed uptake of carbon by tropical, temperate, and boreal forest biomes. In: Griffiths H, Jarvis PG. (Eds), The carbon balance of forest biomes. Taylor & Francis, Oxford, UK, 2005.
    [18] Cihacek LJ, Ulmer MG. Effects of tillage on profile soil carbon distribution in the northern great plain of the U.S. [R]. In: Lal R, Kimble JM. Management of carbon sequestration in Soil. Boca Raton, Florida: CRC Press, 1998, 83-91.
    [19] Clarke KC, Gazulis N, Dietzel CK, et al. A decade of SLEUTHing: Lessons Learned from applications of a cellular automation land use change model. In Fisher, P.F.(Eds.)Classics from IJGIS: twenty years of the inter nation journal of geographical information science and systems. Boca Raton, FL: CRC Press, 2006.
    [20] Cook GD, Williams RJ, Stokes CJ, et al. Managing sources and sinks of greenhouse gases in Australia's rangelands and tropical savannas [J]. Rangeland ecology and management, 2010,63(1):137-146.
    [21] Cox PM, Betts RA, Jones CD, et al. Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model [J]. Nature, 2000,408:184-187.
    [22] Davidson, EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006,440:165-173.
    [23] Dendoncker N, Van Wesemael B, Rounsevell MDA, et al. Belgium’s CO2 mitigation potential under improved cropland management [J]. Agriculture, ecosystems and environment, 2004, 103(1): 101-116.
    [24] Detwiler RP. Land use change and the global carbon cycle: the role of tropical soils [J]. Biogeochemistry, 1986, 2: 67-93.
    [25] Donigian AS, Barnwell TO, Jackson RB, et al. Assessment of alternative management practices and policies affecting soil carbon in agroecosystems of the central United States [R]. Athens: U.S. EPA Report EPA/600/R-94/067, 1994.
    [26] Eswaran H, Van Den Berg E, Reich P. Organic carbon in soil of the world [J]. Soil science society of America journal, 1993,57:192-194.
    [27] Falloon P, Jones CD, Cerri CE, et al. Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil [J]. Agriculture ecosystems and environment, 2007, 122(1):114-124.
    [28] Fang JY, Chen AP, Peng CH, et al. Changes in forest biomass carbon storage in China between 1949 and 1998 [J]. Science, 2001,292(2225):2320-2322.
    [29] Fang JY, Guo ZD, Piao SL, et al. Terrestrial vegetation carbon sinks in China, 1981-2000 [J]. Science in China series D: Earth sciences, 2007,50(9):1341-1350.
    [30] Foley JA, DeFries R, Asner GP, et al. Global consequences of land use [J]. Science, 309(5734): 570-574.
    [31] Franzmeier DP, Lemme GD, Miles RJ. Organic carbon in soils of North Central United States [J]. Soil science society of America journal, 1985,49:702~708.
    [32] Friedlingstein P, Cox P, Betts R, et al. Climate carbon cycle feedback analysis. Results from the C4MIP model intercomparison [J]. Climate, 2006,19:3337-3353.
    [33]Garcia OF, Casar I, Morales P. Forest to pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest [J]. Oecologia, 1994, 99: 392-396.
    [34] Ge QS, Zhang XQ, Tian YY, et al. Review on international cooperation of CNC-IHDP [J]. Journal of geographical sciences, 2006,16(3):367-370.
    [35] Ge QS, Dai JH, He FN, et al. Land use changes and their relations with carbon cycles over the past 300a in China [J]. Science in China series D-Earth sciences, 2008,51(6): 871-884.
    [36] Gebhart DL. The CRP increases in soil organic carbon [J]. Journal of soil and water conservation, 1994, 49:488-492.
    [37] Geoffrey MH. Carbon in idle croplands [J]. Nature, 2009, 457: 1089-1090.
    [38] Glenday J. Carbon storage and emissions offset potential in an African dry forest, theArabuko-Sokoke forest, Kenya[J]. Environment monitoring assessment, 2008,142(1-3):85-95.
    [39] Gregorich EG. Storage of soil carbon in the light fraction and macroorganic matter [J]. In: Carter MR, Stewart BA, Structure and organic matter storage in soils. Boca Raton, FL, USA: Lewis Publ, CRC Press, 1996, 167-190.
    [40] Gregorich EG, Rochette P, Mcguire S, et al. Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring applied manure [J]. Environ. Qual, 1998,27: 105-123.
    [41] Henrot AJ, Francois L, Brewer S, et al. Impacts of land surface properties and atmospheric CO2 on the Last Glacial Maximum climate: a factor separation analysis [J]. Climate of the past, 2009,5(2):183-202.
    [42] Houghton RA, Hobbie JE, Melillo JM, et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere [J]. Ecological Monography, 1983,53(3):235-262.
    [43] Houghton RA, Hackler JL. Continental scale estimates of the biotic carbon flux from land cover change: 1850 to 1990, ORNL/CDIAC-79, NDP-050/R1, Oak ridge national laboratory, Oak ridge, Tennessee, USA, 1995.144.
    [44] Houghton RA. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990 [C]. Tellus series B-Chemical and physical meteorology,1999,51(2):298-313. Cairns Australia: 5th international CO2 conference, 1997.
    [45] Houghton RA. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000 [C]. Tellus series B-Chemical and physical meteorology,2003,55(2):378-390. Sendai Japan: 6th international CO2 conference, 2001.
    [46] Houghton RA,Lefkowitz DS,Skole DL. Changes in the landscape of Latin America between 1850 and 1985. I. Progressive loss of forests [J]. Forest ecology and management, 1991,38(3-4):143-172.
    [47] Houghton RA, Skole DL, Lefkowitz DS. Changes in the landscape of Latin America between 1850 and 1985 II. Net release of CO2 to the atmosphere [J]. Forest ecology and management, 1991,38(3-4):173-199.
    [48] Houghton RA, Hackler JL, Lawrence KT. The U.S. Carbon budget: contributions fromland-use change. Science, 1999,285(5427):574-578.
    [49] Houghton RA, Skole DL, Nobre CA, et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon [J]. Nature, 2000,403(6767):301-304.
    [50] Houghton RA, Hackler JL. Emissions of carbon from forestry and land-use change in tropical Asia [J]. Global change biology, 1999,5(4):481-492.
    [51] Houghton RA, Hackler JL. Sources and sinks of carbon from land-use change in China [J]. Global biogeochemical cycles, 2003,17(2):1034.
    [52] Houghton RA, Hackler JL. Emissions of carbon from land use change in sub-Saharan Africa [J]. Journal of geophysical research–biogeosciences, 2006,111(G2): G02003.
    [53] Hurtt GC, Pacala SW, Moorcroft PR, et al. Projecting the future of the US carbon sink [J]. Proceeding of the national academy of sciences of the United States of America, 2002,99(3):1389-1394.
    [54] Janzen HH. Soil carbon dynamics in Canadian agroecosystems [R]. In: Lal R, Kimble J, Follet R, et al. Soil processes and the carbon cycle. Advances in soil science, Boca Raton, FL, USA: Lewis publishers, CRC press. 1998: 57-80.
    [55] Ji JJ, Huang M, Li KR. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century [J]. Science in China series D: Earth sciences, 2008,51(6):885-898.
    [56] Kalnay E, Cai M. Impact of urbanization and land-use change on climate [J]. Nature, 2003, 423(6939):528-531.
    [57] Kern JS, Johnson MG. Conservation tillage impacts on national soil and atmospheric carbon levels [J]. Soil science, 1993,57:200-210.
    [58] Kern JS. Spatial patterns of soil organic carbon in the contiguous United States [J]. Soil science, 1994,58: 439-455.
    [59] King D. The climate in Copenhagen [J]. Science, 2009,326(5958):1319-1319.
    [60] Kirschbaum MUF. Will changes in soil organic matter act as a positive or negative feedback on global warming? [J]. Biogeochemistry, 2000,48:21-51.
    [61] Lacelle B. Canada’s soil organic carbon database. Lal R, et al. Soil processes and the carbon cycle [R]. Boca Raton: CRC Press, 1997: 93-102.
    [62] Lal R, Kimble JM, Follet RF, et al. The potential of U.S. cropland to sequester carbon andmitigate the greenhouse effects [R]. Chelsea: Ann arbor press, MI, 1998.
    [63] Lal R, Kimble R, Follett. Land use and soil C pool in terrestrial ecosystem [A].RJ Kimbkle, R Follett. Management of carbon sequestration in soil [C].Boca Raton: CRC Press, 1998,1-10.
    [64] Lal R. World soils and the greenhouse effect [J]. Global change news letter, 1999,37:4-5.
    [65] Lal R. Carbon management in agricultural soils [J]. Mitigation and Adaptation Strategies for gobal change, 2007, 12(2): 303-322.
    [66] Lin SS, Zheng JY, He FN. Gridding cropland data reconstruction over the agricultural region of China in 1820 [J]. Journal of geographical sciences, 2009,19(1):36-48.
    [67] Lu F, Wang X, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland [J]. Global change biology, 2009, 15(2): 281-305.
    [68] LugoAE. Land use and organic carbon content of some subtropical soils [J]. Plant and soil science, 1986, 96: 185-196.
    [69] Luo Y, Hui D, Zhang D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis [J]. Ecology, 2005,87:53-63.
    [70] Mann LK. Changes in soil carbon storage after cultivation [J]. Science, 1986, 142: 279-288.
    [71] Morgan JA, Pataki DE, Korner C, et al. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2 [J]. Oecologia, 2004,140(1):11-25.
    [72] Nemani RR, Keeling CD, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1938 to 1999 [J]. Science, 2003,300:1560-1563.
    [73] Nowak RS, Ellsworth DS, Smith SD. Functional responses of plants to elevated atmospheric CO2 do photosynthetic and productivity data from FACE experiments support early predictions? [J]. New phytologist, 2004,162: 253-280.
    [74] Ojima DS, Dirks BOM, Gleovn EP, et al. Assessment of C budget for grasslands and drylands of the world [J]. Water, air and soil pollution, 1993,70:95-109.
    [75] Oren R, Ellsworth DS, Johnsen KH. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere [J]. Nature, 2001, 411: 469-472.
    [76] Pacala SW, Hurtt GC, Baker D, et al. Consistent land- and atmosphere-based US carbon sink estimates [J]. Science, 2001,292(5525):2316-2320.
    [77] Paustian K, Andren O, Janzen HH, et al. Agricultural soils as a sink to mitigate CO2emissions [J]. Soil use and management, 1997, 13(4):230-244.
    [78] Piao SL, Fang JY, Ciais P, et al. The carbon balance of terrestrial ecosystems in China [J]. Nature, 2009,458: 1009-1013.
    [79] Polglase PJK. Change in soil carbon following afforestation or reforestation [R]. National carbon accounting system technical report, No 20. Common wealth of Australia, Canberra. Printed in Australia for the Australian greenhouse office, 2000.
    [80] Poska A, Sepp E, Veski S, et al. Using quantitative pollen-based land-cover estimations and a spatial CA_Markov model to reconstruct the development of cultural landscape at Rouge, South Estonia [J]. Vegetation history and archaeobotany, 2008,17(5):527-541.
    [81] Post WM, Emanuel WR, Zinke PJ. Soil carbon pools and life zones [J]. Nature, 1982,298: 156-159.
    [82] Post WM, Pastor J, Zinke PJ, et al. Global patterns of soil nitrogen storage [J]. Nature, 1985, 317: 613-616.
    [83] Qiu J, Li C, Wang L, et al. Modeling impacts of carbon sequestration on net greenhouse gas emission from agricultural soils in China [J]. Global biogeochemical cycles, 2009, 23: GB 1007.
    [84] Ramankutty N, Foley JA. Estimating historical changes in land cover: North American croplands from 1850 to 1992 [J]. Global ecology and biogeography, 1999, 8:381-396.
    [85] Reich PB, Hobbie SE, Lee T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2 [J]. Nature, 2006,440: 922-925.
    [86] Rhoades CC, Eckept GE, Coleman DC. Soil carbon differences among forest, agriculture, and secondary vegetation in lower Montane Ecuador [J]. Ecological application, 2000, 10(2): 497-505.
    [87] Rosenzweig C, Tubiello FN. Adaptation and mitigation strategies in agriculture: an analysis of potential synergies [J]. Mitigation and adaptation strategies for global change, 2007,12(5): 855-873.
    [88] Rozhkov VA, et al. Soil carbon estimates and soil carbon map for Russial [R]. Laxenburg, Austria: Working paper of IIASA, 1996.
    [89] Rustad LE, Campbell J, Marion GM, et al. A meta-analyses of the response of soil respiration, net N mineralization, and aboveground plant growth to experimental ecosystem warming [J].Oecologia, 2000,126: 543-562.
    [90] Scharpensell HW. Sustainable land use in the light of resiliency/elasticity to soil organic matter fluctuation [R], In: Greenland DJ, Szabolcs I, Soil resilience and sustainable land use. CAB International, 1994: 249-264.
    [91] Schimel, DS. Terrestrial ecosystems and the carbon cycle [J]. Global Change Biology, 1995,1:77-81.
    [92] Schulp CJE, Nabuurs GJ, Verburg PH. Future carbon sequestration in Europe-Effects of land use change [J]. Agriculture ecosystems and environment, 2008,127(3-4):251-264.
    [93] Schuman GE, Janzen HH, Herrick JE. Soil carbon dynamics and potential carbon sequestration by rangelands [J]. Environmental pollution, 2002,116(3):391-396.
    [94] Scott NA, Tate KR, Giltrap DJ, et al. Monitoring land-use effects on soil carbon in New Zealand: quantifying baseline soil carbon stocks [J]. Environmental pollution, 2002,116: 167-186.
    [95] Smith P, Powlson DS, Glendining MJ, et al. Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments [J]. Global change biology, 1997, 3(1): 67-79.
    [96] Smith P, Powlson DS, Smith JU, et al. Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture [J]. Global change biology, 2000, 6(5): 525-539.
    [97] Smith P, Martino D, Cai Z, et al. Greenhouse gas mitigation in agriculture [J]. Philosophical transactions of the royal society, 2008, 363(1492): 789-813.
    [98] Star JL. Improved integration of remote sensing and geography information system, background to NCGIA Initiative [J]. Photograrmmetric Engineering & Remote Sensing, 1991, 57(6):643-645.
    [99] Tao B, Cao MK, Yu GR, et al. Global carbon project (GCP) Beijing office: a new bridge for understanding regional carbon cycles [J]. Journal of geographical sciences, 2006,16(3):375-377.
    [100] Tao B, Cao MK, Li KR, et al. Spatial patterns of terrestrial net ecosystem productivity in China during 1981-2000 [J]. Science in China series D: Earth sciences, 2007,50(5):745-753.
    [101] Thomas R. The international geosphere-biosphere programme: a study of global change(IGBP) [J]. Environmental geology and water sciences, 1992,20(2):77-78.
    [102] Triberti L, Nastri A, Giordani G, et al. Can mineral and organic fertilization help sequestrate carbon dioxide in cropland [J]. European journal of agronomy, 2008, 29(1):13-20.
    [103] Trumbore SE, Davidson EA, Camargo PB, et al. Below ground cycling of carbon in forests and pastures of Easten Amazonia [J]. Global biogeochemical cycles, 1995, 9: 515-528.
    [104] Xu X, Gao Q, Liu YH, et al. Coupling a land use model and an ecosystem model for a crop-pasture zone [J]. Ecological modeling, 2009,220:2503-2511.
    [105] Ye Y, Fang XQ, Ren YY, et al. Cropland cover change in Northeast China during the past 300 years [J]. Science in China series D-Earth sciences, 2009,52(8):1172-1182.
    [106] Wang LG, Qiu JJ, Tang HJ, et al. Modelling soil organic carbon dynamics in the major agricultural regions of China [J]. Geoderma, 2008,147(1-2):47-55.
    [107] Wang S, Chen JM, Ju WM, et al. Carbon sinks and sources in China’s forests during 1901-2001 [J]. Journal of environmental management, 2007,85:524-537.
    [108] Wang Y. The impacts of land use change on C turn over in soils [J]. Global biogeochemical cycles, 1999, 13(1):47-57.
    [109] Wang YF, Fu BJ, Lu YH, et al. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China [J]. Quaternary search, 2010,73(1):70-76.
    [110] West TO, Marland G, King AW, et al. Carbon management response curves: estimates of temporal soil carbon dynamics [J]. Environmental management, 2004,33(4) :507-518.
    [111] Wu HB, Guo ZT, Peng CH. Land use induced changes of organic carbon storage in soils of China [J]. Global change biology, 2003,9(3):305-315.
    [112] Wu L, Wood Y, Jiang P, et al. Carbon sequestration and dynamics of two irrigated agricultural Soils in California [J]. Soil science society of America Journal, 2008, 72(3): 808-814.
    [113] Zaehle S, Bondeau A, Carter TR, et al. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990-2100 [J]. Ecosystems, 2007,10:380-401.
    [114] Zhang J, Wei J, Chen Q. Mapping the farming-pastoral ecotones in China [J]. Journal of mountain science, 2009, 6(1):78-87.
    [115] Zhao M, Pitman AJ, Chase T. The impact of land cover change on the atmospheric circulation [J]. Climate dynamics, 2001,17(5-6):467-477.
    [116] Zhong B, Xu JY. Topographic effects on soil organic carbon in Louisiana watersheds [J]. Environmental management, 2009,43(4):662-672.
    [117]白淑英,张树文,张养贞.土地利用/土地覆被时空分布100年数字重建—以大庆市杜尔伯特蒙古族自治县为例[J].地理学报, 2007,62(4):427-436.
    [118]白淑英,张树文,张养贞.耕地分布及其扩张过程与土壤类型空间相关分析[J].土壤通报, 2005,36(5):652~654.
    [119]白城地区城乡建设处史志办公室.白城地区城乡建设简志: 1665年-1985年[M]. 1988.
    [120]白城地区地方志编纂委员会编著.白城地区志[M].长春:吉林文史出版社,1992: 41-251.
    [121]白城地区地方志编纂委员会编著.白城市志[M].北京:中国广播电视出版社,1993.
    [122]白城地区计划经济委员会.白城地区国土资源[M].内部资料, 1986.
    [123]白城地区土壤肥料工作站.吉林省白城地区土壤普查资料(一)[M].内部资料, 1985.
    [124]白城地区土壤肥料工作站.吉林省白城地区土壤普查资料(二)[M].内部资料, 1986.
    [125]柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报, 2005,9(5):555-563.
    [126]卜坤,张树文,张养贞,等.自然土壤类型对近50年三江平原农田化过程的影响[J].资源科学, 2008,30(5):702-708.
    [127]陈百明,刘新卫,杨红. LUCC研究的最新进展评述[J].地理科学进展, 2003,22(1): 22-29.
    [128]陈泮勤.世界气候研究计划(WCRP)及其进展[J].地球科学进展, 1995,10(5):488-492.
    [129]崔健,林年丰,汤洁,等.霍林河流域下游地区土地利用变化动态及趋势预测[J].吉林大学学报(地球科学版), 2006, 36(2): 259-264.
    [130]戴红娟,郭来春.白城地区农业面源污染调查及控制措施[J].吉林水利, 2006, 11: 10-11.
    [131]邓伟,裘善文,梁正伟.中国大安碱地生态试验站区域生态环境背景[M].吉林:科学出版社, 2006.
    [132]樊江文,钟华平,梁飚,等.草地生态系统碳储量及其影响因素[J].中国草地, 2003,25(6):51-58.
    [133]方精云,刘国华,徐嵩龄.中国陆地生态系统的碳循环及其全球意义[M].北京:中国环境科学出版社, 1996:129-139.
    [134]高志强,刘纪远,曹明奎,等.土地利用和气候变化对农牧过渡区生态系统生产力和碳循环的影响[J].中国科学D辑:地球科学. 2004,34(10):946-957.
    [135]葛全胜,戴君虎. 20世纪前、中期中国农林土地利用变化及驱动因素分析[J].中国科学D辑:地球科学. 2005,35(1):54-63.
    [136]葛全胜,戴君虎,何凡能,等.过去300年中国部分省区耕地资源数量变化及驱动因素分析[J].自然科学进展, 2003,13(8):825-833.
    [137]葛全胜,戴君虎,何凡能,等.过去三百年中国土地利用变化与陆地碳收支[M].北京:科学出版社, 2008.
    [138]葛全胜,赵名茶,郑景云. 20世纪中国土地利用变化研究[J].地理学报, 2000,55(6):698-706.
    [139]国家环保局.中国生态问题报告[M].北京:中国环境科学出版社, 1999.
    [140]韩冰,王效科,逯非,等.中国农田土壤生态系统固碳现状和潜力[J].生态学报, 2008, 28(2): 612-619.
    [141]何春阳,史培军,陈晋,等.基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J].中国科学D辑地球科学, 2005, 35(5):464-473.
    [142]何凡能,葛全胜,戴君虎,等.近300年来中国森林的变迁[J].地理学报, 2007,62(1):30-40.
    [143]黄靖宇,宋长春,宋艳宇,等.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J].环境科学, 2008, 29(5): 1380-1387.
    [144]吉林省白城地区土壤普查办公室.白城土壤[M].内部资料, 1988.
    [145]吉林省测绘局.吉林省国土资源地图集[M].北京:科学出版社, 1990.
    [146]吉林省测绘局.吉林省普通地图集[M].长春:吉林省测绘制印大队, 1993.
    [147]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社, 1982: 18-24.
    [148]吉林省土壤肥料总站.吉林土壤[M].北京:中国农业出版社, 1998.
    [149]冷允法.基于RS、GIS的土地利用变更与时空动态分析[J].地理研究, 1999,18(增刊):136-141.
    [150]李长生.土壤碳储量减少:中国农业之隐患—中美农业生态系统碳循环对比研究[J].第四纪研究, 2000,20(4):346-351.
    [151]李家洋,陈泮勤,马柱国,等.区域研究:全球变化研究的重要途径[J].地球科学进展, 2006,21(5):441-450.
    [152]李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学(D辑), 2003,33(1):72-80.
    [153]李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应[J].植物学通报, 1998,12(2):14-22.
    [154]李晓燕,张树文.吉林省大安市近50年土地盐碱化时空动态及成因分析[J].资源科学, 2005,27(3):92-97.
    [155]李秀军,李取生,王志春,等.松嫩平原西部盐碱地特点及合理利用研究[J].农业现代化研究, 2002,23(5):361-364.
    [156]李月臣,何春阳.中国北方土地利用/覆被变化的情景模拟与预测[J].科学通报, 2008, 53(6): 713-723.
    [157]李昭阳.多源遥感数据支持下的松嫩平原生态环境变化研究[D].吉林:吉林大学环境与资源学院, 2006.
    [158]李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J].土壤学报, 2006, 43(1): 46-52.
    [159]刘光,贺小飞.地理信息系统实习教程[M].北京:清华大学出版社, 2002.
    [160]刘纪远,王绍强,陈镜明,等. 1990-2000年中国土壤碳氮蓄积量与土地利用变化[J].地理学报, 2004,59(4): 483-496.
    [161]刘纪远,张增祥,徐新良,等. 21世纪初中国土地利用变化的空间格局与驱动力分析[J].地理学报, 2009,64(12):1411-1420.
    [162]刘沭森.白城百年1900-1999[M].长春:吉林人民出版社, 2001.
    [163]逯非,王效科,韩冰,等.中国农田施用化学氮肥的固碳潜力及其有效性评价.应用生态学报[J]. 2008, 19(10): 2239-2250.
    [164]逯献青,张富,林万峰.大安县志[M].沈阳:辽宁人民出版社, 1990.
    [165]卢晓宁,邓伟,张树清,等.近50年来霍林河流域下游沿岸土地利用变化过程.干旱区资源与环境, 2007, 21(11): 68-74.
    [166]全国土壤普查办公室.中国土种志第二卷[M].北京:中国农业出版社, 1994.
    [167]史培军,宫鹏,李晓兵,等.土地利用/覆被变化研究的方法与实践[J].北京:科学出版社, 2000.
    [168]史培军,李京,潘耀忠,等.生态资产遥感测量[M].北京:科学出版社, 2005.
    [169]宋长春,王毅勇,闫百兴,等.沼泽湿地开垦后土壤水热条件变化与碳、氮动态[J].环境科学, 2004, 25(3):168-172.
    [170]汤洁,卞建民,李昭阳,房春生. 3S技术在环境科学中的应用[M].北京:高等教育出版社, 2009.
    [171]汤洁,李昭阳,林年丰,等.松嫩平原西部草地的时空变化特征[J].资源科学, 2006, 28(1):63-69.
    [172]汤洁,毛子龙,韩维峥,等.土地利用/覆被变化对土地生态系统有机碳库的影响——以吉林省通榆县为例[J].生态环境, 2008,17(5): 2008-2013.
    [173]汤洁,毛子龙,王晨野,等.基于碳平衡的区域土地利用结构优化一以吉林省通榆县为例[J].资源科学, 2009, 31(1): 130-135.
    [174]洮安县土壤普查办公室.洮安县土壤志[M].内部资料, 1985.
    [175]通榆县农业区划办公室.吉林省通榆县土壤志[M].内部资料, 1986.
    [176]王娟,林年丰,汤洁,等.近20年吉林西部水旱灾害变化特征及机理研究[J].地域研究与开发, 2004, 23(2): 80-83.
    [177]王群,王万茂.中国省区土地利用差异驱动因素实证研究[J].中国土地科学, 2005,19(6):21-25.
    [178]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报, 2003,14(5):797-802.
    [179]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究, 1999,18(4):349-356.
    [180]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报, 2000,55(5):533-544.
    [181]汪雪格,吉林西部生态景观格局变化与空间优化研究[D].吉林:吉林大学环境与资源学院, 2008.
    [182]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志, 1999,18(5):29-35.
    [183]王宗明,刘殿伟,宋开山,等.土壤类型对三江平原土地利用/覆被变化的影响[J].资源科学, 2008,30(5):694-701.
    [184]解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报, 2004, 41(5):687-699.
    [185]许信旺,潘根兴.中国水稻土碳循环研究进展[J].生态环境, 2005, 14(6): 961-966.
    [186]杨黎芳,李贵桐,赵小蓉,等.栗钙土不同土地利用方式下有机碳和无机碳剖面分布特征[J].生态环境, 2007,16(1):158-162.
    [187]于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报, 2005,16(12):2279-2253.
    [188]岳曼,常庆瑞,王飞,等.土壤有机碳储量研究进展[J].土壤通报, 2008,39(5):1173-1178.
    [189]张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境, 2003,12(4):500-504.
    [190]张金波,宋长春,杨文燕.三江平原沼泽湿地开垦对表土有机碳组分的影响[J].土壤学报, 2005,42(5):857-859.
    [191]张明.土地利用结构及其驱动因子的统计分析—以榆林地区为例[J].地理科学进展, 1997,16(4): 19-26.
    [192]张明.区域土地利用结构及其驱动因子的统计分析[J].自然资源学报, 1999, 14(4):381-384.
    [193]张文菊,吴金水,童成立,等.三江平原湿地沉积有机碳密度和碳储量变异分析[J].自然资源学报, 2005, 20(4): 537-544.
    [194]张忠海.洮南市志:1902-1987[M].长春:吉林文史出版社, 2000.
    [195]赵福山,马向东.通榆县志[M].长春:吉林人民出版社, 1994.
    [196]镇赉县志编纂委员会.镇赉县志[M].长春:吉林人民出版社, 1995.
    [197]镇赉县农业区划办公室.吉林省镇赉县土壤志[M].内部资料, 1984.
    [198]中国科学院林业土壤研究所.中国东北土壤[M].北京:科学出版社, 1980.
    [199]仲晓晴.白城地区农业生态系统的服务功能与健康研究[D].吉林:吉林大学环境与资源学院, 2007.
    [200]周成虎,孙战力.地理元胞自动机研究[M].北京:科学出版社, 2001.
    [201]周广胜.全球碳循环[M].北京:气象出版社, 2003.
    [202]祝廷成.羊草生物生态学[M].长春:吉林科学技术出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700