五种药用植物的化学成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去25年上市的药物中,直接或者间接地来自天然产物的药物约占40%,这表明天然产物(植物,动物,以及微生物等生物体内的次生代谢产物)在现代药物研究中具有重要意义。作为天然产物中最为重要的一部分,植物药也是现代药物发现的重要源泉。本文涉及的五种药用植物或其同属植物,均有研究报道一些结构复杂多样、且具有重要生物活性的化合物。因此对其开展深入的系统化学研究,有望发现结构新颖的化合物,为进一步活性筛选奠定物质基础。
     本文对五种药用植物独一味Lamiophlomis rotata (Benth.) Kudo,滇红椿Toona ciliata Roem. var. yunnanensis (C. DC.) C. Y. Wu,毛麻楝Chukrasia tabularis var. velutina,溪桫Chisocheton paniculatus (Roxb.) Hiern和山椤Aglaia roxburghiana Miq.进行了系统的化学成分研究和生物活性测试,运用波谱学技术和化学反应沟通等手段鉴定了146个化合物,包括黄酮类10个,环烯醚萜类21个,苯乙醇苷类8个,糖类11个,柠檬苦素类39个,三萜类18个,二萜类11个,倍半萜类11个等;其中新化合物24个。并对部分化合物进行了抗炎和抗菌活性筛选。
     从唇形科独一味属植物独一味中分离获得59个化合物,包括黄酮类10个(1-10),环烯醚萜类21个(11-31),苯乙醇苷类8个(32-39),糖类共11个(40-50),以及其他类化合物9个( 51-59 )。其中包括新的环烯醚萜类4个: 6′-O-syringyl-deoxysesamoside(11)、7-dehydroxy-zaluzioside(12)、barlerin-6′′-hydroxy- 2′′,6′′-dimethylocta-2′′,7′′-dienate ester(13)和6β-n-butoxy-7,8-dehydropenstemonoside(14),以及新的C13-降异戊二烯糖类衍生物1个,5β,6α-dihydroxy-3β-(β-D- glucoyranosyloxy)-7-megastigmen-9-one ( 44 )。新化合物6β-n-butoxy-7,8- dehydropenstemonoside(14)和已知化合物apigenin-7-O-(6″-O-β-D-apiofuranosyl)-β-D- glucopyranoside(3)、8-epi-7-deoxyloganin(21)、7,8-dehydropenstemonoside(26)及β-D-glucopyranoside-(2→1)-β-D-glucopyranoside(49)对于LPS引起的核转录因子NF-κB激活有明显的抑制作用,且在检测的浓度范围内呈浓度依赖。研究表明独一味中的黄酮类及苯乙醇苷类成分均为活性成分,目前从独一味分离得到的常见及含量较大的黄酮类化合物有3种,分别为芹菜素-7-O-β-D-吡喃葡萄糖苷,木犀草素-7-O-β-D-吡喃葡萄糖苷和木犀草素-7-O-(6″-O-β-D-呋喃芹菜糖)-β-D-吡喃葡萄糖苷;苯乙醇苷类成分有2种,分别为毛蕊花糖苷和连翘酯苷。本试验采用HPLC法测定了6个产地独一味全草中上述5种化合物的含量,以其含量为指标,考察不同产地独一味的品质差异。这也是首次测量黄酮类和苯乙醇苷类成分含量的报道。
     从楝科香椿属植物滇红椿中分离获得29个化合物,包括柠檬苦素类9个(60-62,67-72),二萜类11个(63-66,73-79),倍半萜类5个(80-84),以及其他类化合物4个(85-88)。其中柠檬苦素toonaciliatins N-P(60-62)和二萜toonacilidins A-D(63-66)为新化合物。Toonaciliatin N(60)是一个具有1,11-氧桥-3-酮基结构的柠檬苦素类化合物,在氘带极性溶液(CD3OD)中容易通过形成烯醇式的过渡态,与溶液发生质子交换作用,该过程具有可逆性。化合物toonacilidin A(63)和eudesm-4(15)-ene-1β,6α-diol(83)对幽门螺旋杆菌菌株Helicobacter pylori-SS1显示较为温和的抗菌活性。将分离得到的柠檬苦素类化合物与红椿及其变种中分离到的柠檬苦素类化合物对比,发现滇红椿中共分离的到9个柠檬苦素类化合物,主要骨架结构与红椿中分离到的柠檬苦素类化合物更加接近;并且根据已有研究提出的共存于同一植物的共同前体解释,成功产生了滇红椿中9个柠檬苦素可能的转化过程的生物图。
     从楝科麻楝属植物毛麻楝中分离获得30个化合物(89-118),除去xyloccensin K(118)外,余下均为phragmalin型柠檬苦素类化合物,包括1,8,9-原酸酯类型6个(89-93,99),8,9,11-原酸酯类型5个(109-113),8,9,30-原酸酯类型2个(114、115);C-15位引入多碳单元并与C-16形成缩酮的衍生物13个(95-97,101-108,116-117);C-8/C-9成五元环碳酸酯的衍生物2个(94,100);以及其它氧化类型的化合物1个(98)。其中velutinasins A-I(89-97)9个为新化合物。新化合物velutinasins A-D(89-92)为一类具有δ-内酯环和1,8,9-原酸酯结构的phragmalin类柠檬苦素,并且在C-15位引入多碳单元形成较稳定的烯醇式结构。这种结构比较罕见,属于自然界第二次发现该种类型的化合物。其中velutinasin A(89)为C-16位和C-17位形成δ-内酯环;velutinasins B-D(90-92)为C-16位和C-30位形成δ-内酯环。并利用圆二色谱激子手性法对该类化合物进行了绝对构型的确定。
     从楝科溪桫属植物溪桫中分离获得16个化合物,其中包括2个新的apotirucallane型三萜(119、120),4个已知apotirucallane型三萜(121、125-127),4个已知tirucallane型三萜(122-124、128),以及4个已知倍半萜(129-132)和2个已知甾体化合物(133、134)。化合物ghisiamol G(119)的结构通过波谱学方法和化学沟通共同确定,ghisiamol G(119)和ghisiamol H(120)是首次在该属植物中分离获得的具有五元内酯环的apotirucallane型三萜。
     从楝科米仔兰属植物山椤中分离获得12个化合物,其中包括1个新的tirucallane型三萜(135),6个已知apotirucallane型三萜(136-141),1个已知甾体(142),以及2个已知楝酰胺类(143、144)和2个已知倍半萜化合物(145、146)。
     柠檬苦素类化学成分是楝科植物的主要活性成分和最为特征的次生代谢产物,从多种楝科植物中,报道了数目众多的骨架新颖、结构复杂多变的柠檬苦素类成分,并显示出昆虫拒食、抗真菌、抗细菌、抗病毒、抗疟疾及抗癌等多方面的活性。人们使用的药物绝大多数具有手性,被称为手性药物。手性药物的“镜像”称为它的对映体,两者之间在生物活性方面往往存在差别,有的甚至作用相反。由于柠檬苦素类化合物结构内有多个手性中心,确定该类天然产物的绝对构型对了解其化学及生物行为非常重要。因此论文就近几年来用于测定柠檬苦素类天然产物绝对构型的几种方法进行综述。
A great number of drugs (ca. 40% of drugs marketed) are directly or indirectly derived from natural products in the last 25 years), indicating that natural products, including secondary metabolite of plant, animal and microorganism, have played a significant role in modern drug researches. As a consequence, medical plants are the rich and vital source for modern drugs. Previous reaserches have reported the isolation of some complex compounds with diverse biological activities from the five medical plants studied in this thesis. Thus, it is meaningful to isolate and identify new compounds by profound chemical studies of these medical plants, which will lay the foundation for further biological activity screening.
     Five medicinal plants, Lamiophlomis rotata (Benth.) Kudo, Toona ciliata Roem. var. yunnanensis (C. DC.) C. Y. Wu, Chukrasia tabularis var. velutina, Chisocheton paniculatus (Roxb.) Hiern, and Aglaia roxburghiana Miq. have been chemically investigated and their bioactivities have been evaluated. A total of 146 compounds were obtained, which including ten flavonoids, twenty-one iridoids, eight phenylethanoid glucosides, eleven derivatized carbohydrates, thirty-nine limonoids, eighteen triterpenoids, eleven diterpenoids, eleven sesquiterpenoids, and so on. Twenty-four compounds were isolated as new compounds. Some compounds were found active in the tested pharmacological model.
     Fifty-nine compounds, including ten flavonoids (1-10), twenty-one iridoids (11-31), nine phenylethanoid glucosides (32-39), eleven derivatized carbohydrates (40-50), and nine compounds in other types (51-59) were isolated from L. rotata of the Lamiophlomis genus (Lamiacea). Four iridoids and one derivatized carbohydrate (C13-norisoprenoid derivative) were isolated as new compounds, viz. 6′-O-syringyl-deoxysesamoside (11), 7-dehydroxy-zaluzioside (12), barlerin-6′′-hydroxy-2′′,6′′-dimethylocta-2′′,7′′-dienate ester (13), 6β-n-butoxy-7,8-dehydropenstemonoside (14) and 5β,6α-dihydroxy-3β-(β-D- glucoyranosyloxy)-7-megastigmen-9-one (44). All compounds were screened by luciferase assay, finding that apigenin-7-O-(6″-O-β-D-apiofuranosyl)-β-D-glucopyranoside (3), 6β-n-butoxy-7,8-dehydropenstemonoside (14), 8-epi-7-deoxyloganin (21), 7,8-dehydropenstemonoside (26), andβ-D-glucopyranoside-(2→1)-β-D-glucopyranoside (49) had the desired, apparent NFκB inhibition activities, in a dose-dependant manner in the range of the detection concentration.
     The medicinal plant often comprises a complex mixture of different phytochemicals (plant secondary metabolites) and these ingredients work“synergistically”for the therapeutic effects. Previous studies have revealed that flavonoids and phenylethanoid glucosides are the main activity components in L. rotata, and the determination of one or two compounds could not give a complete picture of the herb, while quantification of all compounds is extremely difficult. Hence, we chose three flavonoids (apigenin-7-O-β-D-glucopyranoside, luteolin-7-O-β-D-glucopyranoside and luteolin-7-O-β-D-(6″-O-acetyl)-glucopyranoside) and two phenylethanoid glucosides (verbascoside and forsythoside B) as the“marker compounds”that were in large amounts L. rotata. There is no method in analysis of both flavonoids and PhGs of L. rotata in the previous reported methods, this newly developed HPLC-VWD method for simultaneous determination of both flavonoids and PhGs provided much higher specificity, precision and accuracy. By quantification of the five major compounds, the quality of L. rotata could be effectively evaluated initially. Besides, to obtain a full assessment about L. rotata, the analytical method described here is needed to be developed.
     Twenty-nine compounds, including nine limonoids (60-62, 67-72), eleven diterpenoids (63-66, 73-79), five sesquiterpenoids (80-84) and four compounds in other types (85-88) were isolated from T. ciliata Roem. var. yunnanensis (C. DC.) of the Toona genus (Meliaceae). Three limonoids (toonaciliatins N-P, 60-62) and four pimaradiene-type diterpenoids (toonacilidins A-D, 63-66) were isolated as new compounds. Toonaciliatin N (60), a new limonoid bearing a 1,11-oxygen bridge-1-one moiety, H-2βof which exchanged to D-2βvia a possible enolized intermediate when it was kept in the solvent of CD3OD for about two days, and this was a reversible progress when treated with CH3OH. Toonacilidin A (63) and eudesm-4(15)-ene-1β,6α-diol (83) showed moderate inhibitory activity against H. pylori-SS1 at the level of MIC of 50μg/mL. Compared the limonoids isolated from T. ciliata Roem. var. ciliata and T. ciliata Roem. var. yunnanensis (C. DC.), the latter seems have a more close relationship with T. ciliata than the former. Thus, a proposed biosynthetic map that encompassed all the routes to the isolated limonoids in T. ciliata was successfully applied in T. ciliata Roem. var. yunnanensis (C. DC.), which supported the rationality that they might share a common precursor.
     Thirty limonoids were isolated from C. tabularis var. velutina of the Chukrasia A. Juss genus (Meliaceae), twenty-nine of which were phragmalin-type limonoids (89-117) except xyloccensin K (118). These phragmalin-type limonoids could be be divided into about six different sub-groups depending on partial structural transformations of the basic phragmalin skeleton, including six 1,8,9-phragmalin-type limonoids (89-93, 99), five 8,9,11-phragmalin-type limonoids (109-113), two 8,9,30- phragmalin-type limonoids (114, 115), thirteen limonoids that possess a biosynthetically extended propionyl or acetyl group at C-15 and a characteristic ketal moiety between the limonoid skeleton and the acyl substituent at C-15 (95-97, 101-108, 116-117), two limonoids with an unprecedented 1,3-dioxolan-2-one formed a pentacyclic carbonate ester (94, 100), and one in other type (118). Nine of these limonoids (velutinasins A-I, 89-97) were isolated as new compounds. Velutinasins A-D (89-92) were a class of C-15-acyl 1,8,9-phragmalin type limonoids, featuring aδ-lactone ring, and theβ-dicarbonyl groups were presented as a relative steabyα-hydroxy-α,β-unsaturated ester system. Velutinasin A (89) comprised a C-16/C-17δ-lactone ring while velutinasins B-D (90-92) comprised C-16/C-30δ-lactone rings. It was the second time to find that class of kinds, and their absolute configurantions were determined by the CD exciton chirality method.
     Sixteen compounds, including two new apotirucallane-type triterpenoids (119, 120), four known apotirucallane-type (121, 125-127) and four known tirucallane-type (122-124, 128) triterpenoids, four known sesquiterpenoids (129-132) and two known steroids (133, 134) were isolated from C. paniculatus (Roxb.) Hiern of the Chisocheton genus (Meliaceae). The strcture of ghisiamol G (119) was elucidated on the basis of spectroscopic and chemical methods. To the best of our knowledge, this is the first report of a tetracyclic triterpene with a 21,23-lactone ring (ghisiamols G and H, 119 and 120) from the genus Chisocheton.
     Twelve compounds, including one new tirucallane-type triterpenoids (135), six known tirucallane-type triterpenoids (136-141), one known steroid (142), two known rocaglamides (143, 144) and two known sesquiterpenoids (143, 144) and were isolated from A. roxburghiana Miq.of the Aglaia genus (Meliaceae).
     Limonoids are secondary metabolites characteristic of the plant family Meliaceae, from which many structurally diversified and chemosystematically significant limonoids have been isolated in the past several decades, attracting people’s great interest due to their diverse structures and significant biological activities.
     Most of the drugs currently in use are chiral compounds, and called chiral drugs. Although they have the same chemical structure, most isomers of chiral drugs exhibit marked differences in biological and pharmacological effects. A limonoid molecule often has at least one asymmetric carbon, which could be recognized as chiral center. As a consequence, assignment of absolute stereochemistry for limonoids is a vital field of research, which is necessary to known their chemical and biological behavior. This article reviews some different techniques used for the assignment of absolute stereochemistry for limonoids in recent years.
引文
[1]吴征镒,李锡文.中国植物志65(2).北京:科学出版社,1977, 428-481.
    [2]易进海,钟炽昌,罗泽渊,肖倬殷.糙苏属和独一味属植物的化学成分及其分类学的意义.中草药, 1992, 23 (7): 382-384, 387.
    [3]江苏新医学院.中药大辞典(下册).上海:上海科学技术出版社,1977, 1707-1707.
    [4]易进海,钟炽昌,罗泽渊,肖倬殷.独一味根化学成分的研究(ΙΙΙ).中草药, 1990, 21 (12): 2-3, 5.
    [5]王瑞冬,孙连娜,陶朝阳,张卫东,陈万生.独一味化学成分的研究.第二军医大学学报, 2005, 16 (10): 1171-1173.
    [6] Zhang, C. Z.; Li, C.; Feng, S. L.; Shi, J. G. Iridoid glucosides from Phlomis rotata. Phytochemistry, 1991, 30 (12): 4156-4158.
    [7]张承忠,李冲,石建功,封士兰,赵承侠,李树琪.藏药独一味中的环烯醚萜苷.中草药, 1992, 23 (10): 509-510, 560.
    [8]易进海,颜贤忠,罗泽渊,肖倬殷.藏药独一味根化学成分的研究.药学学报, 1990, 26 (1): 37-41.
    [9]易进海,钟炽昌,罗泽渊,肖倬殷.独一味素C的结构.药学学报, 1992, 27 (3): 204-206.
    [10]易进海,黄小平,陈燕,罗泽渊,钟炽昌.藏药独一味根环烯醚萜苷的研究.药学学报, 1997, 32 (5): 357-360.
    [11] Tan, J. J.; Tan, C. H.; Li, M.; Jiang, S. H.; Zhu, D. Y. Iridoid glycosides from Lamiophlomis rotata. Helv. Chim. Acta., 2007, 90 (1): 143-148.
    [12] Zhang, F.; Sun, L. N.; Chen, W. S. A new iridoid glucoside from Lamiophlomis rotata. Chem. Nat. Compd., 2009, 45 (3): 360-362.
    [13]易进海,颜贤忠,罗泽渊,钟炽昌.藏药独一味根化学成分的研究.药学学报, 1995, 30 (3): 206-210.
    [14] Yi, J. H.; Zhang, G. L.; Li, B. G.; Chen, Y. Z. Phenylpropanoid glycosides from Lamiophlomis rotata. Phytochemistry, 1999, 51 (6): 825-828.
    [15] Liu, J. M.; Nan, P.; Wang, L.; Wang, Q. B.; Tsering, T.; Zhong, Y. Chemical variation in lipophilic composition of Lamiophlomis rotata from the Qinghai-Tibetan Plateau. Chem. Nat. Compd., 2006, 42 (5): 525-528.
    [16]苑伟,宋玉成,梁资富.不同产地藏药独一味的镇痛、抗炎作用比较研究.中国药房, 2003, 14 (12): 716-717.
    [17] Li, M. X.; Shang, X. F.; Zhang, R. X.; Jia, Z. P.; Fan, P. C.; Ying, Q.; Wei, L. L. Antinociceptive and anti-inflammatory activities of iridoid glycosides extract of Lamiophlomis rotata (Benth.)Kudo. Fitoterapia, 2010, 81 (3): 167-172.
    [18]陈一凡.藏药独一味治疗骨折镇痛疗效机理探讨.中国民族医药杂志, 2001, 7 (2): 14-14.
    [19]贾孝荣,王镜.藏药独一味止血机理探讨.甘肃中医学院学报, 1994, 11 (2): 44-46.
    [20]叶光华.独一味片治疗骨、外科疾病356例镇痛疗效观察.白云医药信息, 1995, 4 (2): 10-10.
    [21]乔晓峰.独一味胶囊在内窥镜鼻窦手术后的镇痛止血作用.中国医药信息杂志, 2005, 12 (4): 64-64.
    [22]李茂星,贾正平,沈涛,张汝学,张华欣,李志英.口服独一味水提取物对大鼠血液凝集参数的影响.中药材, 2006, 29 (2): 160-163.
    [23]李茂星,贾正平,沈涛,张汝学,张华欣.独一味水提取物止血作用及其机理的初步研究.中药新药与临床药理, 2006, 17 (2): 93-96.
    [24] Li, M. X.; Jia, Z. P.; Hu, Z. D.; Zhang, R. X.; Shen, T. Experimental study on the hemostatic activity of the Tibetan medicinal herb Lamiophlomis rotata. Phytother. Res., 2008, 22 (6): 759-765.
    [25]李茂星,贾正平,张汝学,沈涛,费改顺.独一味止血有效部位的实验研究.解放军药学学报, 2005, 21 (4): 272-274.
    [26] Li, M. X.; Zhang, R. X.; Jia, Z. P.; Sheng, J.; Qiu, J. G.; Wang, J. Isolation and identification of hemostatic ingredients from Lamiophlomis rotata (Benth.) Kudo. Phytother. Res., 2009, 23 (6): 816-822.
    [27]贾正平,李茂星,张汝学,王谨慧,王敏,郭晓农,沈涛.独一味抗肿瘤活性成分的体外筛选.西北国防医学杂志, 2005, 26 (3): 173-175.
    [28]贾孝荣,王镜.藏药独一味对粒系祖细胞影响的实验研究.兰州医学院学报, 1995, 21 (3): 138-141.
    [29] Krull, R. E.; Stermitz, F. R.; Franzyk, H.; Jensen, S. R. Iridoid glycoside biosynthesis in Penstemon secundiflorus. Another H-5, H-9 trans-iridoid glycoside. Phytochemistry, 1998, 49 (20): 1605-1608.
    [30] Gardner, D. R.; Narum, J.; Zook, D.; Stermitz, F. R. New iridoid glucosides from Castilleja and Besseya: 6-hydroxyadoxoside and 6-isovanillylcatapol. J. Nat. Prod., 1987, 50 (3): 485-489.
    [31] Takeda, Y.; Matsumura, H.; Masuda, T.; Honda, G.; Otsuka, H.; Takaishi, Y.; Sezik, E.; Yesilada, E. Phlorigidosides A–C, iridoid glucosides from Phlomis rigida. Phytochemistry, 2000, 53 (8): 931-935.
    [32] Su, B. N.; Pawlus, A. D.; Jung, H. A.; Keller, W. J.; McLaughlin, J. L.; Kinghorn, A. D. Chemical constituents of the fruits of Morinda citrifolia (Noni) and their antioxidant activity. J. Nat. Prod., 2005, 68 (4): 592-595.
    [33] Damtoft, S.; Jensen, S. R.; Nielsen, B. J. 13C and 1H NMR spectroscopy as a tool in the configurational analysisi of iridoid glucosides. Phytochemisrty, 1981, 20 (12): 2717-2732.
    [34] Kobayashi, S.; Mima, A.; Kihara, M.; Imakura, Y. Iridoid glucosides from Lamium amplexicaule. Chem. Pharm. Bull., 1986, 34 (2): 876-880.
    [35] Cimanga, K.; Hermans, N.; Apers, S.; Van Miert, S.; Van den Heuvel, H.; Claeys, M.; Pieters, L.; Vlietinck, A. Complement-inhibiting iridoids from Morinda morindoides. J. Nat. Prod., 2003, 66 (1): 97-102.
    [36] Kocsis, A.; Guiso, M. Some regioselective chemical transformations of iridoid glycosides having 10-deacetyldaphylloside as starting material. Int. Conf. Chem. Biotechnol. Biol. Act. Nat. Prod. [Proc.], 1st, 1981; Vol. 3, issue 2, p 22-25.
    [37] Chen, W. L.; Liu, Q. F.; Wang, J.; Zou, J.; Meng, D. H.; Zou, J. P.; Zhu, X. Z.; Zhao, W. M. New guaiane, megastigmane and eudesmane-type sesquiterpenoids and anti-inflammatory constituents from Youngia japonica. Planta. Med., 2006, 72 (2): 143-150.
    [38]任玉琳,杨峻山.西藏雪莲花化学成分的研究II.中国药学杂志, 2001, 36 (9): 590-593.
    [39] Singh, K. N.; Pandey, V. B.; Banerjee, S.; Bohlmann, F.; Keinan, E. Novel acyl flavone glycosides from Echinops echinatus. Chem. Ind. (London), 1986, 33, 713-714.
    [40] Wanjala, C. C. W.; Majinda, R. R. T. Flavonoid glycosides from Crotalaria podocarpa. Phytochemistry, 1999, 51 (5): 705-707.
    [41] Jang, D. S. ; Lee, Y. M.; Jeong, I. H.; Kim, J. S. Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro. Archi. Pharm. Res., 2010, 33 (6): 875-880.
    [42] Bucar, F.; Ninov, S.; Ionkova, I.; Kartnig, T.; Schubert-Zsilavecz, M.; Asenov, I.; Konuklugil, B. Flavonoids from phlomis nissolii. Phytochemistry, 1998, 48 (3): 573-575.
    [43] Rao, L. J. M.; Kumari, G. N. K.; Rao, N. S. P. Two further acylated flavone glucosides from Anisomeles ovata. Phytochmistry, 1983, 22 (4): 1058-1560.
    [44] Modaressi, M.; Delazar, A.; Nazemiyeh, H.; Fathi-Azad, F.; Smith, E.; Rahman, M. M.; Gibbons, S.; Nahar, L.; Sarker, S. D. Antibacterial iridoid glucosides from Eremostachys laciniata. Phytother. Res., 2009, 23 (1): 99-103.
    [45] Damtoft, S.; Jensen, S. R.; Nielsen, B. J. Schismoside, an iridoid glucoside from Schismocarpus matudai. Phytochemistry, 1993, 32 (4): 885-889.
    [46] Garcia, J.; Chulia, A. J. Loganin and new iridoid glucosides in Gentiana pedicellata. Planta. Med., 1986, 52 (4): 327-329.
    [47] Boros, C.A.; Stermitz, F.R. Iridoids. An updated review. Part I. J. Nat. Prod., 1990, 53 (5):1055-1147.
    [48] Rodriguez, V.; Schripsema, J.; Jensen, S. R. Iridoid glycosides from Eucnide bartonioides. Phytochemistry, 1997, 45 (7): 1427-1429.
    [49] Potterat, O.; Msonthi, J. D.; Hostettmann, K. Four iridoid glucosides and a phenylpropanoid glycoside from Sesamum angolense. Phytochemistry, 1988, 27 (8): 2677-2679.
    [50]薛恒跃,张春泓,王钢力,林瑞超,李萍.萝卜秦艽2个环烯醚萜苷研究.中国中药杂志, 2009, 34 (1): 57-59.
    [51] Byrne, L. T.; Sasse, J. M.; Skelton, B.W.; Suksamrarn, A.; White, A. H. The Minor iridoid glucosides of Barleria lupulina: isolation, crystal structure and plant growth-inhibiting properties of 6-O-acetylshanzhiside methyl ester., Aust. J. Chem., 1987, 40 (5): 785-794.
    [52] Imakura, Y.; Kobayashi, S.; Mima, A. Bitter phenyl propanoid glycosides from Campsis chinensis. Phytochemistry, 1985, 24 (1): 139-146.
    [53] Miyase, T.; Yamamoto, Ryouko.; Ueno. A. Phenylethanoid glycosides from Stachys officinalis. Phytochemistry, 1996, 43 (2): 475-479.
    [54] Jia, Z. J.; Liu, Z. M.; Wang, C. Z. Phenylpropanoid and iridoid glycosides from Pedicularis spicata. Phytochemistry, 1991, 30 (11): 3745-3747.
    [55] Calis, I.; Hosny, M.; Khalifaa, T.; Rüedi, P. Phenylpropanoid glycosides from Marrubium alysson. Phytochemistry, 1992, 31 (10): 3624-3626.
    [56] Nishimura, H.; Sasaki, H.; Morota, T.; Chin, M.; Mitsuhashi, H. Six glycosides from Rehmannia glutinosa var. Purpurea. Phytochemistry, 1990, 29 (10): 3303-3306.
    [57] Kobayashi, H.; Karasawa, H.; Miyase, T.; Fukushima, S. Studies on the constituents of Cistanchis herba. V. Isolation and structures of two new phenylpropanoid glycosides, cistanosides E and F. Chem. Pharm. Bull., 1985, 33 (4): 1452-1457.
    [58] Hung, T. M.; Nguyen, H. D.; Kim, J. C.; Choi, J. S.; Lee, H. K.; Min, B.S. Phenolic glycosides from Alangium salviifolium leaves with inhibitory activity on LPS-induced NO, PGE2, and TNF-α. production. Bioorg. Med. Chem. Lett., 2009, 19 (15): 4389-4393.
    [59] Schroeder, C.; Sommer, J.; Humpfer, E.; Stockigt, J. nverse Correlated 1H-13C in vivo NMR as a probe to follow the metabolism of unlabeled vanillin by plant cell cultures. Tetrahedron, 1997, 53(3): 927-934.
    [60] Matsushita, H.; Miyase, T.; Ueno, A. Lignan and terpene glycosides from Epimedium sagittatum. Phytochemistry, 1991, 30 (6): 2025-2027.
    [61] Orihara, Y.; Furuya, T.; Hashimoto, N.; Deguchi, Y.; Tokoro, K.; Kanisawa, T. Biotransformation of isoeugenol and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry, 1992, 31 (3):827-831.
    [62] Zhang, C. Z.; Xu X. Z.; Li, C. Fructosides from Cynomorium Songaricum. Phytochemistry, 1996, 41 (3): 975-976.
    [63] Matsuura, S.; Iinuma, M. Studies on the Constituents of Useful Plants. VI. (1) constituents of the calyx of Diospyros kaki (2), and carbon-13 nuclear magnetic resonance spectra of flavonol glycosides. Chem. Pharm. Bull., 1978, 26 (6): 1936-1941.
    [64] Kikuaki, H.; Sato, A.; Mayahara, Y.; Nakatani, N. Galloylglucosides from berries of Pimenta dioca. J. Nat. Prod., 2000, 63 (6): 749-752.
    [65] Straubinger, M.; Knapp, H.; Oka, N.; Watanabe, N.; Winterhalter, P. Isolation of a glucosidicβ-damascenone precursor from Rose Petals. J. Agric. Food Chem., 1997, 45 (10): 4053-4056.
    [66] Miyase, T.; Ueno, A.; Takizawa, N.; Kobayashi, H.; Oguchi, H. Studies on the glycosides of Epimedium grandiflorum Morr. var. thunbergianum (MIQ.) Nakai. III. Chem. Pharm. Bull., 1988, 36 (7): 2475-2484.
    [67] Luo, Y. G.; Feng, C.; Tian, Y. J.; Li, B. G.; Zhang, G. L. Three novel nortriterpenoids from Notochaete hamosa Benth. (Labiatae). Tetrahedron, 2003, 59 (41): 8227-8232.
    [68] Duan, J. A.; Wang, L. Y.; Qian, S. H.; Su, S. L.; Tang, Y. P. A new cytotoxic prenylated dihydrobenzofuran derivative and other chemical constituents from the rhizomes of Atractylodes lancea DC. Arch. Pharm. Res., 2008, 31 (8): 965-969.
    [69] Mahato, S. B.; Kundu, A. P. 13C NMR spectra of pentacyclic triterpenoids-a compilation and some salient features. Phytochemistry, 1994, 37 (6): 1517-1575.
    [70]邹旭,梁健,丁立生,彭树林.鸡屎藤化学成分的研究.中国中药杂志, 2006, 31 (17): 1434-1436.
    [71]李永梅,王天志,王志霄.细毡毛忍冬花蕾化学成分研究.中国中药杂志, 2001, 26 (1): 45-47.
    [72]曾阳,陈学军,陈振宁.藏药独一味的研究进展.中草药, 2006, 32 (12): 1141-1143.
    [73]苑伟,宋玉成,梁资富.不同产地藏药独一味的镇痛、抗炎作用比较研究.中国药房, 2003, 14 (12): 716-717.
    [74]中国植物志43(3).北京:科学出版社,1997, 34-35.
    [75]中国植物志43(3).北京:科学出版社,1997, 36-36.
    [76] Da Silva, M. F. das G. F. ; Agostinho, S. M. M.; de Paula, J. R.; Oiano Neto, J.; Castro-Gamboa, I.; Filho, E. R.; Fernandes, J. B.; Vieira, P. C. Chemistry of Toona ciliata and Cedrela odorata graft (Meliaceae): chemosystematic and ecological significance. Pure Appl. Chem., 1999, 71 (6): 1083-1087.
    [77]中国植物志43(3).北京:科学出版社,1997, 40-41.
    [78] Mulholland, D. A.; Parel, B.; Coombes, P. H. The chemistry of Meliaceae and Ptaeroxylaceae of southern and eastern Africa and Madagascar. Curr. Org. Chem., 2000, 4 (10): 1011-1054.
    [79] Champagne, D. E.; Koul O.; Isman, M. B.; Scudder, G. G. E.; Towers, G. H. N. Biological activity of limonoids from the Rutales. Phytochemistry, 1992, 31 (3): 377-394.
    [80] Roy, A.; Saraf, S. Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharm. Bull., 2006, 29 (2): 191-201.
    [81] Da Silva, M. F. D. G. F.; Gottlieb, O. R.; Dreyer, D. L. Evolution of limonoids in the Meliaceae, Biochem. System. Ecol., 1984, 12 (3): 299-310.
    [82] Liao, S. G.; Yang, S. P.; Yuan, T.; Zhang, C. R.; Chen, H. D.; Wu, Y.; Xu, Y. K.; Yue, J. M. Limonoids from the Leaves and Stems of Toona ciliata. J. Nat. Prod., 2007, 70 (8): 1268-1273.
    [83] Chen, H. D.; Yang, S. P.; Wu, Y.; Dong, L.; Yue, J. M. Terpenoids from Toona ciliata. J. Nat. Prod., 2009, 72 (4): 685-689.
    [84]国家中医药管理局,中华本草,北京:上海科学技术出版社,第5册,1999, 44-44.
    [85] Neto, O. J.; Da Silva, M. F. das G. F.; Fo, E. R.; Fernandes, J. B.; Vieira, P. C.; Pinheiro, A. L. Norlimonoids from seeds of Toona ciliata. Phytochemistry, 1998, 49 (5): 1369-1373.
    [86] Asolkar, R.N.; Freel, K. C.; Jensen, P. R.; Fenical, W.; Kondratyuk, T. P.; Park, E. J.; Pezzuto, J. M. Arenamides A-C, cytotoxic NFκB inhibitors from the marine actinomycete Salinispora arenicola. J. Nat. Prod., 2009, 72 (3): 396-402.
    [87] Asili, J.; Lambert, M.; Ziegler, H. L.; Staerk, D.; Sairafianpour, M.; Witt, M.; Asghari, G.; Ibrahimi, I. S.; Jaroszewski, J. W. Labdanes and Isopimaranes from Platycladus orientalis and their effects on erythrocyte membrane and on Plasmodium falciparum growth in the erythrocyte host cells. J. Nat. Prod., 2004, 67 (4): 631-637.
    [88] Yadav, D.; Tiwari, N.; Gupta, M M. Diterpenoids from Premna integrifolia. Phytochem. Lett., 2010, 3 (3): 143-147.
    [89] Bellavita, N.; Bernassau, J. M.; Ceccherelli, P.; Raju, M. S.; Wenkert, E. An unusual solvent dependence of the carbon-13 nuclear magnetic resonance spectral features of some glycosides as studied by relaxation-time measurements. J. Am. Chem. Soc., 1980, 102 (1): 17-20.
    [90] Qi, S. H.; Wu, D.G.; Ma, Y. B.; Luo, X. D. Chemical Constituents of Ailanthus triphysa. Chin. J. Chem., 2003, 21 (2): 200-203.
    [91] Neto, J. O.; Agostinho, S. M. M.; Da Silva, M. F. G. F.; Vieira, P. C.; Fernandes, J. B.; Pinheiro, A. L.; Vilela, E. F. Limonoids from seeds of Toona ciliata and their chemosystematic significance. Phytochemistry, 1995, 38 (2): 397-401.
    [92] Carman, R. M.; Corbett, R. E.; Grant, P. K.; McGrath, M. J. A.; Munro, M. H. G. The diterpenes ofDacrydium colensoi. Part V. Tetrahedron Lett., 1966, 7 (27): 3173-3179.
    [93] Yoshikawa, M.; Yoshizumi, S.; Murakami, T.; Matsuda, H.; Yamahara J.; Murakami N. Medicinal food stuffs. II. On the bioactive constituents of the tuber of Sagittaria trifolia L. (Kuwai, Alismataceae): absolute stereostructures of trifoliones A, B, C, and D, sagittariosides a and b, and arabinothalictoside. Chem. Pharm. Bull., 1996, 44 (3): 492-499.
    [94] Hanson, J. R.; White, A. F. Diterpenes of spikenard root (Aralia racemosa). Phytochemistry, 1970, 9 (6): 1359-1361. [ 95 ] Hanson, J. R.; Hitchcock, P. B.; Takahashi, J. A. Biotransformation of ent-16β,19- dihydroxykaurane by Cephalosporium aphidicola. Phytochemistry, 1995, 40 (3): 797-800.
    [96] Nishizawa, M.; Inoue, A.; Hayashi, Y.; Sastrapradja, S.; Kosela, S.; Iwashita, T. Structure of AphanamolΙandΙΙ. J. Org. Chem., 1984, 49 (19): 3660-3662.
    [97] Xie, B. J.; Yang, S. P.; Yue, J. M. Terpenoids from Dysoxylum densiflorum. Phytochemistry, 2008, 69 (17): 2993-2997.
    [98] Iijima, T.; Yaoita, Y.; Kikuchi, M. Five new sesquiterpenoids and a new diterpenoid from Erigeron annuus (L.) PERS., Erigeron philadelphicus L. and Erigeron sumatrensis RETZ. Chem. Pharm. Bull., 2003, 51 (5): 545-549.
    [99] Zhang, H. J.; Tan, G. T.; Santarsiero, B. D.; Mesecar, D. Andrew.; Hung, N. Van.; Cuong, N. M.; Soejarto, D. D.; Pezzuto, J. M.; Fong, H. H. S. New Sesquiterpenes from Litsea verticillata. J. Nat. Prod., 2003, 66 (5): 609-615.
    [100] Irwin, M. A.; Geissman T. A. Sesquiterpene alcohols from Artemisia pygmaea. Phytochemistry, 1973, 12 (4): 849-852. [ 101 ] Tatematsu, H.; Kurokawa, M.; Niwa, M.; Hirata, Y. Piscicidal constituents of Stellera chamaejasme L. II. Chem. Pharm. Bull., 1984, 32 (4): 1612-1613. [ 102 ] Chan Henry, W. S.; Lewett, G. Autoxidation of methyl linoleate: analysis of methyl hydroxylinolenate isomers by high performance liquid chromatography. Lipids, 1977b, 12 (10): 837-840.
    [103] Kwon, D. H.; Kato, M.; El-Zaatari, F. A. K.; Osato, M. S.; Graham, D. Y. Frame-shift mutations in NAD(P)H flavin oxidoreductase encoding gene (frxA) from metronidazole resistant Helicobacter pylori ATCC43504 and its involvement in metronidazole resistance. FEMS Microbiol. Lett., 2000, 188 (2): 197-202.
    [104] Yin, S.; Fan, C. Q.; Wang, Y.; Dong, L.; Yue, J. M. Antibacterial prenylflavone derivatives from Psoralea corylifolia, and their structure–activity relationship study. Bioorg. Med. Chem., 2004, 12 (16): 4387-4392.
    [105] Yang, S. P.; Dong, L.; Wang, Y.; Wu, Y.; Yue, J. M. Antifungal diterpenoids of Pseudolarix kaempferi, and their structure–activity relationship study. Bioorg. Med. Chem., 2003, 11 (21): 4577-4584.
    [106]中国植物志43(3).北京:科学出版社,1997, 47-49.
    [107]国家中医药管理局,中华本草,北京:上海科学技术出版社,第5册,1999, 31-32.
    [108]刘兴奎,颜荣先.麻楝汤治疗肛门湿疹136例观察.世界今日医学杂志, 2001, 10 (2): 930-930.
    [109] Nagalakshmi, M. A. H.; Thangadurai, D.; Muralidara Rao, D.; Pullaiah, T. Phytochemical and antimicrobial study of Chukrasia tabularis leaves. Fitoterapia,2001, 72 (1): 62-64.
    [110] Kaur, R.; Arora, S. Chemical constituents and biological activities of Chukrasia tabularis A. Juss. J. Med. Plants Res., 2009, 3 (4): 196-216.
    [111] MacKinnon, S.; Durst, T.; Arnason, J. T.; Angerhofer, C.; Pezzuto, J.; Sanchez-Vindas, P. E.; Poveda, L. J.; Gbeassor, M. Antimalarial activity of tropical meliaceae extracts and gedunin derivatives. J. Nat. Prod., 1997, 60 (4): 336-341.
    [112] Islam, M. K.; Eti, I. Z.; Chowdhury, J. A. Cytotoxic studies on two meliaceae plants: Chukrasia Tabularis and Aglaia Roxburghiana. J. Sci. Res., 2009, 1 (2): 399-403.
    [113] Connolly, J. D.; Labbe, C.; Rycroft, D. S. Tetranortriterpenoids and related substances. Part 20. New tetranortriteerpenoids from the seeds of Chukrasia tabularis (Meliaceae); simple esters of phragmalin and 12α-acetoxyphragmalin. J. Chem. Soc. Perkin Trans. I , 1978, issue 3, p 285–288.
    [114] Nakatani, M.; Abdelgaleil, S. A. M.; Saad, M. M. G.; Huang, R. C.; Doe, M.; Iwagawa, T. Phragmalin limonoids from Chukrasia tabularis. Phytochemistry, 2004, 65 (20): 2833–2841.
    [115] Ragettli, T.; Tamm, C. The chukrasines A, B, C, D and E, five new tetranortriterpenes from Chukrasia tabularis A. Juss. Helv. Chim. Acta, 1978, 61 (5): 1814–1831.
    [116] Zhang, C. R.; Fan, C. Q.; Zhang, L.; Yang, S. P.; Wu, Y.; Lu, Y.; Yue, J. M. Chuktabrins A and B, two novel limonoids from the twigs and leaves of Chukrasia tabularis. Org. Lett., 2008, 10 (15): 3183-3186.
    [117] Zhang, C. R.; Yang, S. P.; Chen, X. Q.; Wu, Y.; Zhen, X. C.; Yue, J. M. Limonoids from the twigs and leaves of Chukrasia tabularis. Helv. Chim. Acta., 2008, 91 (12): 2338-2350.
    [118] Luo, J.; Wang, J. S.; Wang, X. B.; Huang, X. F.; Luo, J. G.; Kong, L. Y. Chukvelutilides A–F, phragmalin limonoids from the stem barks of Chukrasia tabularis var. velutina. Tetrahedron, 2009, 65 (17): 3425–3431.
    [119] Luo, J.; Wang, J. S.; Wang, X. B.; Luo, J. G.; Kong, L. Y. Phragmalin-type limonoid orthoesters from Chukrasia tabularis var. velutina. Chem. Pharm. Bull., 2011, 59 (2): 225-230.
    [120]罗俊,汪俊松,王凌波,孔令义.毛麻楝茎皮中2个新的phragmalin柠檬苦素原酸酯.药学学报, 2011, 46 (2): 183-187.
    [121] Fan, C.Q.; Wang, X. N.; Yin, S.; Zhang, C. R.; Wang, F. D.; Yue, J. M. Tabularisins A–D, phragmalin ortho esters with new skeleton isolated from the seeds of Chukrasia tabularis. Tetrahedron, 2007, 63 (29): 6741-6747.
    [122] Zhang, C. R.; Yang, S. P.; Zhu, Q.; Liao, S. G.; Wu, Y.; Yue, J. M. Nortriterpenoids from Chukrasia tabularis var. velutina. J. Nat. Prod., 2007, 70 (10): 1616–1619.
    [123] Luo, J.; Wang, J. S.; Cao, W. J.; Kong, L. Y. A New Phragmalin-type Limonoid from Chukrasia tabularis var. velutina Chinese Journal of Natural Medicines (中国天然药物) 2011, 9 (2): 98–100.
    [124] Zhang, C. R.; Yang, S. P.; Liao, S. G.; Fan, C. Q.; Wu, Y.; Yue, J. M. Chuktabularins A-D, four new limonoids with unprecedented carbon skeletons from the stem bark of Chukrasia tabularis. Org. Lett., 2007, 9 (17): 3383-3386.
    [125] Luo, J.; Wang, J. S.; Luo, J. G.; Wang, X. B.; Kong, L. Y. Chukvelutins A-C, 16-norphragmalin limonoids with unprecedented skeletons from Chukrasia tabularis var. velutina. Org. Lett., 2009, 11 (11): 2281-2284.
    [126] Luo, J.; Wang, J. S.; Wang, X. B.; Luo, J. G.; Kong, L. Y. Chuktabularins E-T, 16-norphragmalin limonoids from Chukrasia tabularis var. velutina. J. Nat. Prod., 2010, 73 (5): 835–843.
    [127] Luo, J.; Wang, J. S.; J. G.; Luo, Wang, X. B.; Kong, L. Y. Velutabularins A-J, phragmalin-type limonoids with novel cyclic moiety from Chukrasia tabularis var. velutina. Tetrahedron, 2011, 67 (16): 2942–2948.
    [128]周静,周波,谭穗懿,苏薇薇,廖文波.麻楝叶挥发油成分的GC-MS分析.中药材, 2004, 27 (11): 815-817.
    [129] Chatterjee, A.; Banerjee, B.; Ganguly, S. N.; Sircar, S. M. Triterpene and coumarins from Chukrasia tabularis. Phytochemistry, 1974, 13 (9): 2012-2013.
    [130] Purushothaman, K. K.; Sarada, A.; Saraswathi, G.; Connolly, J. D. 5,7-dihydroxy-6,2′,4′,5′-tetramethoxyflavone from the leaves of Chukrasia tabularis. Phytochemistry, 1977, 16 (3): 398-399.
    [131]陈建谭,谢金伦,毛德伦,刘润民.毛麻楝化学成分的研究.云南大学学报(自然科学版), 1992, 14 (1): 51-54.
    [132] Wu, C. C.; Lu,Y. H.; Wei, B. L.; Yang, S. C.; Won, S. J.; Lin, C. N. Phloroglucinols with Prooxidant Activity from Garcinia subelliptica. J. Nat. Prod. 2008, 71 (2): 246-250.
    [133] Berova, N., Nakanishi, K., 2000. In: Berova, N., Nakanishi, K., Woody, R.W. (Eds.), CircularDichroism: Principles and Applications, second ed. Wiley-VCH, New York, NY, pp. 337–382.
    [134] Hay, A. E.; Ioset, J. R.; Ahua, K. M.; Diallo, D.; Brun, R.; Hostettmann, K. Limonoid Orthoacetates and Antiprotozoal Compounds from the Roots of Pseudocedrela kotschyi. J. Nat. Prod., 2007, 70 (1): 9-13.
    [135] Kokpol, U.; Chavasiri, W.; Tip-pyang, S.; Veerachato, G.; Zhao, F. L.; Simpson, J.; Weavers, R. T. A limonoid from Xylocarpus granatum. Phytochemistry, 1996, 41 (3): 903-905.
    [136]中国植物志43(3).北京:科学出版社,1997, 35-35.
    [137]中国植物志43(3).北京:科学出版社,1997, 98-99.
    [138]中国植物志43(3).北京:科学出版社,1997, 69-69.
    [139]中国植物志43(3).北京:科学出版社,1997, 72-72. [ 140 ] Maneerat, W.; Laphookhieo, S.; Koysomboon, S.; Chantrapromma, K. Antimalarial, antimycobacterial and cytotoxic limonoids from Chisocheton siamensis. Phytomedicine, 2008, 15 (12): 1130-1134.
    [141] L., Surat; M., Wisanu; K., Sorwaporn; K., Rattana; C., Kan; S., John Keith. A novel limonoid from the seeds of Chisocheton siamensis. Can. J. Chem., 2008, 86 (3): 205-208.
    [142] Xie, B. J.; Yang, S. P.; Zhang, C.; Yue, J. M. Chisiamols A-F, Triterpenoids from Chisocheton siamensis. Chin. J. Chem., 2009, 27 (9): 1805-1810.
    [143] Yang, M. H.; Wang, J. S.; Luo, J. G.; Wang, X. B.; Kong, L. Y. Tetranortriterpenoids from Chisocheton paniculatus. J. Nat. Prod., 2009, 72 (11): 2014-2018.
    [144] Yang, M. H.; Wang, J. S.; Luo, J. G.; Wang, X. B.; Kong, L. Y. Chisopanins A-K, 11 new protolimonoids from Chisocheton paniculatus and their anti-inflammatory activities. Bioorg. Med. Chem., 2011, 19 (4): 1409-1417.
    [145] Xie, B. J.; Yang, S. P.; Chen, H. D.; Yue, J. M. Agladupols A-E, triterpenoids from Aglaia duperreana. J. Nat. Prod., 2007, 70 (9): 1532-1535.
    [146] Zi, W. W.; Yu, S. Y.; Ma, D. W. A convergent route to the Galbulimima alkaloids (-)-GB 13 and (+)-GB 16. Angew. Chem. Int. Ed., 2010, 49 (34): 5887-5890.
    [147] Pan, L.; Chin, Y. W.; Chai, H. B.; Ninh, T. N.; Soejarto, D. D.; Kinghorn, A. D. Bioactivity- guided isolation of cytotoxic constituents of Brucea javanica collected in Vietnam. Bioorg. Med. Chem. 2009, 17 (6): 2219-2224.
    [148] Luo, X. D.; Wu, S. H.; Ma, Y. B.; Wu, D. G. Tirucallane triterpenoids from Dysoxylum hainanense. Phytochemistry, 2000, 54 (8): 801-805.
    [149] Connolly, J. D.; Labbe, C.; Rycroft, D. S.; Taylor, D. A. H. Tetranortriterpenoids and related compounds. part 22. New apotirucallol derivatives and tetranortriterpenoids from the wood andseeds of Chisocheton paniculatus (Meliaceae). J. Chem. Soc., Perkin Trans.Ι, 1979, issue 12, p 2959-2964.
    [150] Ma, C. M.; Nakamura, N.; Hattori, M.; Kakuda, H.; Qiao, J. C.; Yu, H. L. Inhibitory Effects on HIV-1 Protease of Constituents from the Wood of Xanthoceras sorbifolia. J. Nat. Prod., 2000, 63 (2): 238-242.
    [151] Chan, W. R.; Taylor, D. R.; Yee, T. Triterpenoids from Entandrophragma cylindricum sprague. Part I. Structures of sapelins A and B. J. Chem. Soc. C., 1970, issue 2, p 311-314. [ 152 ] Miyazawa, M.; Uemura, T.; Kameoka, H. Biotransformation of sesquiterpenoids, (+)-aromadendrene and (-)-alloaromadendrene by Glomerella cingulata. Phytochemistry, 1995, 40 (3): 793-796.
    [153] Phongmaykin, J.; Kumamoto T.; Ishikawa, T.; Suttisri, R.; Saifah, E. A new sesquiterpene and other terpenoid constituents of Chisocheton penduliflorus. Arch. Pharm. Res., 2008, 31 (1): 21-27.
    [154] Feliciano, A. S.; Medarde, M.; Gordaliza, M.; Lucas M. J. Structure elucidation of germacrane alcohols from Juniperus communis subsp. Hemisphaerica. J. Nat. Prod., 1995, 58 (7): 1059-1064.
    [155] Goldsby, G.; Burke,B. A. Sesquiterpene lactones and a sesquiterpene diol from Jamaican ambrosia peruviana. Phytochemistry, 1987, 26 (4): 1059-1063.
    [156] Dannenberg, H.; Hebenbrock, K.-F. Dehydrogenation of steroids. XII. Treatment of cholesterol with Floridin-(detection of 9,10-seco-steroids). Physiologische. Chemie., 1965, 342 (4): 199-213.
    [157] W. W. van Wyk, A.; Gray, C. A.; Whibley, C. E.; Osoniyi, O.; Hendricks, D. T.; Caira, M. R.; Davies-Coleman, M. T. Bioactive metabolites from the south African marine mollusk Trimusculus costatus. J. Nat. Prod., 2008, 71 (3): 420-425.
    [158] Yadav, R. D.; Kataky, J. C. S.; Mathur, R. K. Study of the stereochemistry of new tetranortriterpenoids isolated from root-wood of Chisocheton paniculatus Hiern (Meliaceae). J. Indian Chem. Soc., 1999, 76 (11-12): 575-581. [ 159 ] Purushothaman, K. K.; Sarada, A.; Saraswathy, A. Chemical constituents of Lansium anamallayanum Bedd. Can. J. Chem., 1987, 65 (1): 150-153.
    [160] Bacher, M.; Hofer, O.; Brader, G.; Vajrodaya, S.; Greger, H. Thapsakins: possible biogenetic intermediates towards insecticidal cyclopenta[b]benzofurans from Aglaia edulis. Phytochemistry, 1999, 52 (2): 253-263.
    [161] Dreyer, M.; Nugroho, B. W.; Bohnenstengel, F. I.; Ebel, R.; Wray, V.; Witte, L.; Bringmann, G.; Muhlbacher, J.; Herold, M.; Hung, P. D.; Kiet, L. C.; Proksch, P. New insecticidal rocaglamidederivatives and related compounds from Aglaia oligophylla. J. Nat. Prod., 2001, 64 (4): 415-420.
    [162] Itokawa, H.; Nakanishi, H.; Mihashi, S. Acid-catalyzed rearrangement of hinesol and related compounds to eudesmane derivatives. Chem. Pharm. Bull., 1983, 31 (6): 1991-1997.
    [163] Eichelbaum, M.; Testa, B.; Somogyi, A., Eds. Stereochemical aspects of drug action and disposition Springer: Berlin, 2003.
    [164]吕扬,吴云山,郑启泰.X射线衍射分析技术在新药及制药研究中的应用进展.现代仪器, 2004, 10 (3): 6-10.
    [165] Wang, X. N.; Yin, S.; Fan, C. Q.; Wang, F. D.; Lin, L. P.; Ding, J.; Yue, J. M. Turrapubesins A and B, first examples of halogenated and maleimide-bearing limonoids in nature from Turraea pubescens. Org. Lett., 2006, 8 (17): 3845-3848.
    [166] Wu, J.; Xiao, Q.; Huang, J. S.; Xiao, Z. H.; Qi, S. H.; Li, Q. X.; Zhang, S. Xyloccensins O and P, unique 8,9,30-phragmalin ortho esters from Xylocarpus granatum. Org. Lett., 2004, 6 (11): 1841-1844.
    [167] Cui, J. X.; Deng, Z. W.; Li, J.; Fu, H. Z.; Proksch, P.; Lin, W. H. Phragmalin-type limonoids from the mangrove plant Xylocarpus granatum. Phytochemistry, 2005, 66 (19): 2334-2339.
    [168] Cui, J. X.; Wu, J.; Deng, Z. W.; Proksch, P.; Lin, W. H. Xylocarpins A-I, limonoids from the Chinese mangrove plant Xylocarpus granatum. J. Nat. Prod., 2007, 70 (5): 772-778.
    [169] Almanza, G.; Balderrama, L.; Labbé, C.; Lavaud, C.; Massiot,G.; Nuzillard, J.; Connolly, J. D.; Farrugia, L. J.; Rycroft, D. S. Clerodane diterpenoids and an ursane triterpenoid from Salvia haenkei. Computer-assisted structural elucidation. Tetrahedron, 1997, 53 (43): 14719-14728.
    [170] Ndung’u, M.; Hassanali, A.; Hooper, A. M.; Chhabra, S.; Miller, T. A.; Paul, R. L.; Torto, B. Ring A-seco mosquito larvicidal limonoids from Turraea wakefieldii. Phytochemistry, 2003, 64 (4): 817-823.
    [171] Tchimene, M. K.; Tane, P.; Ngamga, D.; Connolly, J. D.; Farrugia, L. J. Four tetranortriterpenoids from the stem bark of Khaya anthotheca. Phytochemistry, 2005, 66 (10): 1088-1093.
    [172] Murphy, B. T.; Brodie, P.; Slebodnick, C.; Miller, J. S.; Birkinshaw, C.; Randrianjanaka, L. M.; Andriantsiferana, R.; Rasamison, V. E.; TenDyke, K.; Suh, E. M.; Kingston, D.G. I. Antiproliferative limonoids of a Malleastrum sp. from the Madagascar Rainforest. J. Nat. Prod., 2008, 71 (4): 325-329.
    [173] Zhang, H. P.; Tan, J. J.; VanDerveer, D.; Wang, X.; Wargovich, M. J.; Chen, F. Khayanolides from African mahogany Khaya senegalensis (Meliaceae): A revision. Phytochemistry, 2009, 70 (2): 294-299.
    [174] Yan, X. H.; Di, Y. T.; Fang, X.; Yang, S. Y.; He, H. P.; Li, S. L.; Lu, Y.; Hao, X. J. Chemicalconstituents from fruits of Harrisonia perforate. Phytochemistry, 2011, In Press.
    [175] Wu, J.; Xiao, Q.; Zhang, S.; Li, X.; Xiao, Z. H.; Li, Q. X.; Ding, H. X. Xyloccensins Q-V, six new 8,9,30-phragmalin ortho ester antifeedants from the Chinese mangrove Xylocarpus granatum. Tetrahedron, 2005, 61 (35): 8382-8389.
    [176] Seco, J. M.; Qui-oá, E.; Riguera, R. The assignment of absolute configuration by NMR. Chem. Rev., 2004, 104 (1): 17-117.
    [177] Dale, J. A.; Mosher, H. S. Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, andα-methoxy-α-trifluoromethylphenylacetate (MTPA) esters. J. Am. Chem. Soc., 1973, 95 (2): 512-519.
    [178]林国强,李月明,陈耀全,陈新滋.手性合成——不对称反应及其应用(第二版).北京:科学出版社,2005.
    [179] Wu, J.; Zhang, S.; Bruhn, T.; Xiao, Q.; Ding, H.; Bringmann, G. Xylogranatins F-R: antifeedants from the Chinese mangrove, Xylocarpus granatum, a new biogenetic pathway to tetranortriterpenoids. Chem. Eur. J., 2008, 14 (4): 1129-1144.
    [180] Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. High-field FT NMR application of Mosher’s method. The absolute configurations of marine terpenoids. J. Am. Chem. Soc., 1991, 113 (11): 4092-4096.
    [181] Saad, M. M. G.; Iwagawa, T.; Doe, M.; Nakatani, M. Swietenialides, novel ring D opened phragmalin limonoid orthoesters from Swietenia mahogani JACQ. Tetrahedron, 2003, 59 (40): 8027-8033.
    [182] Gan, L. S.; Wang, X. N.; Wu, Y.; Yue, J. M. Tetranortriterpenoids from Cipadessa baccifera. J. Nat. Prod., 2007, 70 (8): 1344-1347.
    [183] Lin, B. D.; Zhang, C. R.; Yang, S. P.; Zhang, S.; Wu Y.; Yue, J. M. D-ring-opened phragmalin-type limonoid orthoesters from the twigs of Swietenia macrophylla. J. Nat. Prod., 2009, 72 (7): 1305-1313.
    [184] Berova, N.; Nakanishi, K.; Woody, R. W. Circular dichroism: principles and applications; 2nd ed. Wiley-VCH: New York, 2000.
    [185]甘礼社,周长新.振动圆二色谱:一种确定手性分子绝对构型的新方法.有机化学, 2009, 29 (6): 848-857.
    [186]应百平,秦国伟,徐任生.圆二色谱法中的激子手性法在有机化学中的应用.有机化学, 1987, 7 (3): 165-173.
    [187] Yuan, T.; Yang, S. P.; Zhang, C. R.; Zhang, S.; Yue, J. M. Two limonoids, khayalenoids A and Bwith an unprecedented 8-oxa-tricyclo[4.3.2.02,7]undecane motif, from Khaya senegalensis. Org. Lett., 2009, 11 (3): 617-620.
    [188] Pretsch, E.; Buhlmann, P.; Affolter, C. In Structure Determination of Organic Compounds: Tables of Spectral Data, Chinese Version; Rong, G. B., Zhu, S. Z., Trans.; East China University of Science and Technology: Shanghai, China, 2002; p 388-389.
    [189] Abdelgaleil, S. A. M.; Okamura, H.; Iwagawa, T.; Sato, A.; Miyahara, I.; Doe, M.; Makatani, M. Khayanolides, rearranged phragmalin limonoid antifeedants from Khaya senegalensis. Tetrahedron, 2001, 57 (1): 119-126.
    [190] Nakatani, M.; Abdelgaleil, S. A. M.; Okamura, H.; Iwagawa, T.; Sato, A.; Doe, M. Khayanolides A and B, new rearranged phragmalin limonoid antifeedants from Khaya senegalensis. Tetrahedron Lett., 2000, 41 (33): 6473-6477.
    [191] Zhao, P. H.; Sun, L. M.; Liu, X. J.; Cao, M. A.; Yuan, C. S. Limonoids from the root of Dictamnus radicis Cortex. Chem. Pharm. Bull., 2008, 56 (1): 102-104.
    [192] Nakatani, M.; Abdelgaleil, S. A. M.; Kurawaki, J.; Okamura, H.; Iwagawa, T.; Doe, M. Antifeedant rings B and D opened limonoids from Khaya senegalensis. J. Nat. Prod., 2001, 64 (10): 1261-1265.
    [193] Hay, A. E.; Ioset, J. R.; Ahua, K. M.; Diallo, D.; Brun, R.; Hostettmann, K. Limonoid Orthoacetates and Antiprotozoal Compounds from the Roots of Pseudocedrela kotschyi. J. Nat. Prod., 2007, 70 (1): 9-13.
    [194] Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. A new aspect of the high-field NMR application of Mosher's method. The absolute configuration of marine triterpene sipholenol A. J. Org. Chem., 1991, 56 (3): 1296-1298.
    [195] Tanaka, J.; Higa, T.; Suwanborirux, K.; Kokpol, U.; Bernardinelli, G.; Jefford, C. W. Bioactive norsesterterpene 1,2-dioxanes from a Thai sponge, Mycale sp. J. Org. Chem., 1993, 58 (11): 2999-3002.
    [196] Shin, J.; Seo, Y.; Rho, J.-R.; Baek, E.; Kwon, B.-M.; Jeong, T.-S.; Bok, S.-H. Suberitenones A and B: Sesterterpenoids of an unprecedented skeletal class from the Antarctic sponge Suberites sp. J. Org. Chem., 1995, 60 (23): 7582-7588.
    [197] Liao, S. G.; Chen, H. D.; Yue, J. M. Plant orthoesters. Chem. Rev., 2009, 109 (3): 1092-1140.
    [198] Tanaka, Y.; Yamada, T.; In, Y.; Muraoka, O.; Kajimoto, T.; Tanaka, R. Absolute stereostructure of Andirolides A-G from the flower of Carapa guianensis (Meliaceae). Tetrahedron, 2011, 67 (4): 782-792.
    [199] Connolly, J. D.; McCrindle, R.; Overton, K. H. Tetranortriterpenoids-IV [BicyclononanolidesΙΙ]The constitution and stereochemistry of mexicanolide. Tetrahedron, 1968, 24 (3): 1489-1495.
    [200] Connolly, J. D.; McCrindle, R.; Overton, K. H.; Warnock, W. D. C Tetranortriterpenoids-VII: [Bicyclononanolides V] The constitution and stereochemistry of swietenolide. Tetrahedron, 1968, 24 (3): 1507-1515.
    [201] Crawford, T. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta). 2006, volume 115, p 227.
    [202] Pecul, M.; Ruud, K. In Advances in Quantum Chemistry; Jensen, H. J. -., Ed.; Academic Press, 2005; volume 50.
    [203] Yuan, T.; Zhu, R. Xiu.; Zhang, H.; Odeku, O. A.; Yang, S. P.; Liao, S. G.; Yue, J. M. Structure determination of grandifotane A from Khaya grandifoliola by NMR, X-ray diffraction, and ECD calculation. Org. Lett., 2010, 12 (2): 252-255.
    [204] Diedrich, C.; Grimme, S. Systematic Investigation of modern quantum chemical methods to predict Electronic Circular Dichroism Spectra. J. Phys. Chem. A., 2003, 107 (14): 2524-2539.
    [205] Wang, X. N.; Yin, S.; Fan, C. Q.; Lin, L. P.; Ding, J.; Yue, J. M. Eight new limonoids from Turraea pubescens. Tetrahedron, 2007, 63 (34): 8234-8241.
    [206] Fang, X.; Di, Y. T.; He, H. P.; Liu, H. Y.; Zhang, Z.; Ren, Y. Li.; Gao, Z. L.; Gao S.; Hao, X. J. Cipadonoid A, a novel limonoid with an unprecedented skeleton, from Cipadessa cinerasecns. Org. Lett., 2008, 10 (10): 1905-1908.
    [207] Fang, X.; Zhang, Q.; Tan, C. J.; Mu, S. Z.; Lu, Y.; Lu, Y. B.; Zheng, Q. T.; Di, Y. T.; Hao, X. J. Cipadonoids B-G, six new limonoids from Cipadessa cinerascens. Tetrahedron, 2009, 65 (36): 7408-7414.
    [208] Lin, B. D.; Chen, H. D.; Liu, J.; Zhang, S.; Wu, Y.; Dong, L.; Yue, J. M. Mulavanins A-E: Limonoids from Munronia delavayi. Phytochemistry, 2010, 71(13): 1596-1601.
    [209] Zhang, Q.; Di, Y. T.; He, H. P.; Fang, X.; Chen, D. L.; Yan, X. H.; Zhu, F.; Yang, T. Q.; Liu, L. L.; Hao, X. J. Phragmalin- and mexicanolide-type limonoids from the leaves of Trichilia connaroides. J. Nat. Prod., 2011, 74 (12): 152-157.
    [210] Yang, J. Li.; Liu, L. L.; Shi, Y. P. Limonoids and quinoline alkaloids from Dictamnus dasycarpus. Planta Med., 2011, 77 (3): 271-276.
    [211] Kadota, K.; Marpaung, L.; Kikuchi, T.; Ekimoto, H. Constituents of the seeds of Swietenia mahagoni JACQ. I.: Isolation, structures, and 1H- and 13C-nuclear magnetic resonance signal assignments of new tetranortriterpenoids related to Swietenine and Swietenolide. Chem. Pharm. Bull., 1990, 38(3): 639-651.
    [212] Siddiqui, S.; Faizi, S.; Siddiqui, B. S.; Ghiasuddin. Constituents of Azadirachta indica: isolationand structure elucidation of a new antibacterial tetranortriterpenoid, mahmoodin, and a new protolimonoid, naheedin. J. Nat. Prod., 1992, 55 (3): 303-310.
    [213] Ruberto, G.; Renda, A.; Tringali, C.; Napoli, E. M.; Simmonds, M. S. J. Citrus limonoids and their semisynthetic derivatives as antifeedant agents against Spodoptera frugiperda Larvae. A Structure-activity relationship study. J. Agric. Food Chem., 2002, 50 (18): 6766-6774.
    [214] Kipassa, N. T.; Iwagawa, T.; Okamura, H.; Doe, M.; Morimoto, Y.; Nakatani, M. Limonoids from the stem bark of Cedrela odorata. Phytochemistry, 2008, 69 (8): 1782-1787.
    [215] Zhao, P. H.; Sun, L. M.; Cao, M. A.; Yuan, C. S. Two limonoids from the root of Dictamnus radicis Cortex. Chem. Lett., 2007, 36 (10): 1200-1201.
    [216] Wu, J.; Yang, S. X.; Li, M. Y.; Feng, G.; Pan, J. Y.; Xiao, Q.; Sinkkonen, J.; Satyanandamurty, T. Limonoids and tirucallane derivatives from the seeds of a krishna mangrove, Xylocarpus moluccensis. J. Nat. Prod., 2010, 73 (4): 644-649.
    [217] Meyers, A. I.; Knaus, G.; Kamata, K. Synthesis via 2-oxazolines. IV. Asymmetric synthesis of 2-methylalkanoic acids from a chiral oxazoline. J. Am. Chem. Soc., 1974, volume 96, 268-270.
    [218] Brechbuhler, S.; Buechi, G.; Milne, G. The absolute configuration of the aflatoxins. J. Org. Chem., 1967, 32 (8): 2641-2642.
    [219] Korver, O.; Gorkom, M. V. Optically active 2-methyl substituted acids and esters: Chiroptical properties, conformational equilibria and NMR with opticallly active shift reagents. Tetrahedron, 1974, 30 (22): 4041-4048.
    [220] Sarigaputi, C.; Nuanyai, T.; Teerawatananond, T.; Pengpreecha, S.; Muangsin, N.; Pudhom, K. Xylorumphiins A-D, mexicanolide limonoids from the seed kernels of Xylocarpus rumphii. J. Nat. Prod., 2010, 73 (8): 1456-1459.
    [221] Li, M. Y.; Yang, X. B.; Pan, J. Y.; Feng, G.; Xiao, Q.; Sinkkonen, J.; Satyanandamurty, T.; Wu, J. Granatumins A-G, Limonoids from the Seeds of a Krishna Mangrove, Xylocarpus granatum. J. Nat. Prod., 2009, 72 (12): 2110-2114.
    [222] Pan, J. Y.; Chen, S. L.; Li, M. Y.; Li, J.; Yang, M. H.; Wu, J. Limonoids from the seeds of a hainan mangrove, Xylocarpus granatum. J. Nat. Prod., 2010, 73 (10): 1672-1679.
    [223] Nakatani, M.; Abdelgaleil, S. A. M.; Kassem, S. M. I.; Takezaki, K.; Okamura, H.; Iwagawa, T.; Doe, M. Three New Modified Limonoids from Khaya senegalensis. J. Nat. Prod., 2002, 65 (8): 1219-1221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700