内部热耦合空分塔的建模与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空分是对空气进行分离,得到氮、氩、氧等高纯工业气体的国民经济重要行业,广泛用于石化、冶金、航空航天等领域。随着经济的发展,空分行业的能耗问题成为该行业进一步发展的瓶颈。内部热耦合精馏是迄今为止所提出的四大精馏节能技术中节能效率最高而唯一没有商业化的节能技术,是国际上精馏节能控制研究的前沿和热点。将内部热耦合精馏技术用于空分塔,将能带来良好的节能效果,但是由于没有有效地掌握内部热耦合技术的特殊稳态特性和动态特性,该技术还没有实现工业化。
     本文对内部热耦合空分塔(ITCASC)进行了建模和优化研究,分析其稳态特性和动态特性,为ITCASC的控制、设计和实现奠定基础。主要工作及贡献如下:
     1.建立了ITCASC的平衡级稳态机理模型,进行了自由度分析,给出了有效的求解方法。进行了稳态特性分析和节能分析,研究结果表明,由于内部热耦合的影响,在同样的操作压力下,ITCASC的换热板温差比传统空分塔增加了约1.7K,这意味着ITCASC的高压塔压力可以进一步降低,表明了ITCASC极大的节能潜力。
     2.为了缩短模型求解时间,进一步建立了ITCASC的混合模型。建立了液相组成、压强和平衡温度的PCA-CGA-RBF统计模型,将泡点法计算平衡温度的时间减少95.36%,而与机理计算结果的平均相对误差仅为0.002%。与机理模型相比较,所建立的混合模型的求解时间从原来的31.06秒减少为11.18秒,模型求解时间减少了64.01%。
     3.首次建立了ITCASC的稳态扩散双膜非平衡级动态模型。其中,非平衡级模型需要计算大量物性参数,经过系统分析比较,给出了有效的物性计算方法。进一步,对所建立非平衡级动态模型进行了适当的变换,给出了有效的非平衡级动态模型求解算法。研究结果表明,所建立的非平衡级模型可以很好跟踪逼近过程内部特性,在温度、汽液相流量、组分浓度上的预测误差仅为千分级,表明了所建非平衡级动态模型的有效性。进一步,进行了ITCASC动态特性分析,发现了ITCASC过程强烈的反向响应和非对称等非线性特征,可为ITCASC的进一步设计和控制提供指导。
     4.在所建ITCASC混合模型的基础上,进一步建立了过程的节能优化模型,用序列二次规划算法进行了求解。研究结果表明,高压塔压强可以从原来的590KPa下降为313.74KPa,将比现有的空分塔的较好操作水平节能40%以上,定量揭示了ITCASC的巨大节能潜力。同时,在产品产量和纯度基本不变的情况下,总的加工空气量也减小了,从原加工量的188.1mol/s,降低到最优节能操作工况下的169.76mol/s,这表明ITCASC过程与CASC过程相比,不仅可以大大降低能耗,而且ITCASC过程的产品提取率大大增加,这就意味着ITCASC过程的单位产品能耗与CASC过程相比实际上还进一步降低了。
Cryogenic air separation is the distillation process of air to obtain high purity nitrogen, argon, oxygen and other important industry gases, which is widely used in petroleum, chemical, metallurgy, energy, aerospace and beverage and other areas. With economic development, energy consumption of cryogenic air separation industry has become a bottleneck for further development. Internal Thermally Coupled Distillation is the best one out of the four distillation energy saving technologies. Introducing this technology to cryogenic air separation will bring great energy saving effect.
     The main research works and contributions are listed as following:
     1. The steady model of internal thermal coupling air separation column (ITCASC) is established. The degree of freedom of the model is analyzed. The analyses of the steady state characteristic and the energy consumption of ITCASC show that the temperature differences of ITCASC increase about 1.7K than the conventional air separation column under the same operation pressure, which reveals that the operation pressure of ITCASC can be further reduced.
     2. To shorten the computation time for solving the model, a hybird model is proposed for ITCASC. The statistical approach, PCA-CGA-RBF is employed to estable the model of liqud molar fraction, pressure and equilibrium temperature. The computation time of bubble point method decreases 95.36%. And the average relative error is only 0.002%. Compared to the principle model, the proposed hybrid model can decrease the computation time from 31.06s to 11.18s, decreasing 64.01%.
     3. A non-equilibrium stage dynamic model of ITCASC is proposed first time. After a systematic comparison, the effective methods of calculating the physical properties are explored. With the appropriate segmentation and simplification the proposed dynamic model, an effective algorithm.is given. Simulation studies are conducted to evaluate the obtained results and confirm the validity of the proposed non-equilibrium stage model.
     4. Based on the hybrid model of ITCASC, an optimization model is established further and solvede. The results show that the high pressure of ITCASC can reduce from 590KPa to 313.74KPa, which means about 40% energy saving. This reveals the huge energy saving potential of the ITCASC. Meanwhile, the flow rate of feed air decreases, from the original 188.1 mol/s to optimal operating conditions 169.76 mol/s, while the flow rate and purity of the product keep almost the same, which reveals that the energy consumption per unit product for ITCASC process can further decrease comparing the CASC process.
引文
[1]李现勇,国外Igcc项目发展现状概述.电力勘测设计,2009(03):28-33.
    [2]Liszka, M. and A. Ziebik, Economic Optimization of the Combined Cycle Integrated with Multi-Product Gasification System. ENERGY CONVERSION AND MANAGEMENT,2009. 50(2):p.309-318.
    [3]Modelling and Dynamics of an Air Separation Rectification Column as Part of an Igcc Power Plant. SEPARATION AND PURIFICATION TECHNOLOGY,2006.49:p.136-148.
    [4]李文波,空气分离技术进展.石化技术,2000(03):173-175.
    [5]Budner, Z., T. Ladak and A. Muszynska, Swing Adsorption Technologies for Air Separation to Nitrogen and Oxygen. PRZEMYSL CHEMICZNY,2009.88:p.1052-1056.
    [6]Yin, Q., J. Kniep and Y.S. Lin, High Temperature Air Separation by Perovskite-Type Oxide Sorbents-Heat Effect Minimization. CHEMICAL ENGINEERING SCIENCE,2008.63:p. 5870-5875.
    [7]王松岭,基于深冷技术的空气分离系统仿真研究.华北电力大学学报(自然科学版),2006(01):64-66.
    [8]Huang, R., V.M. Zavala and L.T. Biegler, Advanced Step Nonlinear Model Predictive Control for Air Separation Units. JOURNAL OF PROCESS CONTROL,2009.19:p.678-685.
    [9]Mitovski, M.M. and A.M. Mitovski, Efficiency of the Process of Cryogenic Air Separation Into the Components. HEMIJSKA INDUSTRIJA,2009.63:p.397-405.
    [10]袁孝竞,低温法空气分离的进展.石油化工设计,1996(02):1-6.
    [11]气体热力性质图在制氧机计算中的使用.1981,机械工业出版社.79.
    [12]Exergy Analysis of Cryogenic Air Separation. ENERGY CONVERSION AND MANAGEMENT, 1998.39:p.1821-1826.
    [13]Mah, R.S.H., J.J.J. Nicholas and R.B. Wodnik, Distillation with Secondary Reflux and Vaporization:A Comparative Evaluation. AIChE J.,1977.23(5):p.651-658.
    [14]刘兴高,徐用懋,理想物系内部热耦合精馏塔操作费用的估计与优化.控制理论与应用,2001(1):137-140.
    [15]刘兴高,内部热耦合精馏塔的初步设计(Ⅱ)控制分析和参数优化.化工学报,2000(03):425-428.
    [16]刘兴高,内部热耦合精馏塔的初步设计(Ⅰ)模型化和操作分析.化工学报,2000(03):421-424.
    [17]Nakanishi, T., et al., Development of a High Performance Distributor for an Internally Heat-Integrated Distillation Column. KAGAKU KOGAKU RONBUNSHU,2008.34(2):p. 224-229.
    [18]Huang, K.J., et al., Determining Appropriate Configuration of Ideal Heat Integrated Distillation Columns (Hidic). JOURNAL OF CHEMICAL ENGINEERING OF JAPAN,1997.30(3):p. 575-579.
    [19]Nakaiwa, M., et al., Internally Heat-Integrated Distillation Columns:A Review. CHEMICAL ENGINEERING RESEARCH & DESIGN,2003.81(A1):p.162-177.
    [20]祝雪妹,热集成精馏系统建模、优化与控制的若干问题研究,2005,浙江大学.
    [21]周叶翔,刘兴高,王成裕,基于内部热耦合精馏塔非线性Wave模型的高纯控制.化工学报,2008(07):1677-1680.
    [22]刘兴高,一种节能空分装置,2007,浙江大学.8.
    [23]Iwakabe, K., et al., An Internally Heat-Integrated Distillation Co)umn(Hidic) in Japan. symposium series,2006(152):p.900-911.
    [24]Air Separation-Modeling Process Interactions Gives Better Control. CHEMICAL ENGINEERING,1995.102:p.131-131.
    [25]李洁,非均相非平衡可压流动的建模与算法研究,2004,国防科学技术大学.
    [26]潘艳秋,炭膜分离过程的机理和建模研究,2008,大连理工大学.
    [27]工丰华,电弧炉建模研究及其应用,2006,上海交通大学.
    [28]陈亮,循环流化床锅炉建模及其智能控制系统的研究,2005,浙江大学.
    [29]王文清,聚苯乙烯工业装置的建模与优化,2004,浙江大学.
    [30]陈坚红,联合循环机组运行计划和负荷分配:建模、启发式遗传算法求解和数据处理,2004,浙江大学.
    [31]李晓光,混合建模方法研究及其在化工过程中的应用,2008,北京化工大学.
    [32]胡益锋,石脑油裂解炉建模技术研究,2005,清华大学.
    [33]张立炎,结合逻辑与规则的工业过程建模和优化控制的研究,2004,浙江大学.
    [34]王寅,化工过程混合建模问题研究,2001,浙江大学.
    [35]杨善升,基于数据挖掘的若干化工过程优化和化合物构效关系研究,2008,上海大学.
    [36]胡真,原油蒸馏过程的建模与优化控制,2000,浙江大学.
    [37]张晓辉,基于切削过程物理模型的参数优化及其数据库实现,2009,上海交通大学.
    [38]彭彦卿,软胶囊滴丸制药生产过程的建模与优化控制研究,2009,厦门大学.
    [39]贺益君,群智能优化方法及其在化学化工中的应用研究,2008,浙江大学.
    [40]周玉新,胡晖,精馏模拟算法的研究进展.四川化工,2007(02):1 8-22
    [41]小型空气分离设备基本知识.1993,机械工业出版社:北京.385.
    [42]Shariati-Rad, M. and M. Hasani, Principle Component Analysis (Pca) and Second-Order Global Hard-Modelling for the Complete Resolution of Transition Metal Ions Complex Formation with 1,10-Phenantroline. ANALYTICA CHIMICA ACTA,2009.648:p.60-70.
    [43]Saebo, S., et al., St-Pls:A Multi-Directional Nearest Shrunken Centroid Type Classifier Via Pis (Vol 22, Pg 54,2008), in JOURNAL OF CHEMOMETRICS.2008. p.423-423.
    [44]Diez, R., et al., Potential of Front Face Fluorescence Associated to Pis Regression to Predict Nutritional Parameters in Heat Treated Infant Formula Models. ANALYTICA CHIMICA ACTA, 2008.606:p.151-158.
    [45]Rezaei, B., T. Khayamian and A. Mokhtari, Simultaneous Determination of Codeine and Noscapine by Flow-Injection Chemiluminescence Method Using N-Pls Regression. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS,2009.49:p.234-239.
    [46]Lue, N. and X. Wang, Fault Diagnosis Based On Signed Digraph Combined with Dynamic Kernel Pls and Svr. INDUSTRIAL,2008.47:p.9447-9456.
    [47]Aguado, D., et al., Process Understanding of a Wastewater Batch Reactor with Block-Wise Pis. ENVIRONMETRICS,2007.18:p.551-560.
    [48]Xiuli, Z., Z. Junlong and W. Xizhi, Sparse Boosted Pls, in PLS'09:PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS.2009. p.132-136.
    [49]Facco, P., et al., Moving Average Pls Soft Sensor for Online Product Quality Estimation in an Industrial Batch Polymerization Process. JOURNAL OF PROCESS CONTROL,2009.19:p. 520-529.
    [50]Gunther, J.C., J.S. Conner and D.E. Seborg, Process Monitoring and Quality Variable Prediction Utilizing Pls in Industrial Fed-Batch Cell Culture. JOURNAL OF PROCESS CONTROL,2009. 19:p.914-921.
    [51]王勇,基于P1s的建模与控制技术在热工过程中的应用研究,2008,华北电力大学(北京);:北京.
    [52]Salahshoor, K., M. Kordestani and M.S. Khoshro, Design of Online Soft Sensors Based On Combined Adaptive Pca and Rbf Neural Networks, in CICA:2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN CONTROL AND AUTOMATION.2009. p.89-95.
    [53]Bp Neural Networks Approach for Identifying Biological Signal Source in Circadian Data Fluctuations. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS,2002. E85D:p. 568-576.
    [54]潘海天,数据挖掘技术在聚合过程建模与控制的应用研究,2003,浙江大学.
    [55]Zhang, J., Batch-to-Batch Optimal Control of a Batch Polymerisation Process Based On Stacked Neural Network Models. CHEMICAL ENGINEERING SCIENCE,2008.63:p.1273-1281.
    [56]Ishikawa, Y., Y. Masukake and Y. Ishida, Control of Chaotic Dynamical Systems Using Rbf Networks, in PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 19.2007. p.175-178.
    [57]Herrera, F. and J. Zhang, Optimal Control of Batch Processes Using Particle Swam Optimisation with Stacked Neural Network Models, in COMPUTERS.2009. p.1593-1601.
    [58]Lee, C. and C. Ko, Time Series Prediction Using Rbf Neural Networks with a Nonlinear Time-Varying Evolution Pso Algorithm. NEUROCOMPUTING,2009.73:p.449-460.
    [59]Yuan, X., C. Gao and S. Gao, Momentum Bp Neural Networks in Structural Damage Detection Based On Static Displacements and Natural Frequencies, in Advances in Neural Networks-ISNN 2007, Pt 3, Proceedings.2007. p.35-40.
    [60]Sifaoui, A., et al., On New Rbf Neural Network Construction Algorithm for Classification. STUDIES IN INFORMATICS AND CONTROL,2009.18:p.103-110.
    [61]Moody, J. and C. Darken, Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation,1989.1:p.281-294.
    [62]Kashaninejad, M., A.A. Dehghani and M. Kashiri, Modeling of Wheat Soaking Using Two Artificial Neural Networks (Mlp and Rbf). JOURNAL OF FOOD ENGINEERING,2009.91:p. 602-607.
    [63]Yang, T., et al., Svm Based Decision Analysis and its Granular-Based Solving, in COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2009, PT Ⅱ.2009.
    [64]Bhowmik, T.K., et al., Svm-Based Hierarchical Architectures for Handwritten Bangla Character Recognition. INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION,2009.12:p.97-108.
    [65]Cao, X., et al., A Svm-Based Method to Extract Urban Areas From Dmsp-Ols and Spot Vgt Data. REMOTE SENSING OF ENVIRONMENT,2009.113:p.2205-2209.
    [66]Cui, K. and Y. Du, Short-Term Load Forecasting Based On the Bkf-Svm, in NSWCTC 2009: INTERNATIONAL CONFERENCE ON NETWORKS SECURITY, WIRELESS COMMUNICATIONS AND TRUSTED COMPUTING, VOL 2, PROCEEDINGS.2009. p. 528-531.
    [67]Niazi, A., S. Sharifi and E. Amjadi, Least-Squares Support Vector Machines for Simultaneous Voltammetric Determination of Lead and Tin:A Comparison Between Ls-Svm and Pls in Voltammetric Data. JOURNAL OF ELECTROANALYTICAL CHEMISTRY,2008.623:p. 86-92.
    [68]Jianchao, K., et al., A Pls-Svm Model for Reservoir Identification in Natural Gas Exploration, in PLS'09:PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS.2009. p.84-92.
    [69]陈爱军,最小二乘支持向量机及其在工业过程建模中的应用,2006,浙江大学.
    [70]李丽娟,最小二乘支持向量机建模及预测控制算法研究,2008,浙江大学.
    [71]黄细霞,基于支持向量机的建模方法及其在材料加工中的应用研究,2008,上海交通大学.
    [72]范玉刚,基于Kernel的机器学习在建模与分类问题的应用研究,2006,浙江大学.
    [73]郑军,小波理论在系统建模与控制中的若干应用研究,2005,浙江大学.
    [74]苑进,贝叶斯学习框架下非线性制造过程建模及多目标优化关键技术研究,2008,上海大学.
    [75]沈曙光,基于支持向量机的热工过程逆动力学建模及控制,2009,重庆大学.
    [76]李培强,统计测辨法综合负荷建模研究,2009,湖南大学.
    [77]何熠,基于支持向量机的非线性系统辨识建模与控制,2007,天津大学.
    [78]包哲静,支持向量机在智能建模和模型预测控制中的应用,2007,浙江大学.
    [79]马强,循环流化床锅炉燃烧系统建模与控制系统研究,2009,华北电力大学(北京)
    [80]朱燕飞,锌钡白回转窑煅烧过程智能建模研究,2005,华南理工大学.
    [81]丁锋,时变参数遗忘梯度估计算法的收敛性.自动化学报,2002(06):962-968.
    [82]谢林柏,丁锋,王艳,基于辅助模型的量化控制系统辨识方法.控制理论与应用,2009(03):277-282.
    [83]郝万君,模糊建模与控制及其在电厂热工自动控制中的应用,2006,哈尔滨工业大学.
    [84]Huang, X., et al., Svm-Based Fuzzy Rules Acquisition System for Pulsed Gtaw Process. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,2009.22:p.1245-1255.
    [85]Pei-yuan, G., Research On Modeling of the Expert System Based On Bp Neural Networks, in Proceedings of 2004 Chinese Control and Decision Conference2004. p.529-532.
    [86]谭天乐,基于粗糙集的过程建模、控制与故障诊断,2003,浙江大学.
    [87]王永富,非线性系统的模糊建模与自适应控制及其应用,2005,东北大学.
    [88]于玲,基于数据的复杂系统集成建模方法及其应用研究,2006,浙江大学.
    [89]Bras, L.P., et al., A Bootstrap-Based Strategy for Spectral Interval Selection in Pis Regression, in JOURNAL OF CHEMOMETRICS.2008. p.695-700.
    [90]Zhang, J., Developing Robust Non-Linear Models through Bootstrap Aggregated Neural Networks. NEUROCOMPUTING,1999.25(1-3):p.93-113.
    [91]Di, X., L. Jinguo与H. Shousong, A New Method of Rough Rbf Neural Network Ensembles, in PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 62008.61-64.
    [92]李志华,循环子空间回归建模和多智能体遗传优化,2003,浙江大学.
    [93]Chen, S., C.F.N. Cowan and P.M. Grant, Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans Neural Networks,1991.2:p.302-309.
    [94]Chen, T., E. Martin and G. Montague, Robust Probabilistic Pca with Missing Data and Contribution Analysis for Outlier Detection. COMPUTATIONAL STATISTICS,2009.53:p. 3706-3716.
    [95]Camacho, J., J. Pico and A. Ferrer, The Best Approaches in the On-Line Monitoring of Batch Processes Based On Pca:Does the Modelling Structure Matter?. ANALYTICA CHIMICA ACTA, 2009.642:p.59-68.
    [96]Shi, G., et al., Pca/Ica-Based Svm for Fall Recognition Using Mems Motion Sensing Data, in 2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4.2008. p.69-72.
    [97]Al-Azzeh, M., A. Eleyan and H. Demirel, Pca-Based Face Recognition From Video Using Super-Resolution, in 23RD INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES.2008. p.166-169.
    [98]Venkatesh, Y.V., A.A. Kassim and O.V.R. Murthy, A Novel Approach to Classification of Facial Expressions From 3D-Mesh Datasets Using Modified Pca. PATTERN RECOGNITION LETTERS,2009.30:p.1128-1137.
    [99]Shi, J. and X.G. Liu, Melt Index Prediction by Weighted Least Squares Support Vector Machines. JOURNAL OF APPLIED POLYMER SCIENCE,2006.101(1):p.285-289.
    [100]Shi, J., X.G. Liu and Y.X. Sun, Melt Index Prediction by Neural Networks Based On Independent Component Analysis and Multi-Scale Analysis. NEUROCOMPUTING,2006.70(1-3):
    [101]曹劲,王桂增,徐博文,基于鲁棒自适应Rbf网络的聚丙烯熔融指数预报.控制与决策,1999.14(4):339-343.
    [102]李春富,王桂增,徐博文,聚丙烯熔融指数软测量.化工自动化及仪表,2002.29(5):22-25.
    [103]李春富,基于数据的软测量建模方法及其应用的研究,2005,清华大学.
    [104]孔薇,杨杰,径向基神经网络的聚丙烯熔融指数预报.化工学报,2003.54(8):1160-1163.
    [105]Han, I.S., C.H. Han and C.B. Chung, Melt Index Modeling with Support Vector Machines, Partial Least Squares, and Artificial Neural Networks. JOURNAL OF APPLIED POLYMER SCIENCE, 2005.95(4):p.967-974.
    [106]庄利锋与杨慧中,一种分布式模糊神经网络在熔融指数软测量中的应用.化工自动化及仪表,2004.31(4):16-18.
    [107]Raymond, M.L., On the Use of Theil's Inequality Coefficients. Amer. J. Agr. Econ.,1975(5):p. 344-346.
    [108]Springer, P.A.M., R. Baur and R. Krishna, Composition Trajectories for Heterogeneous Azeotropic Distillation in a Bubble-Cap Tray Column:Influence of Mass Transfer. Chemical Engineering Research and Design,2003.81:p.413-426.
    [109]Luo, H.P. and W.D. Xiao, A Reactive Distillation Process for a Cascade and Azeotropic Reaction System:Carbonylation of Ethanol with Dimethyl Carbonate. Chemical Engineering Science,2001. 56:p.403-410.
    [110]范天博,谭学富,多元复杂精馏过程模拟和优化.辽宁化工,2003(03):108-111.
    [111]Krishnamurthy, R. and R. Taylor, A Nonequilibrium Stage Model of Multicomponent Separation Processes. Part I:Model Description and Method of Solution. AIChE Journal,1985.31(3):p. 449-456.
    [112]Krishnamurthy, R. and R. Taylor, A Nonequilibrium Stage Model of Multicomponent Separation Processes. Part Ii:Comparison with Experiment. AIChE Journal,1985.31(3):p.456-465.
    [113]Krishnamurthy, R. and R. Taylor, A Nonequilibrium Stage Model of Multicomponent Separation Processes. Part Iii:The Influence of Unequal Component-Efficiencies in Process Design Problems. AIChE Journal,1985.31(12):p.1973-1985.
    [114]李云华,刘新生,反应精馏数学模拟研究进展.天津化工,2003(04):10-12.
    [115]马敬环,反应精馏技术的进展.化学反应工程与工艺,2003(01):1-8.
    [116]晋正茂,王维德,反应精馏及其研究进展.化学工业与工程技术,2006(03):10-14.
    [117]Pradhan, S. and A. Kannan, Simulation and Analysis of Extractive Distillation Process in a Valve Tray Column Using the Rate Based Model. Korean Journal of Chemical Engineering,2005.22:p. 441-451.
    [118]Rouzineau, D., M. Meyer and M. Prevost, Non Equilibrium Model and Experimental Validation for Reactive Distillation. Computer Aided Chemical Engineering,2003.14:p.893-898.
    [119]Druart, F., et al., Catalytic Distillation Modeling. Computer Aided Chemical Engineering,2002. 10:p.181-186.
    [120]Katariya, A.M., et al., Study of Non-Linear Dynamics in Reactive Distillation for Tame Synthesis Using Equilibrium and Non-Equilibrium Models. Computer Aided Chemical Engineering,2006.21:p.469-474.
    [121]Katariya, A.M., R.S. Kamath and K.M. Moudgalya, Non-Equilibrium Stage Modeling and Non-Linear Dynamic Effects in the Synthesis of Tame by Reactive Distillation. COMPUTERS & CHEMICAL ENGINEERING,2008.32(10):p.2243-2255.
    [122]Mori, H., et al., Three-Component Distillation Using Structured Packings:Performance Evaluation and Model Validation. Chemical Engineering Science,2006.61:p.1760-1766.
    [123]Rouzineau, D., et al., Reactive Distillation Modelling and Sensitivity Analysis Based On Neq Model. Computer Aided Chemical Engineering,2005.20:p.583-588.
    [124]朱建华,沈复,反应精馏过程的非平衡级模型初探.计算机与应用化学,1994(03):167-173.
    [125]唐善宏,伍昭化,规整填料塔多元蒸馏过程混合型模型的模拟.化学工程,2007(04):1-4.
    [126]陆茵,吕德伟,串釜式反应精馏的非平衡级模型模拟.宁波大学学报(理工版),1999(01):33-39.
    [127]Mehlhorn, A., et al., Modeling and Experimental Validation of Both Mass Transfer and Tray Hydraulics in Batch Distillation. Computers & Chemical Engineering,1996.20:p.575-580.
    [128]宋海华,余国琮,王秀英,精馏过程的动态模拟.化工学报,1994(04):413-421.
    [129]张利,蹇文涛,谭学富,酯交换法合成碳酸二甲酯的反应精馏过程模拟与优化.沈阳化工学院学报,2006(03):176-180+188.
    [130]孟艾,谭学富,一种实用的精馏过程模拟方法——非平衡级双区模型.沈阳化工学院学报,2004(03):190-194.
    [131]宋海华,张望坚,对实际的空分精馏塔直接进行模拟计算.深冷技术,1996(05):19-24.
    [132]秦永胜,多元精馏过程非平衡级模型与优化控制的研究,1996,清华大学:北京.120.
    [133]秦永胜,多元精馏过程的非平衡级动态模型.化工学报,1997(02):166-174.
    [134]PoIing, B.E., J.M. Prausnitz and J.P. O'Connell, The Properties of Gases and Liquids Fifth Edition,2006,化学工业出版社.
    [135]低温工程技术数据卷.2006,化学工业出版社:北京.
    [136]A., K. and J. Mackowiak, A New Method for Determining the Efficiency of Tray Columns with Downcomeers. Chem. Eng. Technol.,1992(15):p.103-113.
    [137]张猛等,乳酸提纯反应精馏新工艺非平衡级稳态模拟.化工学报,2005(06):1031-1034.
    [138]唐正姣,韦藤幼,童张法,乙酸与正丁醇催化精馏过程模拟.化肥设计,2003(06):11-14+3.
    [139]李廷勋,刘志刚,基于Pr方程的气液相平衡计算.广东工业大学学报,1999(01):31-36.
    [140]焦子华,周传光,赵文,稳态反应精馏过程的数学模型及算法研究进展.化学工业与工程,2004(04):308-313.
    [141]秦建华,乔旭,曾崇余,甲缩醛合成流化催化精馏过程的非平衡级模拟.南京化工大学学报,1996(1):3-10.
    [142]吴燕翔,非平衡级速率模型用于催化精馏过程的模拟计算.化工冶金,1999(04):347-354.
    [143]骞伟中,低浓度丙烯和苯催化精馏合成异丙苯过程非平衡级模拟.高校化学工程学报,2001(02):127-132.
    [144]梁旻,多稳态理论研究及非平衡级精馏模型在工业装置中的应用,2000,清华大学:北京.
    [145]Shi, J., X.G. Liu, Melt index prediction by neural soft-sensor based on multi-scale analysis and principal component analysis. Chinese Journal of Chemical Engineering,2005.13(6):849-852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700