褪黑素对小鼠胃癌抑制作用及其与CD4~+CD25~+Treg细胞和TGF-β信号通路的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌是我国最常见的恶性肿瘤之一,其发生发展机制尚不明确,提高机体对肿瘤的免疫效应是目前生命科学领域的研究热点之一。CD4~+CD25~+调节性T(Treg)细胞具有免疫无能和免疫抑制两大特征,对肿瘤发生发展有负调节作用,与胃癌预后呈负相关。前期大量研究证实褪黑素有抗肿瘤及免疫调节作用,而褪黑素与胃癌、Treg细胞三者之间直接联系的研究尚未见公开报道。本研究旨在探讨褪黑素对小鼠胃癌抑制作用及其与CD4~+CD25~+ Treg细胞和TGF-β信号通路的关系及相关机制,为胃癌寻找一条基于神经-内分泌-免疫-肿瘤网络的综合治疗模式的新思路。
     1.褪黑素体内抗小鼠胃癌作用及其与CD4~+CD25~+ Treg细胞的关系
     为研究褪黑素体内抗小鼠胃癌作用及其与CD4~+CD25~+调节性T细胞的关系,本部分研究建立荷胃癌小鼠模型,不同浓度褪黑素干预后,运用流式细胞术、实时荧光定量RT-PCR、免疫荧光双染色法、免疫印迹法、ELISA等方法检测CD4~+CD25~+ Treg细胞及相关因子的表达变化。结果表明褪黑素能够缩小荷胃癌小鼠的肿瘤体积,减轻肿瘤重量,达到抗肿瘤作用;褪黑素在抑制肿瘤过程中下调肿瘤组织的Treg细胞及Foxp3表达,且能使荷胃癌小鼠的胸腺、脾增加的Treg细胞数及增高表达的Foxp3蛋白恢复到正常水平,但对脾Foxp3mRNA有上调作用;褪黑素还使荷胃癌小鼠外周血清升高表达的的TGF-β1下降到正常水平。表明褪黑素抗肿瘤的途径之一是降低体内Treg细胞数。
     2. CD4~+CD25~+ Treg细胞在褪黑素体外抗小鼠胃癌细胞增殖中作用
     为研究褪黑素体外抗小鼠胃癌细胞增殖作用及其与CD4~+CD25~+ Treg细胞的关系,本部分建立不同浓度褪黑素干预胃癌细胞模型,并选择性加入Treg细胞或CD4~+CD25- T细胞共培养,运用细胞免疫磁珠分选、流式细胞术、荧光双标染色、CCK-8、ELISA等方法检测胃癌细胞增殖活性及细胞周期变化。结果表明褪黑素抑制胃癌细胞的增殖,呈剂量依赖性,并与细胞周期G2/M期阻滞有关;CD4~+CD25~+ Treg细胞在体外对褪黑素抑制肿瘤细胞增殖过程中未起拮抗作用。
     3.褪黑素对胃癌细胞与CD4~+CD25~+ Treg细胞共培养体系相关因子的影响
     为进一步研究褪黑素对细胞共培养体系影响的可能机制,本部分沿用小鼠胃癌细胞与Treg细胞或CD4~+CD25- T细胞共培养体系,褪黑素进行干预后,运用实时荧光定量RT-PCR、双荧光素酶报告基因系统、免疫组化、免疫印迹法等方法探讨褪黑素对共培养体系中相关因子Foxp3及survivin、caspase-3的影响。结果发现褪黑素在抑制胃癌细胞增殖过程中对共培养的Treg细胞的Foxp3mRNA表达有明显上调作用,并呈剂量依赖性,但褪黑素未能明显增高Foxp3启动子的转录活性。褪黑素降低胃癌细胞survivin的表达,进而激活caspase-3的活性,是褪黑素体外抑制胃癌细胞增殖的作用机制之一;而与胃癌细胞共培养的Treg细胞对胃癌细胞survivin的表达有上调作用,CD4~+CD25- T细胞则明显增敏了褪黑素对胃癌细胞的survivin及caspase-3的影响。
     4. TGF-β信号通路在褪黑素体内外抑制小鼠胃癌细胞增殖中的作用
     为研究TGF-β1在褪黑素抑制胃癌细胞增殖过程中的作用,本部分研究体内实验沿用第一部分动物模型,探讨褪黑素对荷胃癌小鼠胸腺、脾、肿瘤组织TGF-β1基因转录与翻译水平表达的影响;体外实验则建立不同浓度褪黑素在不同时间点干预胃癌细胞模型,利用TGF-β1细胞因子刺激、抗TGF-β1中和抗体阻断、反义核酸技术沉默TGF-β1表达等手段探讨TGF-β信号通路在褪黑素抑制胃癌细胞增殖中的作用。结果发现褪黑素在体内抑制胃癌过程中上调肿瘤组织的TGF-β1表达,且使荷胃癌小鼠胸腺TGF-β1表达明显下调,同时使脾下调的TGF-β1表达恢复到正常水平。褪黑素体外抑制胃癌细胞增殖过程中,伴有TGF-β1表达增高,呈时间依赖性。SiRNA介导的TGF-β1沉默和抗TGF-β1中和抗体联合应用彻底阻断TGF-β1通路,能显著拮抗褪黑素对胃癌细胞生长增殖的抑制,同时促使MFC细胞的G1期向S期转变,提示TGF-β1参与细胞正常生长增殖的调控,褪黑素抑制胃癌细胞增殖的途经之一是依赖TGF-β1信号通路
     综上所述,褪黑素体内外能够抑制小鼠胃癌细胞增殖,其机制包括下调体内CD4~+CD25~+ Treg细胞数及Foxp3表达和改变TGF-β信号通路。
Gastric cancer is one of the most common malignant tumors in our country, the development mechanism of which is not clear. Augment the host anti-tumor immunological response have received increasingly attention in life science at present. CD4~+CD25~+ regulatory T (Treg) cells have anergic and immunosuppressive characteristics, which implying their negative regulations effect to the development and progression of tumor and were negative correlated with gastric cancer prognosis. Preliminary many study indicated melatonin has the antineoplastic activity and immunomodulating effects, It is not reported that the direct effects of melatonin on Treg cells and gastric cancer. This research will explore inhibitory effect of melatonin on murine gastric cancer and its relation to CD4~+CD25~+ regulatory T cells and TGF-βsignal pathway and clarify the relative mechanism in order to offer a new thought to find a combined therapy model based on neuroendocrine-immune-tumor network for gastric cancer.
     1. Inhibitory effect of melatonin on gastric cancer and its relation to CD4~+CD25~+ regulatory T cells in vivo
     To explore inhibitory effect of melatonin on gastric cancer and its relation to CD4~+CD25~+ regulatory T cells in vivo, we performed an animal model by inoculating the murine foregastric carcinoma (MFC) cell line in mice and treated them with different doses of melatonin. Then the effect of MLT on the expression of CD4~+CD25~+ Tregs and Foxp3 in mice was detected by using flow cytometry, real-time fluorescence quantitative PCR, double immunofluorescence staining, Western blot, ELISA and other methods. This research showed that MLT could reduce the weight and volum of tumor tissue, decrease Tregs numbers and its transcription factor Foxp3 expression in the tumor tissue. Melatonin also could down-regulate Tregs numbers and scurfin in thymus and spleen, then up-regulate Foxp3mRNA expression in spleen, and return the TGF-β1 expression to the normal levels in peripheral serum. The data indicate that one of melatonin anti-tumor way via inhibition of Tregs in vivo.
     2. Role of CD4~+CD25~+ Tregs in melatonin-mediated inhibition of murine gastric cancer cell growth in vitro
     To explore inhibitory effect of melatonin on gastric cancer cell proliferation and its relation to CD4~+CD25~+ regulatory T cells in vitro, we performed a cell model by MFC cells treatment with different concentrations of melatonin, then with or without Tregs or CD4~+CD25~- T cells co-culture. The effect of MLT on MFC cell proliferation and cycle change was detected by using MACS, flow cytometry, double immunofluorescence staining, CCK-8, ELISA and other methods. We clearly demonstrated that a concentration-dependent effect of melatonin-induced apoptosis in the MFC gastric cancer cells in vitro. This apoptosis was also related to the arrest of the cell cycle at the G2/M phase, but CD4~+CD25~+ Tregs have not antagonistic effect on melatonin-mediated inhibition of murine gastric cancer cell growth in vitro.
     3. Effect of melatonin on the related cytokines in MFC cells with or without Tregs or CD4~+CD25~- T cells co-culture system
     In order to further investigate the effect mechanism of melatonin on MFC cells with Tregs co-culture system, we performed cells co-culture system with different concentrations of melatonin treatment, which was the same as the second part research. The effect of MLT on the related cytokines of Foxp3, survivin and caspase-3 in co-culture system was detected by using real-time fluorescence quantitative PCR, immunocytochemical reaction, Dual-Luciferase Reporter Assay System, Western blot and other methods. The result showed a certain concentration of MLT increased Foxp3mRNA expression of Tregs with MFC cell co-culture in a dose-dependent manner. But melatonin itself treatments did not obviously enhance the transcriptional activity of the Foxp3 gene promoter. Melatonin also could down-regulate the expression of survivin and activate the activity of caspase-3 protein, which is one of melatonin anti-tumor way in vitro.Tregs with MFC cell co-culture could up-regulate survivin expression in tumor cell, however, CD4~+CD25~- T cells in cell co-culture system obviously enhance the effect of melatonin on survivin and caspase-3 expression in MFC cells.
     4. Role of TGF-βsignal pathway in melatonin-mediated inhibition of murine gastric cancer cell proliferation in vivo and in vitro
     In order to investigate the role of TGF-β1 in melatonin-mediated inhibition of cancer cell proliferation. In vivo study, we performed the animal model which was the same as the first part research to detect the effect of MLT on the expression of TGF-β1 in the thymus, spleen and tumor tissue of mice. In vitro study, we performed a cell model by MFC cells treatment with different concentrations of melatonin in different time, utilizated external conditions change such as using TGF-β1 cytokine to stimulate, anti-TGFβantibody to counteract TGF-β1, or using antisense nucleic acid technique to block TGF-β1, and so on to explore TGF-βsignal pathway in melatonin-mediated inhibition of the proliferation of gastric cancer cell. This research showed that in the melatonin anti-gastric cancer process in vivo where TGF-β1 was up-regulated in the tumor tissue and down-regulated in thymus, at the same time down-regulated TGF-β1 expression was returned to normal levels in spleen. Furthermore, in the melatonin anti-gastric cancer proliferation process in vitro where TGF-β1 was up-regulated in the time-dependent manner. SiRNA mediated TGF-β1 silence, combined with anti-TGFβ1 antibody to counteract TGF-βsignal pathway thoroughly could rivalry the inhibit effect of melatonin on MFC cells proliferation and urge cell course from G1 to S at the same time. The data indicate that TGF-β1 participates in regulation of the normal growth and differentiation of cells, one of melatonin anti-tumor way via TGF-βsignal pathway-dependent manner.
     In conclusion, melatonin has a potent anti-gastric cancer effect in vivo and in vitro, and the mechanism is associated with down-regulation of CD4~+CD25~+ Tregs and Foxp3 expression in vivo and the change of TGF-βsignal pathway.
引文
1. Crew K D, Neugut A I. Epidemiology of gastric cancer. World J Gastr-oenterol, 2006, 12(2): 354-362.
    2. Rong F W. Functional control of regulatory T cells and cancer immuno-therapy. Seminars in Cancer Biology, 2006, 16(3):106-114.
    3. Liyanage U K, Moore T T, Joo H G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol, 2002, 169(1): 2756-2761.
    4. Ichihara F, Kono K, Takahashi A, et al. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. J Clin Cancer Res, 2003, 9(1): 4404-4408.
    5. Unitt E, Rushbrook S M, Marshall A, et al. Comromised lymphocytes infiltrate hepatocellular carcinoma: the role of T regulatory cells. J Hepatology, 2005, 41(2): 722-730.
    6. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmu-ne diseases. J Immunol, 1995, 155(8): 1151-1164.
    7. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299(5): 1057-1061.
    8. Fontenot J D, Gavin M A, Rudensky A Y. Foxp3 programs the development and function of CD4~+CD25~+ regulatory T cells. J Nat Immunol, 2003, 4(6): 330-336.
    9. Gavin M A, Clarke S R, Negrou E, et al. Homeostasis and anergy of CD4~+CD25~+ suppressor T cells in vitro. Nature Immunology, 2002, 3(1): 33-41.
    10.雷晓,余佩武,赵永亮,等。CD4~+CD25~+调节性T细胞在胃癌患者的表达及其临床意义。第三军医大学学报,2006,244(5):397-400。
    11. Shimizu J, Yamazaki S, Sakaguchi S, et al. Induction of tumor immunity by removing CD25~+CD4~+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol, 1999, 163(10): 5211-5218.
    12. Mocchegiani E, Perissin L, Santarelli L, et al. Melatonin administration in tumor-bearing mice (intact and pinealectomized) in relation to stress, zinc, thymulin and IL-2. Int J Immunopharmacol, 1999, 21(1): 27-46.
    13. Srinivasan V, Spence D W, Pandi-Perumal S R, et al. Therapeutic actions of melatonin in cancer: possible mechanisms. J Integr Cancer Ther, 2008, 7(3): 189-203.
    14. Saez M C, Barriga C, Garcia J J, et al. Melatonin increases the survival time of animals with untreated mammary tumours: Neuroendocrine stabilization. J Mol Cell Biochem, 2005, 278(3): 15-20.
    15. Sainz R M, Mayo J C, Tan D X, et al. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via receptor and PKA independentmechanism. J Prostate, 2005, 63(3): 29-43.
    16. Lissoni P, Barni S, Crispino S, et al. Endocrine and immune effects of melatonin therapy in metastatic cancer patients. Eur J Cancer Clin Oncol, 1989, 25(5): 789-795.
    17. Lissoni P. Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol Biol (Paris), 2007, 55(3-4): 201-204.
    18. Muc W M, Nowakowska Z E, Zubelewicz B, et al. Circadian fluctuations of melatonin, tumor necrosis factor-alpha and its soluble receptors in the circulation of patients with advanced gastrointestinal cancer. Exp Clin Cancer Res, 2003, 22(2): 171-178.
    19. Shilian H, Gan S, Shi Y, et al. Melatonin and Tryptophan Circadian Profiles in Patients with Advanced Non-Small Cell Lung Cancer. Adv Ther, 2009, 26(9): 886-892.
    20. Blask D E, Brainard G C, Dauchy R T, et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res, 2005, 65(10): 11174–11184.
    21. Tam C W, Chan K W, Liu V W, et al. Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanismsand clinical significance. J Pineal Res, 2008, 45(4): 403-412.
    22. Carrillo V A, Lardone P J, Fernandez-Santos J M, et al. Human lymphocyte synthesized melatonin is involved in the regulation of the interleukin-2/interleukin-2 receptor system. Clin Endocrinol Metab, 2005, 90 (2): 992-1000.
    23. Lardone P J, Carrillo Vico A, Naranjo M C, et al. Melatonin synthesized by Jurkat human leukemic T cell line is implicated in IL-2 production. J Cell Physiol, 2006, 206 (1): 273-279.
    24. Suda A, Saito N, Seshimo A, et al. Examination of transforming growth factor beta1 expression in the serum and tumor tissue of gastric cancer. Int Surg, 2009, 94(2): 182-188.
    25. Alessandra C, Sara P, Fabrizio D A, et al. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res, 2009, 46(3): 172–180.
    26. Tu S P, Jiang X H, Lin M C, et al. Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer Res, 2003, 63(5): 7724-7732.
    27.曾冬竹,余佩武,雷晓,等。CD4~+CD25~+调控T细胞对小鼠胃癌的影响。中华胃肠外科杂志,2007,10(4):368-371。
    28. Mizukami Y, Kono K, Kawaguchi Y, et al. Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer. Br J Cancer, 2008, 98(6):148-153.
    29. Perrone G, Ruffini P A, Catalano V, et al. Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur J Cancer, 2008, 44(5): 1875-1882.
    30. Roncador G, Brown P J, Maestrte L, et al. Analysis of FOXP3 protein expression in human CD4~+CD25~+ regulatory T cells at the single cell level. Eur J Immunol, 2005, 35 (6): 1681-1691.
    31. Heng T S, Goldberg G L, Gray D H, et al. Effects of castration on thymocyte development in two different models of thymic involution. J Immunol, 2005, 175(5): 2982-2993.
    32. Kvetno(?) I M, Levin I M. Daily excretion of melatonin in patients with cancer of the stomach and large intestine. Vopr Onkol, 1987, 33(11): 29-32.
    33. Wang Z, Hong J, Sun W, et al. Role of IFN-gamma in induction of Foxp3 and conversion of CD4~+CD25- T cells to CD4~+ Tregs. J Clin Invest, 2006, 116 (9): 2434-2441.
    34. Morgan M E, Van Bilsen J H, Bakker A M, et al. Expression of FOXP3 mRNA is not confined to CD4~+CD25~+ regulatory T cells in human. Hum Immunol, 2005, 66 (1): 13-20.
    35.林晋,郑琳,黄云梅,等。松果体褪黑素对大鼠胸腺CD4~+CD25~+Treg细胞发育及其相关基因Foxp3的影响。解剖学报,2010,41(1):57-63。
    36. Sakaguchi S. Naturally arising Foxp3 expressing CD25~+CD4~+ regulatory T cells in immunological tolerance to self and nonself. NatI mmunol, 2005, 6(4): 345-352.
    37. Woo E Y, Chu C S, Goletz T J, et al. Regulatory CD4~+CD25~+ T cells in tumors from patients with early-stage non-small cell lung cancer and late stage ovarian cancer. Cancer Res, 2001, 61 (12): 4766-4772.
    38. Sasada T, Kimura M, Yoshida Y, et al. CD4~+CD25~+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer, 2003, 98(5):1089-1099.
    39. Marie J C, Letterio J J, Gavin M, et al. TGF-β1 maintains suppress or function and Foxp3 expression in CD4~+CD25~+ regulatory T cells. J ExpMed, 2005, 201(6): 1061-1067.
    40. Alessandra C, Sara P, Fabrizio D A, et al. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res, 2009, 46(3): 172-180.
    41. Wenzel U, Nickel A, Daniel H. Melatonin potentiates (?)avone-induced apoptosis in human colon cancer cells by increasing the level of glycolytic end products. Int J Cancer, 2005, 116(3): 236-242.
    42. Yang Q H, Xu J N, Xu R K, et al. Antiproliferative e(?)ects of melatonin on the growth of rat pituitary prolactin-secreting tumor cells in vitro. J Pineal Res, 2007,42(4):172-179.
    43. Jong-Wook P, Mi-Sun H, Seong-Il S, et al. Melatonin down-regulates HIF-1a expression through inhibition of protein translation in prostate cancer cells. J Pineal Res, 2009, 46(2): 415-421.
    44. Ignacio B, Pedro C, Redondo, et al. Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cell. J Pineal Res, 2009, 6(3): 392-400.
    45. Cos S, Sánchez-BarcelóE J. Differences between pulsatile or continuous exposure to melatonin on MCF-7 human breast cancer cell proliferation. Cancer Lett, 1994, 30, 85(1):105-109.
    46. Eck K M, Yuan L, Du fy L, et al. A Sequential Treatment Regimen with Melatonin and All trans Retinoic Acid Induces Apoptosis in MCF-7 Tumor Cells. British Journal of Cancer, 1998, 779 (12): 2129- 2137.
    47. Molis T M, Spriggs L L, Jupiter Y, et al. Melatonin Modulation of strogen regulated Proteins, Growth Factors and Proto oncogenes in Human Breast Cancer. J Pineal Res, 1995, 18 (2): 93-103.
    48. Tyler J C, George C, Linhua Z, et al. Specific recruitment of regulatory T Cells in ovarian carcinoma fosters immune previlegeand predict sreduced survival. Nat Medicine, 2004, 10 (9): 942-949.
    49. Mustafa B, Ozdemir O, Steven B. Melatonin cytotoxicity in human leukemia cells: relation with its prooxidant effect. Fundamental & Clinical Phar macology, 2006, 20 (1):73-79.
    50. Jou M J, Peng T I, Yu P Z et al. Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res, 2007, 43(1): 389-403.
    51. Sainz R M, Mayo J C, Rodriguez C, et al. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Mol Life Sci, 2003, 60 (7): 1407-1426.
    52.杨华,蔡于琛,庞冀燕,等。苯并呋喃类木脂素衍生物通过抑制细胞周期蛋白质活性诱导MCF-7细胞G2 /M期阻滞及凋亡。药学学报,2008, 43 (2): 138-144。
    53. Sara C P, Javier M R, Andres G P, et al. Changes in the expression of melatonin receptors induced by melatonin treatment in hepatocarcinoma HepG2 cells. J Pineal Res, 2009, 47(2): 330-338.
    54. Valzasina B, Piconese S, Guiducci C, et al. Tumor induced expansion of regulatory T cells by conversion of CD4~+CD25~+ lymphocytes is thymus and proliferation independent. J Cancer Res, 2006, 66 (8): 4488-4495.
    55. Chen W, Jin W, Hardegen N, et al. Conversi on of peripheral CD4~+CD25- T cells to CD4~+CD25~+ regulatory T cells by TGF-βinduction of transcription factor Foxp3. J Exp Med, 2003, 198(5): 1875-1886.
    56. Huber S, Schramm C, Lehr H A, et al. Cutting edge: TGF-βsignaling is required for the in vivo expansion and immunosupp ressive capacity of regulatory CD4~+CD25~+ T cells. J Immunol, 2004, 173(4): 6526- 6531.
    57. Liyanage U K, Moore T T, Joo H G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol, 2002, 169(6): 2756-2761.
    58. Pierre Y M, Nadia O, Beate R, et al. Molecular Mechanisms Underlying FOXP3 Induction in Human T Cells. J Immunology, 2006, 176(5): 3593-3602.
    59. Hai F, Ou Y, Hong W Z, Chang G W, et al. Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms. Mol Cell Biochem, 2009, 320(1-2): 109-114.
    60. Khattri R, Cox T, Yasayko S A,et al. A essential role for Scurfin in CD4~+CD25~+ T regulatory cells. Nat I mmunol, 2003, 4(5): 337-342.
    61. Sharma S, Yang S C, Zhu L, et al. Tumor cyclooxyenase-2/prostaglandin E2-dependent promotion of Foxp3 expression and CD4~+CD25~+ T regulary cell activation in lung cancer. Cancer Rea, 2005, 65(4):5211-5220.
    62. Morgan M E, van Bilsen J H, Bakker A M, et al. Expression of FOXP3 mRNA is not confined to CD4~+CD25~+ regulatory T cells in human . J Hum Immunol, 2005, 66 (1): 13-20.
    63. Alessandra F, Lucia G, Emilia S, et al. IFN Regulatory Factor-1 NegativelyRegulates CD4~+CD25~+ Regulatory T Cell Differentiation by Repressing Foxp3 Expression. J Immunology, 2008, 181(1): 1673-1682.
    64. Walker M R, Kas p rowicz D J, Gersuk V H, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4~+CD25~+ T cells. J Clin Invest, 2003, 112(3): 1437-1443.
    65. Skwarlo S K. Melatonin in immunity: comparative aspects. Neuro Endocrinol Lett, 2002, 23(1): 61-66.
    66.张燕,祝淑钗,赵蔚然,等。褪黑素对阿霉素抗ER+乳腺癌细胞MCF-7作用的影响及其机制。中国临床肿瘤,2009,36(21):1243-1247。
    67. Ambrosini G, Adida C, Altieri D C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med, 1997, 3(8): 917-921.
    68. Li F, Ambrosini G, Chu E Y, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998, 396(6711): 580-584.
    69. Yao X Q, Liu F K, Qi X P, et al. Expression of survivin in human gastric adenocarcinomas:correlation with proliferation and apoptosis. Zhong hua Wai Ke Za Zhi, 2004, 42(3): 145-148.
    70. Tamawski A, Pal R, Chiou S K, et a1. Rebamipide inhibits gastric cancer growth by targeting Survivin and Aurora-B. Biochem Biophys Res Commun, 2005, 334(1): 207-212.
    71. Fu G, Wang G B, Lu X M, et al. Inhibition effect of liposomes survivin antisense oligonucleotide on human gastric carcinoma transplanted subcutaneously in nude mice. Zhong hua Wai Ke Za Zhi, 2004, 42(22): 1367-1371.
    72.顾良红,刘卉,魏建恩,等。褪黑素对胃癌小鼠Survivin表达的影响。中国组织化学与细胞化学杂志,已修回。
    73.卢启明,缪国英,张岫兰。应用siRNA技术下调Survivin抑制胃癌细胞SGC-7901生长的研究。中华肿瘤防治杂志,2008,15(3):181-184。
    74. Yuan J, Shaham S, Ledous S,et al. The Celegans cell death geneced-3 encodes a protein similar to mammalian interleukin-1-β-converting enzyme. Cell,1993,75(4): 641-652.
    75. Allen R T, Cluck M W, Agrawal D K. Mechanisms controlling cellular suicide:role of Bcl-2 and caspase. Cell Mol Life Sci, 1998, 54(5): 427-445.
    76. Tamm I, Wang Y, Sausville E, et al. IAP family protein survivin inhibits caspase cativity and apoptosis induced by Fas (CD95), Bax, Caspase, and anticancer drugs. Cancer Res, 1998, 58(23): 315-320.
    77.文亚渊,刘宝华,付涛。胃癌组织中survivin, caspase-3和caspase-9基因表达的变化。第三军医大学学报,2005,27(21):2194-2195。
    78.张生军,刘敏丽,魏晓丽,等。胃癌组织中Survivin、Caspase 3、FHIT的表达及临床意义。陕西医学杂志,2007,36(11):1485-1487。
    79.顾良红,刘卉,魏建恩,等。褪黑素对胃癌小鼠血清caspase-3表达的影响。山西医科大学学报,2010,41(11):976-978。
    80.周瑞祥,黄云梅,刘卉,等。松果体及其褪黑素对大鼠胸腺细胞死亡信号通路的影响。解剖学报,2006,37(3):303-308。
    81.周瑞祥,刘卉,黄云梅,等。松果体及其褪黑素对大鼠胸腺细胞凋亡的影响。中国组织化学与细胞化学杂志,2006,15(3):333-337。
    82. Guo R F, Zang S Z, Zhang L, et al. Relations of transforming growth factor-beta1 expression to differentiation and prognosis of advanced gastric cancer. Zhong hua Yi Xue Za Zhi, 2006, 86(46): 3249-3254.
    83. Fu H, Hu Z, Wen J, et al. TGF-beta promotes invasion and metastasis of gastric cancer cells by increasing fascin1 expression via ERK and JNK signal pathways. Acta Biochim Biophys Sin, 2009, 41(8): 648-656.
    84. Paterson I C, Davies M, Stone A, et al . TGF-beta1 acts as a tumor suppress or of human malignant keratinocytes independently of Smad4 expression and ligand- induced G1 arrest. Oncogene, 2002, 21(10): 1616-1624.
    85. Li X, Yue Z C, Zhang Y Y, et al. Elevated serum level and gene polymorphisms of TGF-beta1 in gastric cancer. J Clin Lab Anal, 2008, 22(3): 164-171.
    86. Fatih S E, Ahmet K, Necip I, et al. Efects of Melatonin and Octreotide on Peridural Fibrosis in an Animal Model of Laminectomy. Turkish Neurosurgery, 2010, 20(1): 50-56.
    87. Yufeng X, Ou B, Jinying Y, et al. Tumor Apoptotic Bodies Inhibit CTL Responses and Antitumor Immunity via Membrane-Bound Transforming GrowthFactor-B1 Inducing CD8+ T-Cell Anergy and CD4+ Tr1 Cell Responses. Cancer Res, 2009, 69 (19) :7756-7766.
    88. Mouri H, Sakaguchi K, Sawayama T, et al. Suppressive effects of transforming growth factor-β1 produced by hepatocellular carcinoma lines on interferon-γproduction by peripheral blood monouclear cells. Acata Med Okayama, 2002, 56(6): 309-315.
    89. Bizzarri M, Cucina A, Valente M G, et al. Melatonin and vitamin D3 increase TGF-β1 release and induce growth inhibition in breast cancer cell cultures. J Surg Res, 2003, 110 (2): 332-337.
    90. Hannon G J. RNA interference. Nature, 2002, 418 (2): 244-251.
    91. Elbashir S M, Lendechel W, Tuschl T. RNA interference is mediated by 21-and 22- nucleotide RNAs. Genes Dev, 2001, 15(2): 188-200.
    92.吴涛,徐惠棉,吴晓华,等。应用载体介导的RNAi技术抑制人胃癌和腹膜间皮细胞中TGF-β1的表达。世界华人消化杂志,2005, 13 (21):2530- 2534。
    93. Alisky J M, Davidson B L. Towards therapy using RNA interference. Am J Pharmacogenomics, 2004, 4(1): 45-51.
    94. Gao C Y, Zelenka P S. Cyclins, cyclin-dependent kinases and differentiation. Bioessays, 1997, 19(6): 307-315.
    1. Reiter R J. Mechanisms of cancer inhibition by melatonin. J Pineal Res, 2004, 37(6): 213–214.
    2. Srinivasan V, Spence D W, Trakht I, et al. Immunomodulation by melatonin: its significance for seasonally occurring diseases. J Neuroimmunomodulatonin, 2008, 15(3): 93-101.
    3. Mocchegiani E, Perissin L, Santarelli L, et al. Melatonin administration in tumor-bearing mice (intact and pinealectomized) in relation to stress, zinc, thymulin and IL-2. Int J Immunopharmacol, 1999, 21(2): 27-46.
    4. Srinivasan V, Spence D W, Pandi-Perumal S R, et al. Therapeutic actions of melatonin in cancer: possible mechanisms. J Integr Cancer Ther, 2008, 7(4): 189-203.
    5. Saez M C, Barriga C, Garcia J J, et al. Melatonin increases the survival time of animals with untreated mammary tumours: Neuroendocrine stabilization. J Mol CellBiochem, 2005, 278(2): 15-20.
    6. Sainz R M, Mayo J C, Tan D X, et al. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. J Prostate, 2005, 63(6): 29-43.
    7. Bartsch C, Bartsch H, Bellmann O, et al. Depression of serum melatonin in patients with primary breast cancer is not due to an increased peripheral metabolism. Cancer, 1991, 67 (6):1681-1684.
    8. Jung-Hynes B, Huang W, Reiter R J, et al. Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res, 2010, May 27. [Epub ahead of print].
    9. Hill S M, Frasch T, Xiang S, et al. Molecular mechanisms of melatonin anticancer effects. Integr Cancer Ther, 2009, 8(4): 337-346.
    10. Muc-Wierzgon M, Nowakowska-Zajdel E, Zubelewicz B, et al. Circadian fluctuations of melatonin, tumor necrosis factor-alpha and its soluble receptors in the circulation of patients with advanced gastrointestinal cancer. Exp Clin Cancer Res, 2003, 22(2):171-178.
    11. Melen-Mucha G, Wynczyk K, Pawlikowski M, et al. Somatostatin analogue octreotide and melatonin inhibit bromodeoxyuridine incorporation into cell nuclei and enhance apoptosis in the transplantable murine colon 38 cancer. Anticancer Res, 1998, 18(1): 3615–3620.
    12. Shilian Hu, Gan Shen, Shi Yin, et al. Melatonin and Tryptophan Circadian Profiles in Patients with Advanced Non-Small Cell Lung Cancer. Adv Ther, 2009, 26(9): 886-892.
    13. Blask D E, Brainard G C, Dauchy R T, et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res, 2005, 65(6):11174–11184.
    14. Tam C W, Chan K W, Liu V W, et al. Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanisms and clinical significance. J Pineal Res, 2008, 45(4): 403-412.
    15. Lissoni P, Brivio F, Fumagalli L, et al. Neuroimmunomodulation in medicaloncology: application of psychoneuroimmunology with subcutaneous low-dose IL-2 and the pineal hormone melatonin in patients with untreatable metastatic solid tumors. Anticancer Res, 2008, 28(2B): 1377-1381.
    16. Lissoni P.Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol Biol (Paris), 2007, 55 (3-4): 201-204.
    17. De Jonage, Canonico M B, Lenoir V, et al. Long term inhibition by estradiol or progesterone of melatonin secretion after administration of amammary carcinogen, the dimethylbenz(a) and thracene, in Sprague-Dawley female rat; inhibitory effect of Melatonin on mammary carcinogenesis. Beast Cancer Res Treat, 2003, 79 (3): 365-377.
    18. Padillo F J, Ruiz-Rabelo J F, Cruz A, et al. Melatonin and celecoxib improve the outcomes in hamsters with experimental pancreatic cancer. J Pineal Res, 2010 Jul 7. [Epub ahead of print].
    19. Alessandra C, Sara P, Fabrizio D A, et al. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res, 2009, 46(3): 172-180.
    20. Wenzel U, Nickel A, Daniel H. Melatonin potentiates ?avone-induced apoptosis in human colon cancer cells by increasing the level of glycolytic end products. Int J Cancer, 2005, 116(3): 236-242.
    21. Yang Q H, Xu J N, Xu R K, et al. Antiproliferative e?ects of melatonin on the growth of rat pituitary prolactin-secreting tumor cells in vitro. J Pineal Res, 2007, 42(4):172-179.
    22. Jong-Wook P, Mi-Sun H, Seong-Il S, et al. Melatonin downregulates HIF-1a expression through inhibition of protein translation in prostate cancer cells. J Pineal Res, 2009, 46(2): 415-421.
    23. Ignacio B, Pedro C, Redondo, et al. Melatonin induces mitochondrial -mediated apoptosis in human myeloid HL-60 cell. J Pineal Res, 2009, 6(3): 392-400.
    24. Seong S J, Yeong-Min Y. Melatonin induces apoptotic death in LNCaP cells viap38 and JNK pathways: therapeutic implications for prostate cancer. J Pineal Res, 2009, 47(5): 8–14.
    25. Collins A, Yuan L, Kiefer T L, et al. Overexpression of the MT1 melatonin receptor in MCF-7 human breast cancer cells inhibits mammary tumor formation in nude mice. Cancer Lett, 2003,189 (1): 49-57.
    26. Leja-Szpak A, Jaworek J, Pierzchalski P, et al. Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res, 2010 Jul 7. [Epub ahead of print].
    27.佘美华,黄春林,谢红艳,等。褪黑素上调H22细胞P53的表达。南华大学学报,2008,36(6):752-754。
    28. Lissoni P, Rovelli F, Brivio F, et al. A study of immunoendocrine strategies with pineal indoles and interleukin-2 to prevent radiotherapy induced lymphocytopenia in cancer patients. In Vivo, 2008, 22(3): 397-400.
    29. Lissoni P, Barni S, Crispino S, et al. Endocrine and immune effects of melatonin therapy in metastatic cancer patients. Eur J Cancer Clin Oncol, 1989, 25(5): 789-795.
    30. Carrillo V A, Lardone P J, Fernandez-Santos J M, et al. Human lymphocyte synthesized melatonin is involved in the regulation of the interleukin-2 / interleukin-
    2 receptor system. Clin Endocrinol Metab, 2005, 90 (2): 992-1000.
    31. Lardone P J, Carrillo V A, Naranjo M C, et al. Melatonin synthesized by Jurkat human leukemic T cell line is implicated in IL-2 production. 2006, 206 (1): 273-279.
    32. Garcia-Maurino S, Gonzalez-Haba M G, Calvo J R, et al. Melatonin enhances IL-2, IL-6, and IFN-γproduction by human circulating CD4+cells: a possible nuclear receptor-mediated mechanism involving T helper type1 lymphocytes and monocytes. J Immunol, 1997, 159 (2): 574- 581.
    33. Nunnari G, Nigro L, Palermo F, et al. Reduction of serum melatonin levels in HIV-1-infected individuals' parallel disease progression: correlation with serum interleukin-12 levels. Infection, 2003, 31(6): 379-382.
    34. Haldar C, Singh R. Pineal modulation of thymus and immune function in a seasonally breeding tropical rodent, funambulus pennanti. J Exp Zool, 2001, 289(2):90-98.
    35.周瑞祥,刘卉,魏建恩,等。松果体及褪黑素对大鼠CD4+/CD8+T细胞分化发育的影响。解剖学杂志,2005,28(2):127-130。
    36. Jou M J, Peng T I, Yu P Z et al. Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res, 2007, 43(1): 389-403.
    37. Majsterek I, Gloc E, Blasiak J, et al. A comparison of the action of amifostine and melatonin on DNA-damaging e?ects and apoptosis induced by idarubicin in normal and cancer cells. J Pineal Res, 2005, 38(2): 254–263.
    38. Seong S J, Won D K,Woo-Yoon P, et al. Melatonin exerts differential actions on X-ray radiation-induced apoptosis in normal mice splenocytes and Jurkat leukemia cells. J Pineal Res, 2009, 47(3): 147–155.
    39. Maestroni G J M.The immunoneuroendocrine role of melatonin. J Pineal Res, 1993, 14(1): 1-10.
    40. Pierpaoli W, Yi C.The involvement of pineal gland and melatonin in immunity and aging. I. Thymus-mediated, immunoreconstituting and antiviral activity of thyrotropin-releasing hormone. J Neuroimmunol, 1990, 27(2-3): 99-109.
    41. Yu Q, Miller S C, Osmond D G. Melatonin inhibits apoptosis during early B cell development in mouse bone marrow. J Pineal Res, 2000, 29(6): 86-93.
    42.陈向芳,刘志民,赵瑛,等。褪黑素对T淋巴细胞株免疫相关基因表达谱的作用。中华内分泌代谢杂志,2003,19(5):395-398。
    43. Nielsen S T M, Petersen T R, Nissen M H. Interleukin 15 is a growth factor for human thymocytes with preferential effect on CD8+ cells. Cytokine,2000, 12(6): 751-755.
    44.黄云梅,刘卉,魏建恩,等。松果体摘除及褪黑素对大鼠胸腺上皮细胞白细胞介素-7表达的影响。解剖学报,2008,39(6):901-905。
    45. Liu F, Ng T B, Fung M C. Pineal indoles stimulate the gene expression of immunomodulating cytokines. J Neural Transm, 2001, 108(5): 397-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700