黄腐酚通过下调Notchl表达而抑制乳腺癌细胞的生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Notch信号通路是一条高度保守的信号通路,它参与调控许多重要的生物事件,它在细胞的增殖、分化、凋亡、黏附以及上皮-间质转化等过程中都起着重要作用。如果该信号通路紊乱就可能导致肿瘤的发生。Notch1是Notch家族受体的组成成员之一,在许多癌症中处于异常高表达状态,因此,在这种情况下,可以通过下调Notch1的表达来有效控制Notch信号通路。Hes1是Notch1信号通路下游最为典型的靶基因,在Notch1信号通路中扮演着重要的角色。由于Notch信号通路在乳腺癌发展进程中的重要作用,因此,探寻Notch信号通路抑制剂的一直是乳腺癌研究的热点之一。
     黄腐酚(Xanthohumol, XN)是发现在啤酒花树脂中的主要的异戊烯基黄酮类化合物,它具有多种生物活性。有文献报道黄腐酚可以抑制乳腺癌细胞的增殖,但其抑制机理不详。
     本论文主要以Notch信号通路为靶点,探讨黄腐酚抑制乳腺癌细胞生长的作用机理。通过RT-PCR和Western blot检测MCF-7、MDA-MB-231、L02和293T细胞中Notch1和Hes1表达水平,结果表明Notch1和Hes1在MCF-7和MDA-MB-231细胞中高表达;采用双荧光报告系统初步评价黄腐酚对Notch1活性的抑制,Western blot和RT-PCR进一步测定黄腐酚对Notch1和Hes1表达的抑制作用,发现黄腐酚(5、10和20μM)对Notch1和Hes1活性的抑制呈现浓度依赖效应;细胞划痕和Western blot分析表明黄腐酚抑制MDA-MB-231细胞的迁移与Notch1的下调有关;流式细胞周期分析和Western blot结果显示,黄腐酚通过下调Notch1的表达而诱导细胞周期阻滞在G0/G1期;MTT细胞增值和Western blot结果显示黄腐酚可以明显下调Notch1调控的增殖促进基因Survivin和c-myc的表达;Western blot分析表明黄腐酚能够显著下调细胞Notch1调控的抗凋亡基因Bcl-xL和Bcl-2的表达,同时促进凋亡特征性蛋白因子PARP的裂解。
     综上所述,黄腐酚在MCF-7、MDA-MB-231细胞中通过抑制Notch信号通路中Notch1的表达,从而抑制乳腺癌细胞的生长。提供了黄腐酚可能作为Notch信号通路潜在抑制剂的理论依据,具有良好的应用前景。
The Notch signaling pathway is a highly conserved signaling pathway. It is involved in the regulation of many important biological events, including the cell proliferation, differentiation, apoptosis, adhesion, epithelial-mesenchymal transition process. The disorder of Notch signal may lead to tumorigenesis. Notchl is an integral member of the Notch receptor family. In many cancers, the Notchl keeps abnormal high expression, In this case, down-regulating the expression of Notchl can efficiently control the Notch signaling pathway. Hesl is the most typical downstream target gene, which plays an important role in the Notchl signaling pathway. Because of the important role of the Notch signaling pathway in breast cancer development process, the study of the Notch signaling pathway inhibitors has been one of the hotspots of the breast cancer research.
     Xanthohumol (Xanthohumol, XN) is one of the primary isopentenyl flavonoids found in hops resin. It has a variety of biological activity. Previous studies have reported that Xanthohumol can effectively inhibit breast cancer cell proliferation. However, the mechanisms of Xanthohumol inhibition in breast cancer cell growth remains unclear.
     In this thesis, we hypothesized that the Notch signaling pathway is a targeted by Xanthohumol leading to inhibit the breast cancer cell growth. In this study, expressions of Notchl and Hesl in MCF-7, MDA-MB-231, L02and293T cells were detected by RT-PCR and Western blot. The results showed that Notch1and Hes1expression were significantly up-regulated in MCF-7and MDA-MB-231cells. Luciferase reporter assays were performed to preliminary assess the function of Xanthohumol inhibition of Notchl activity. The further investigation of Xanthohumol inhibiting Notchl and Hesl expression were performed by Western blot and RT-PCR. The experiment results show that Notchl and Hesl were dose down-regulated by different concentration Xanthohumol treatment (5,10and20μM). Cell wounding heal and Western blot analysis showed that down-regulation of Notchl expression by Xanthohumol treatment inhibited breast cancer cell migration. The flow cytometry cycle analysis and Western blot analysis found that down-regulating expression of Notchl by Xanthohumol treatment induced cell cycle arresting in G0/G1phase. The inhibition of breast cancer cells proliferation by Xanthohumol treatment were measured by MTT assay and Western blot. The results show that Xanthohumol can significantly down-regulate the expression of two proliferation-promoting genes, Survivin and c-myc, which are regulated by Notchl. Western blot analysis showed that Xanthohumol significantly down-regulated the expression of two anti-apoptotic genes, Bcl-xL and Bcl-2, which are also regulated by Notchl. At the same time, Xanthohumol can promote the degradation of PARP, which promotes cell apoptosis.
     In summary, Xanthohumol can inhibit the Notch1expression of Notch signaling pathway in MCF-7and MDA-MB-231cells, which leads to the inhibition of the breast cancer cell growth. This study provides theory evidence that Xanthohumol can be a potential inhibitor of Notch sinaling pathway. Thus, Xanthohumol has good application prospects.
     In summary, Xanthohumol is inhibiting the growth of MCF-7and MDA-MB-231cells by inhibiting the the expression of Notchl. The results of these studies provide the theoretical basis of Xanthohumoi may be potential inhibitors of Notch signaling pathway, which may be have a good application prospects.
引文
[1]S. W. Wang, X. Y. He, and M. Z. Li, High-intensity focused ultrasound compared with irradiation for ovarian castration in premenopausal females with hormone receptor-positive breast cancer after radical mastectomy[J]. Oncol Lett.2012,4(5):1087-1091.
    [2]P. M. LoRusso, Mammalian target of rapamycin as a rational therapeutic target for breast cancer treatment[J]. Oncology.2013,84(1):43-56.
    [3]S. Germano and L. O'Driscoll, Breast cancer:understanding sensitivity and resistance to chemotherapy and targeted therapies to aid in personalised medicine[J]. Curr Cancer Drug Targets. 2009,9(3):398-418.
    [4]N. Sethi, X. Dai, C. G. Winter, and Y. Kang, Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells[J]. Cancer Cell.2011, 19(2):192-205.
    [5]R. T. Chlebowski and G. L. Anderson, Changing concepts:Menopausal hormone therapy and breast cancer[J]. J Natl Cancer Inst.2012,104(7):517-27.
    [6]G. Dontu, K. W. Jackson, E. McNicholas, M. J. Kawamura, W. M. Abdallah, and M. S. Wicha, Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells[J]. Breast Cancer Res.2004,6(6):R605-15.
    [7]Keith Brennan and Anthony M. C. Brown, Breast Cancer Research.2003,5(2):69.
    [8]H. Al-Hussaini, D. Subramanyam, M. Reedijk, and S. S. Sridhar, Notch signaling pathway as a therapeutic target in breast cancer[J]. Mol Cancer Ther.2011,10(1):9-15.
    [9]S. Guo, M. Liu, and R. R. Gonzalez-Perez, Role of Notch and its oncogenic signaling crosstalk in breast cancer[J]. Biochim Biophys Acta.2011,1815(2):197-213.
    [10]R. Kopan and M. X. Ilagan, The canonical Notch signaling pathway:unfolding the activation mechanism[J]. Cell.2009,137(2):216-33.
    [11]E. C. Lai, Notch signaling:control of cell communication and cell fate[J]. Development.2004, 131(5):965-73.
    [12]C. Groth and M. E. Fortini, Therapeutic approaches to modulating Notch signaling:current challenges and future prospects[J]. Semin Cell Dev Biol.2012,23(4):465-72.
    [13]Z. Wang, Y. Li, and F. H. Sarkar, Notch signaling proteins:legitimate targets for cancer therapy[J]. Curr Protein Pept Sci.2010, 11(6):398-408.
    [14]B. J. Nickoloff, B. A. Osborne, and L. Miele, Notch signaling as a therapeutic target in cancer:a new approach to the development of cell fate modifying agents[J]. Oncogene.2003, 22(42):6598-608.
    [15]L. Miele, H. Miao, and B. J. Nickoloff, NOTCH signaling as a novel cancer therapeutic target[J]. Curr Cancer Drug Targets.2006,6(4):313-23.
    [16]D. Paris, A. Quadros, N. Patel, A. DelleDonne, J. Humphrey, and M. Mullan, Inhibition of angiogenesis and tumor growth by beta and gamma-secretase inhibitors[J]. Eur J Pharmacol.2005, 514(1):1-15.
    [17]X. Fan, L. Khaki, T. S. Zhu, M. E. Soules, C. E. Talsma, N. Gul, C. Koh, J. Zhang, Y. M. Li, J. Maciaczyk, G. Nikkhah, F. Dimeco, S. Piccirillo, A. L. Vescovi, and C. G. Eberhart, NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts[J]. Stem Cells.2010,28(1):5-16.
    [18]H. D. Lewis, M. Leveridge, P. R. Strack, C. D. Haldon, J. O'Neil, H. Kim, A. Madin, J. C. Hannam, A. T. Look, N. Kohl, G. Draetta, T. Harrison, J. A. Kerby, M. S. Shearman, and D. Beher, Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling[J]. Chem Biol.2007,14(2):209-19.
    [19]A. P. Weng and J. C. Aster, Multiple niches for Notch in cancer:context is everything[J]. Curr Opin Genet Dev.2004,14(1):48-54.
    [20]H. Rassi, Stem cell therapy for hereditary breast cancer[J]. Tsitol Genet.2009,43(3):80-8.
    [21]Z. Z. Hu, B. L. Kagan, E. A. Ariazi, D. S. Rosenthal, L. Zhang, J. V. Li, H. Huang, C. Wu, V. C. Jordan, A. T. Riegel, and A. Wellstein, Proteomic analysis of pathways involved in estrogen-induced growth and apoptosis of breast cancer cells[J]. PLoS One.2011,6(6):e20410.
    [22]L. Bernstein and R. K. Ross, Endogenous hormones and breast cancer risk[J]. Epidemiol Rev. 1993,15(1):48-65.
    [23]S. R. Johnston, New strategies in estrogen receptor-positive breast cancer[J]. Clin Cancer Res. 2010,16(7):1979-87.
    [24]M. E. Mendelsohn and R. H. Karas, The protective effects of estrogen on the cardiovascular system[J]. N Engl J Med.1999,340(23):1801-11.
    [25]W. J. Welboren, H. G. Stunnenberg, F. C. Sweep, and P. N. Span, Identifying estrogen receptor target genes[J]. Mol Oncol.2007,1(2):138-43.
    [26]B. G. Debeb, E. N. Cohen, K. Boley, E. M. Freiter, L. Li, F. M. Robertson, J. M. Reuben, M. Cristofanilli, T. A. Buchholz, and W. A. Woodward, Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells[J]. Breast Cancer Res Treat.2012, 134(2):495-510.
    [27]A. W. Tolcher, W. A. Messersmith, S. M. Mikulski, K. P. Papadopoulos, E. L. Kwak, D. G. Gibbon, A. Patnaik, G. S. Falchook, A. Dasari, G. I. Shapiro, J. F. Boylan, Z. X. Xu, K. Wang, A. Koehler, J. Song, S. A. Middleton, J. Deutsch, M. Demario, R. Kurzrock, and J. J. Wheler, Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors[J]. J Clin Oncol.2012,30(19):2348-53.
    [28]J. Wu, R. Wiegand, P. LoRusso, and J. Li, Validation and implementation of a liquid chromatography/tandem mass spectrometry assay for quantitation of the total and unbound RO4929097, a gamma-secretase inhibitor targeting Notch signaling, in human plasma[J]. J Chromatogr B Analyt Technol Biomed Life Sci.2011,879(19):1537-43.
    [29]C. Huynh, L. Poliseno, M. F. Segura, R. Medicherla, A. Haimovic, S. Menendez, S. Shang, A. Pavlick, Y. Shao, F. Darvishian, J. F. Boylan, I. Osman, and E. Hernando, The novel gamma secretase inhibitor RO4929097 reduces the tumor initiating potential of melanoma[J]. PLoS One. 2011,6(9):e25264.
    [30]M. Mizuma, Z. A. Rasheed, S. Yabuuchi, N. Omura, N. R. Campbell, R. F. de Wilde, E. De Oliveira, Q. Zhang, O. Puig, W. Matsui, M. Hidalgo, A. Maitra, and N. V. Rajeshkumar, The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models[J]. Mol Cancer Ther.2012,11 (9):1999-2009.
    [31]K. Pandya, K. Meeke, A. G. Clementz, A. Rogowski, J. Roberts, L. Miele, K. S. Albain, and C. Osipo, Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence [J]. Br J Cancer.2011,105(6):796-806.
    [32]S. S. Rao, J. O'Neil, C. D. Liberator, J. S. Hardwick, X. Dai, T. Zhang, E. Tyminski, J. Yuan, N. E. Kohl, V. M. Richon, L. H. Van der Ploeg, P. M. Carroll, G. F. Draetta, A. T. Look, P. R. Strack, and C. G. Winter, Inhibition of NOTCH signaling by gamma secretase inhibitor engages the RB pathway and elicits cell cycle exit in T-cell acute lymphoblastic leukemia cells[J]. Cancer Res. 2009,69(7):3060-8.
    [33]J. Whitehead, H. Thygesen, T. Jaki, S. Davies, S. Halford, H. Turner, N. Cook, and D. Jodrell, A novel Phase I/IIa design for early phase oncology studies and its application in the evaluation of MK-0752 in pancreatic cancer[J]. Stat Med.2012,31(18):1931-43.
    [34]A. F. Schott, M. D. Landis, G. Dontu, K. A. Griffith, R. M. Layman, I. Krop, L. A. Paskett, H. Wong, L. E. Dobrolecki, M. T. Lewis, A. M. Froehlich, J. Paranilam, D. F. Hayes, M. S. Wicha, and J. C. Chang, Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors[J]. Clin Cancer Res.2013,19(6):1512-24.
    [35]M. Fouladi, C. F. Stewart, J. Olson, L. M. Wagner, A. Onar-Thomas, M. Kocak, R. J. Packer, S. Goldman, S. Gururangan, A. Gajjar, T. Demuth, L. E. Kun, J. M. Boyett, and R. J. Gilbertson, Phase I trial of MK-0752 in children with refractory CNS malignancies:a pediatric brain tumor consortium study[J]. J Clin Oncol.2011,29(26):3529-34.
    [36]J. J. Cook, K. R. Wildsmith, D. B. Gilberto, M. A. Holahan, G. G. Kinney, P. D. Mathers, M. S. Michener, E. A. Price, M. S. Shearman, A. J. Simon, J. X. Wang, G. Wu, K. E. Yarasheski, and R. J. Bateman, Acute gamma-secretase inhibition of nonhuman primate CNS shifts amyloid precursor protein (APP) metabolism from amyloid-beta production to alternative APP fragments without amyloid-beta rebound[J]. J Neurosci.2010,30(19):6743-50.
    [37]P. Wei, M. Walls, M. Qiu, R. Ding, R. H. Denlinger, A. Wong, K. Tsaparikos, J. P. Jani, N. Hosea, M. Sands, S. Randolph, and T. Smeal, Evaluation of selective gamma-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design[J]. Mol Cancer Ther.2010,9(6):1618-28.
    [38]S. Li, X. Zhang, Y. Wang, H. Ji, Y. Du, and H. Liu, DAPT protects brain against cerebral ischemia by down-regulating the expression of Notch 1 and Nuclear factor kappa B in rats[J]. Neurol Sci. 2012.
    [39]Z. P. Zhang, Y. L. Sun, L. Fu, F. Gu, L. Zhang, and X. S. Hao, Correlation of Notch 1 expression and activation to cisplatin-sensitivity of head and neck squamous cell carcinoma[J]. Ai Zheng. 2009,28(2):100-3.
    [40]J. E. Fong, D. Le Nihouannen, and S. V. Komarova, Tumor-supportive and osteoclastogenic changes induced by breast cancer-derived factors are reversed by inhibition of {gamma}-secretase[J]. J Biol Chem.2010,285(41):31427-34.
    [41]S. Srivastava, B. Ramdass, S. Nagarajan, M. Rehman, G. Mukherjee, and S. Krishna, Notchl regulates the functional contribution of RhoC to cervical carcinoma progression[J], Br J Cancer. 2010,102(1):196-205.
    [42]A. Sharma, A. N. Paranjape, A. Rangarajan, and R. R. Dighe, A monoclonal antibody against human Notchl ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells[J]. Mol Cancer Ther.2012, 11(1):77-86.
    [43]Y. Wu, C. Cain-Hom, L. Choy, T. J. Hagenbeek, G. P. de Leon, Y. Chen, D. Finkle, R. Venook, X. Wu, J. Ridgway, D. Schahin-Reed, G. J. Dow, A. Shelton, S. Stawicki, R. J. Watts, J. Zhang, R. Choy, P. Howard, L. Kadyk, M. Yan, J. Zha, C. A. Callahan, S. G. Hymowitz, and C. W. Siebel, Therapeutic antibody targeting of individual Notch receptors[J]. Nature.2010,464(7291):1052-7.
    [44]M. Aste-Amezaga, N. Zhang, J. E. Lineberger, B. A. Arnold, T. J. Toner, M. Gu, L. Huang, S. Vitelli, K. T. Vo, P. Haytko, J. Z. Zhao, F. Baleydier, S. L'Heureux, H. Wang, W. R. Gordon, E. Thoryk, M. B. Andrawes, K. Tiyanont, K. Stegmaier, G. Roti, K. N. Ross, L. L. Franlin, H. Wang, F. Wang, M. Chastain, A. J. Bett, L. P. Audoly, J. C. Aster, S. C. Blacklow, and H. E. Huber, Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors[J]. PLoS One.2010,5(2):e9094.
    [45]R. E. Moellering, M. Cornejo, T. N. Davis, C. Del Bianco, J. C. Aster, S. C. Blacklow, A. L. Kung, D. G. Gilliland, G. L. Verdine, and J. E. Bradner, Direct inhibition of the NOTCH transcription factor complex[J]. Nature.2009,462(7270):182-8.
    [46]N. Takeichi, S. Yanagisawa, T. Kaneyama, H. Yagita, Y. H. Jin, B. S. Kim, and C. S. Koh, Ameliorating effects of anti-D114 mAb on Theiler's murine encephalomyelitis virus-induced demyelinating disease[J]. Int Immunol.2010,22(9):729-38.
    [47]M. Fischer, W. C. Yen, A. M. Kapoun, M. Wang, G. O'Young, J. Lewicki, A. Gurney, and T. Hoey, Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations[J]. Cancer Res.2011,71(5):1520-5.
    [48]P. Rizzo, H. Miao, G. D'Souza, C. Osipo, L. L. Song, J. Yun, H. Zhao, J. Mascarenhas, D. Wyatt, G. Antico, L. Hao, K. Yao, P. Rajan, C. Hicks, K. Siziopikou, S. Selvaggi, A. Bashir, D. Bhandari, A. Marchese, U. Lendahl, J. Z. Qin, D. A. Tonetti, K. Albain, B. J. Nickoloff, and L. Miele, Cross-talk between notch and the estrogen receptor in breast cancer suggests novel therapeutic approaches[J]. Cancer Res.2008,68(13):5226-35.
    [49]N. Prenzel, O. M. Fischer, S. Streit, S. Hart, and A. Ullrich, The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification[J]. Endocr Relat Cancer.2001,8(1):11-31.
    [50]J. Dai, D. Ma, S. Zang, D. Guo, X. Qu, J. Ye, and C. Ji, Cross-talk between Notch and EGFR signaling in human breast cancer cells[J]. Cancer Invest.2009,27(5):533-40.
    [51]H. Yamaguchi, S. S. Chang, J. L. Hsu, and M. C. Hung, Signaling cross-talk in the resistance to HER family receptor targeted therapy [J]. Oncogene.2013.
    [52]L. S. Steelman, K. M. Stadelman, W. H. Chappell, S. Horn, J. Basecke, M. Cervello, F. Nicoletti, M. Libra, F. Stivala, A. M. Martelli, and J. A. McCubrey, Akt as a therapeutic target in cancer[J]. Expert Opin Ther Targets.2008,12(9):1139-65.
    [53]M. Sabbah, S. Emami, G. Redeuilh, S. Juien, G. Prevost, A. Zimber, R. Ouelaa, M. Bracke, O. De Wever, and C. Gespach, Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers[J]. Drug Resist Updat.2008, 11 (4-5):123-51.
    [54]M. H. Cardone, N. Roy, H. R. Stennicke, G. S. Salvesen, T. F. Franke, E. Stanbridge, S. Frisch, and J. C. Reed, Regulation of cell death protease caspase-9 by phosphorylation[J]. Science.1998, 282(5392):1318-21.
    [55]A. Brunet, A. Bonni, M. J. Zigmond, M. Z. Lin, P. Juo, L. S. Hu, M. J. Anderson, K. C. Arden, J. Blenis, and M. E. Greenberg, Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor[J]. Cell.1999,96(6):857-68.
    [56]Y. Wei, Z. Zhang, H. Liao, L. Wu, X. Wu, D. Zhou, X. Xi, Y. Zhu, and Y. Feng, Nuclear estrogen receptor-mediated Notch signaling and GPR30-mediated PI3K/AKT signaling in the regulation of endometrial cancer cell proliferation[J]. Oncol Rep.2012,27(2):504-10.
    [57]Z. J. Liu, M. Xiao, K. Balint, K. S. Smalley, P. Brafford, R. Qiu, C. C. Pinnix, X. Li, and M. Herlyn, Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression[J]. Cancer Res.2006,66(8):4182-90.
    [58]M. S. Hayden and S. Ghosh, Shared principles in NF-kappaB signaling[J]. Cell.2008, 132(3):344-62.
    [59]X. Jiao, L. D. Wood, M. Lindman, S. Jones, P. Buckhaults, K. Polyak, S. Sukumar, H. Carter, D. Kim, R. Karchin, and T. Sjoblom, Somatic mutations in the Notch, NF-KB, PIK3CA, and Hedgehog pathways in human breast cancers[J]. Genes Chromosomes Cancer.2012,51(5):480-9.
    [60]S. Prasad, J. Ravindran, and B. B. Aggarwal, NF-kappaB and cancer:how intimate is this relationship[J]. Mol Cell Biochem.2010,336(1-2):25-37.
    [61]E. Maniati, M. Bossard, N. Cook, J. B. Candido, N. Emami-Shahri, S. A. Nedospasov, F. R. Balkwill, D. A. Tuveson, and T. Hagemann, Crosstalk between the canonical NF-kappaB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice[J]. J Clin Invest.2011,121(12):4685-99.
    [62]F. Oswald, S. Liptay, G. Adler, and R. M. Schmid, NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa[J]. Mol Cell Biol.1998,18(4):2077-88.
    [63]P. Cheng, A. Zlobin, V. Volgina, S. Gottipati, B. Osborne, E. J. Simel, L. Miele, and D. I. Gabrilovich, Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells[J]. J Immunol. 2001,167(8):4458-67.
    [64]J. Bash, W. X. Zong, S. Banga, A. Rivera, D. W. Ballard, Y. Ron, and C. Gelinas, Rel/NF-kappaB can trigger the Notch signaling pathway by inducing the expression of Jagged1, a ligand for Notch receptors[J]. EMBO J.1999,18(10):2803-11.
    [65]Z. Wang, S. Banerjee, Y. Li, K. M. Rahman, Y. Zhang, and F. H. Sarkar, Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells[J]. Cancer Res.2006, 66(5):2778-84.
    [66]G. Farnie and R. B. Clarke, Mammary stem cells and breast cancer--role of Notch signalling[J]. Stem Cell Rev.2007,3(2):169-75.
    [67]S. Weijzen, P. Rizzo, M. Braid, R. Vaishnav, S. M. Jonkheer, A. Zlobin, B. A. Osborne, S. Gottipati, J. C. Aster, W. C. Hahn, M. Rudolf, K. Siziopikou, W. M. Kast, and L. Miele, Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells[J]. Nat Med.2002,8(9):979-86.
    [68]C. L. Miranda, J. F. Stevens, A. Helmrich, M. C. Henderson, R. J. Rodriguez, Y. H. Yang, M. L. Deinzer, D. W. Barnes, and D. R. Buhler, Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines[J]. Food Chem Toxicol.1999, 37(4):271-85.
    [69]J. M. Pezzuto, Plant-derived anticancer agents[J]. Biochem Pharmacol.1997,53(2):121-33.
    [70]P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd, New colorimetric cytotoxicity assay for anticancer-drug screeningfJ]. J Natl Cancer Inst.1990,82(13):1107-12.
    [71]Y. Surh, Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances [J]. Mutat Res.1999,428(1-2):305-27.
    [72]H. Lee, H. W. Wang, H. Y. Su, and N. J. Hao, The structure-activity relationships of flavonoids as inhibitors of cytochrome P-450 enzymes in rat liver microsomes and the mutagenicity of 2-amino-3-methyl-imidazo[4,5-f]quinoline[J]. Mutagenesis.1994,9(2):101-6.
    [73]Y. Satomi, Inhibitory effects of 3'-methyl-3-hydroxy-chalcone on proliferation of human malignant tumor cells and on skin carcinogenesis[J]. Int J Cancer.1993,55(3):506-14.
    [74]C. I. Chappel, S. Y. Smith, and M. Chagnon, Subchronic toxicity study of tetrahydroisohumulone and hexahydroisohumulone in the beagle dog[J]. Food Chem Toxicol.1998,36(11):915-22.
    [75]H. Tobe, Y. Muraki, K. Kitamura, O. Komiyama, Y. Sato, T. Sugioka, H. B. Maruyama, E. Matsuda, and M. Nagai, Bone resorption inhibitors from hop extract[J]. Biosci Biotechnol Biochem.1997,61(1):158-9.
    [76]C. Gerhauser, A. Alt, E. Heiss, A. Gamal-Eldeen, K. Klimo, J. Knauft, I. Neumann, H. R. Scherf, N. Frank, H. Bartsch, and H. Becker, Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop[J]. Mol Cancer Ther.2002, 1(11):959-69.
    [77]J. F. Stevens, A. W. Taylor, and M. L. Deinzer, Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A.1999,832(1-2):97-107.
    [78]C. Gerhauser, Broad spectrum anti-infective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites[J]. Mol Nutr Food Res.2005,49(9):827-31.
    [79]R. Benelli, R. Vene, M. Ciarlo, S. Carlone, O. Barbieri, and N. Ferrari, The AKT/NF-kappaB inhibitor xanthohumol is a potent anti-lymphocytic leukemia drug overcoming chemoresistance and cell infiltration[J]. Biochem Pharmacol.2012,83(12):1634-42.
    [80]P. Goncalves, J. R. Araujo, M. J. Pinho, and F. Martel, In vitro studies on the inhibition of colon cancer by butyrate and polyphenolic compounds[J]. Nutr Cancer.2011,63(2):282-94.
    [81]K. Gross-Steinmeyer, P. L. Stapleton, J. H. Tracy, T. K. Bammler, S. C. Strom, D. R. Buhler, and D. L. Eaton, Modulation of aflatoxin B1-mediated genotoxicity in primary cultures of human hepatocytes by diindolylmethane, curcumin, and xanthohumols[J]. Toxicol Sci.2009, 112(2):303-10.
    [82]X. Gao, D. Deeb, Y. Liu, S. Gautam, S. A. Dulchavsky, and S. C. Gautam, Immunomodulatory activity of xanthohumol:inhibition of T cell proliferation, cell-mediated cytotoxicity and Thl cytokine production through suppression of NF-kappaB[J]. Immunopharmacol Immunotoxicol. 2009,31(3):477-84.
    [83]S. Guerreiro, R. Monteiro, M. J. Martins, C. Calhau, I. Azevedo, and R. Soares, Distinct modulation of alkaline phosphatase isoenzymes by 17beta-estradiol and xanthohumol in breast cancer MCF-7 cells[J]. Clin Biochem.2007,40(3-4):268-73.
    [84]M. Y. Cho, S. Y. Park, S. Park, Y. R. Lee, G. D. Han, and J. A. Kim, Geranyl derivative of phloroacetophenone induces cancer cell-specific apoptosis through Bax-mediated mitochondrial pathway in MCF-7 human breast cancer cells[J]. Biol Pharm Bull.2012,35(l):98-104.
    [85]E. Dyczynska, D. Sun, H. Yi, A. Sehara-Fujisawa, C. P. Blobel, and A. Zolkiewska, Proteolytic processing of delta-like 1 by ADAM proteases[J]. J Biol Chem.2007,282(1):436-44.
    [86]A. Voigt and F. Zintl, Effects of retinoic acid on proliferation, apoptosis, cytotoxicity, migration, and invasion of neuroblastoma cells[J]. Med Pediatr Oncol.2003,40(4):205-13.
    [87]S. Yodkeeree, C. Ampasavate, B. Sung, B. B. Aggarwal, and P. Limtrakul, Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line[J]. Eur J Pharmacol.2010,627(1-3):8-15.
    [88]W. R. Liao, R. H. Hsieh, K. W. Hsu, M. Z. Wu, M. J. Tseng, R. T. Mai, Y. H. Wu Lee, and T. S. Yeh, The CBF1-independent Notch1 signal pathway activates human c-myc expression partially via transcription factor YY1[J]. Carcinogenesis.2007,28(9):1867-76.
    [89]S. Stylianou, R. B. Clarke, and K. Brennan, Aberrant activation of notch signaling in human breast cancer[J]. Cancer Res.2006,66(3):1517-25.
    [90]F. Kubo, S. Ueno, K. Hiwatashi, M. Sakoda, K. Kawaida, K. Nuruki, and T. Aikou, Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis[J]. Ann Surg Oncol.2005,12(10):800-7.
    [91]M. Wang, L. Wu, L. Wang, and X. Xin, Down-regulation of Notch1 by gamma-secretase inhibition contributes to cell growth inhibition and apoptosis in ovarian cancer cells A2780[J]. Biochem Biophys Res Commun.2010,393(1):144-9.
    [92]H. Ling and P. Jolicoeur, Notch-1 signaling promotes the cyclinDl-dependent generation of mammary tumor-initiating cells that can revert to bi-potential progenitors from which they arise[J], Oncogene.2012.
    [93]B. Ramdass, T. T. Maliekal, S. Lakshmi, M. Rehman, P. Rema, P. Nair, G. Mukherjee, B. K. Reddy, S. Krishna, and M. Radhakrishna Pillai, Coexpression of Notchl and NF-kappaB signaling pathway components in human cervical cancer progression[J]. Gynecol Oncol.2007, 104(2):352-61.
    [94]R. V. Sionov, S. Kfir-Erenfeld, R. Spokoini, and E. Yefenof, A role for bcl-2 in notch1-dependent transcription in thymic lymphoma cells[J]. Adv Hematol.2012,2012:435241.
    [95]X. Zhang, A. K. Samadi, K. F. Roby, B. Timmermann, and M. S. Cohen, Inhibition of cell growth and induction of apoptosis in ovarian carcinoma cell lines CaOV3 and SKOV3 by natural withanolide Withaferin A[J]. Gynecol Oncol.2012,124(3):606-12.
    [96]J. M. Haughian, M. P. Pinto, J. C. Harrell, B. S. Bliesner, K. M. Joensuu, W. W. Dye, C. A. Sartorius, A. C. Tan, P. Heikkila, C. M. Perou, and K. B. Horwitz, Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch[J]. Proc Natl Acad Sci U S A. 2012,109(8):2742-7.
    [97]J. J. Hsieh, T. Henkel, P. Salmon, E. Robey, M. G. Peterson, and S. D. Hayward, Truncated mammalian Notchl activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2[J].Mol Cell Biol.1996,16(3):952-9.
    [98]C. Y. Hsieh, P. C. Tsai, C. H. Tseng, Y. L. Chen, L. S. Chang, and S. R. Lin, Inhibition of EGF/EGFR activation with naphtho[1,2-b]furan-4,5-dione blocks migration and invasion of MDA-MB-231 cells[J]. Toxicol In Vitro.2013,27(1):1-10.
    [99]C. Lange, W. B. Huttner, and F. Calegari, Cdk4/cyclinDl overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors[J]. Cell Stem Cell.2009,5(3):320-31.
    [100]S. Waga, G. J. Hannon, D. Beach, and B. Stillman, The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA[J]. Nature.1994,369(6481):574-8.
    [101]Y. Xiong, G. J. Hannon, H. Zhang, D. Casso, R. Kobayashi, and D. Beach, p21 is a universal inhibitor of cyclin kinases[J]. Nature.1993,366(6456):701-4.
    [102]J. G. Drenzek, N. L. Seiler, R. Jaskula-Sztul, M. M. Rausch, and S. L. Rose, Xanthohumol decreases Notchl expression and cell growth by cell cycle arrest and induction of apoptosis in epithelial ovarian cancer cell lines[J]. Gynecol Oncol.2011,122(2):396-401.
    [103]C. V. Dang, MYC on the path to cancer[J]. Cell.2012,149(l):22-35.
    [104]D. Fernandez, V. J. Sanchez-Arevalo, and I. M. de Alboran, The role of the proto-oncogene c-myc in B lymphocyte differentiation[J]. Crit Rev Immunol.2012,32(4):321-34.
    [105]T. Palomero, W. K. Lim, D. T. Odom, M. L. Sulis, P. J. Real, A. Margolin, K. C. Barnes, J. O'Neil, D. Neuberg, A. P. Weng, J. C. Aster, F. Sigaux, J. Soulier, A. T. Look, R. A. Young, A. Califano, and A. A. Ferrando, NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth[J]. Proc Natl Acad Sci U S A.2006,103(48):18261-6.
    [106]M. S. Coumar, F. Y. Tsai, J. R. Kanwar, S. Sarvagalla, and C. H. Cheung, Treat cancers by targeting survivin:Just a dream or future reality?[J]. Cancer Treat Rev.2013.
    [107]J. Wu, Apoptosis and angiogenesis:two promising tumor markers in breast cancer (review)[J].Anticancer Res.1996,16(4B):2233-9.
    [108]D. Deeb, X. Gao, H. Jiang, A. S. Arbab, S. A. Dulchavsky, and S. C. Gautam, Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells[J]. Anticancer Res.2010,30(9):3333-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700