骨髓间充质干细胞向心肌细胞和内皮细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:由于人们生活水平的提高,冠心病成为现代社会发病率和死亡率不断上升的疾病,而急性心肌梗死是重要的死亡原因。心肌梗死后,心肌细胞坏死、凋亡造成心肌细胞数目减少,由于心肌细胞不能再生,只能由成纤维细胞填充,因此在心肌缺血发生后坏死的心肌由瘢痕组织取代,并逐步发生心室重构导致心脏收缩功能下降和心力衰竭。目前心肌梗死后的治疗手段主要包括药物治疗、介入治疗和手术治疗。药物治疗通过减少心肌氧耗,在一定程度上缓解了病人的症状。冠脉介入治疗及心脏搭桥手术治疗只能恢复局部血液供应,挽救梗死区内存活的心肌细胞,延缓左室重构,改善病人预后,但无法使已梗死的心肌细胞再生,没能从根本上修复梗死区,因此仍有部分病人不可避免地发展为心功能不全甚至导致心源性死亡。
     近年来发展的细胞移植技术为心肌梗死的治疗提供了新的方向并受到了人们的广泛关注。通过细胞心肌移植术增加有功能的心肌细胞数目,可能是心肌梗死后心衰治疗的最有效方法之一。此外近年来提出的治疗性血管新生也已发展成为治疗缺血性疾病的新方法。骨髓间充质干细胞(mesenchymal stem cells,MSCs)是骨髓中不同于造血干细胞的一类细胞,它在体内能够自我更新,保持未分化状态,在体外合适的培养条件下,易于扩增,具有向多种细胞类型分化的潜能。1999年,Makino等首次在体外成功地诱导MSCs定向分化为心肌细胞。同时MSCs具有分化为内皮细胞的理论基础和实验基础。2004年,Oswald等人发现在体外MSCs与VEGF_(165)和2%胎牛血清共培养可诱导分化为内皮样细胞。这些实验为MSCs诱导分化为心肌细胞和内皮细胞进行细胞移植治疗缺血性心脏病提供了良好的实验基础。
     Notch信号通路在脊椎动物和无脊椎动物中高度保守,它在决定细胞分化上起重要作用。它对正常心血管系统的发育有重要作用,Notch信号表达不足或过量都会造成动物因心血管异常而死亡。此外,Notch信号系统在血管再生方面也有重要作用。Notch信号通路在MSCs向内皮细胞分化的过程中可能也起着重要的调节作用。本实验主要研究了大鼠MSCs体外向心肌细胞及内皮细胞诱导分化的可行性,并研究了Notch信号通路对大鼠MSCs向内皮细胞诱导分化产生的影响,以期为缺血性心脏病的细胞移植治疗提供良好的种子细胞。
     研究目的
     1.体外分离培养大鼠骨髓MSCs,研究大鼠骨髓MSCs的生物学特性。用5-氮胞苷(5-Azacytidine,5-aza)定向诱导MSCs向心肌细胞分化,研究MSCs体外向心肌细胞分化的可行性。
     2.定向诱导大鼠骨髓MSCs向内皮细胞分化,研究MSCs体外向内皮细胞分化的可行性。研究诱导前后细胞增殖能力、迁移能力和形成毛细血管样结构能力的变化。
     3.采用RT-PCR方法检测大鼠骨髓MSCs上Notch信号受体和配体mRNA的表达情况,研究MSCs向内皮细胞诱导分化前后细胞上Notch信号受体和配体mRNA的表达变化。向诱导后内皮细胞中导入VEGF_(165)基因来促进细胞的增殖和迁移能力。检测转染VEGF_(165)基因前后细胞上Notch信号受体和配体mRNA的表达变化,检测细胞增殖能力、迁移能力和形成毛细血管样结构能力的变化,研究Notch信号对诱导后内皮细胞的增殖能力、迁移能力和形成毛细血管样结构能力的影响,以期更好的诱导MSCs向内皮细胞分化,促进诱导后内皮细胞的增殖、迁移和形成毛细血管样结构的能力,为缺血性心脏病的细胞移植治疗提供良好的种子细胞。
     方法
     1.采用密度梯度离心法和贴壁细胞分离培养法体外分离培养大鼠骨髓单个核细胞,显微镜下观察细胞的形态,采用流式细胞仪检测法鉴定细胞表面抗原的表达情况;采用5-aza诱导MSCs向心肌细胞分化,显微镜下观察诱导前后细胞形态的变化,采用免疫荧光法检测心肌细胞特异性蛋白Connexin 43和TroponinⅠ在诱导后细胞上的表达情况。
     2.采用密度梯度离心法和贴壁细胞分离培养法体外分离培养骨髓单个核细胞,采用VEGF_(165)和bFGF诱导MSCs向内皮细胞分化,显微镜下观察诱导前后细胞形态的变化;采用免疫荧光法检测内皮细胞特异性蛋白Flk1和CD31在诱导后细胞上的表达情况;将细胞接种在半固体凝胶上观察细胞形成毛细血管样结构的能力;采用~3H-TdR掺入法实验和细胞划痕实验检测诱导前后细胞增殖和迁移能力的变化。
     3.采用RT-PCR方法检测大鼠骨髓MSCs上Notch信号受体和配体mRNA的表达情况;后面的实验共分4组,A组:正常大鼠MSCs;B组:诱导后内皮细胞;C组:导入了VEGF_(165)基因的诱导后内皮细胞;D组:阻断了Notch信号的C组细胞。采用RT-PCR方法检测四组细胞上Notch信号受体和配体mRNA的表达差异;采用~3H-TdR掺入法实验和细胞划痕实验检测细胞增殖和迁移能力的变化;将细胞接种在半固体培养基上检测细胞形成毛细血管样结构的能力。
     结果
     1.大鼠骨髓MSCs的形态主要表现为长梭形和纺锤形,细胞表达整合素家族成员CD29、粘附分子CD44,但不表达造血前体细胞标志抗原CD34、泛白细胞标志抗原CD45;经5-aza诱导后,细胞形态变化不大,细胞表达心肌细胞特异性蛋白Connexin 43和TroponinⅠ。
     2.大鼠MSCs经VEGF_(165)和bFGF诱导后,细胞形态由原来的长梭形、纺锤形变成圆形、椭圆形,细胞具备了内皮细胞的形态特征;细胞表达内皮细胞特异性标志物Flk1和CD31;诱导后细胞能够在半固体培养基上形成毛细血管样结构,且其增殖能力较大鼠MSCs有所降低(P<0.01),迁移能力有所增强(P<0.01)。
     3.大鼠MSCs上表达有Notch信号受体Notch1和配体Jagged1的mRNA;大鼠MSCs向内皮细胞诱导后,细胞上Notch1和配体Jagged1的mRNA的表达无明显变化,诱导后细胞的增殖能力下降(P<0.01),迁移能力增强(P<0.01);给诱导后的内皮细胞导入VEGF_(165)基因后,细胞上Notch信号配体Jagged1的mRNA的表达增强(P<0.01),细胞的增殖能力、迁移能力和形成毛细血管样结构的能力增强(P<0.05,P<0.01,P<0.05);当阻断了诱导后内皮细胞的Notch信号后,细胞的增殖能力、迁移能力和形成毛细血管样结构的能力更进一步增强(P<0.05,P<0.05,P<0.05)。
     结论
     1.大鼠MSCs体外向心肌细胞诱导分化是可行的,诱导后的细胞获得了部分心肌细胞的表型。
     2.大鼠MSCs体外向内皮细胞诱导分化是可行的,诱导后的细胞具备部分内皮细胞的表型,并获得成熟内皮细胞的功能。
     3.大鼠MSCs上表达有Notch信号受体Notch1和配体Jagged1的mRNA。当向诱导后内皮细胞中导入VEGF_(165)基因后,细胞上Jagged1 mRNA的表达水平上调。大鼠MSCs向内皮细胞诱导后,细胞的增殖能力有所下降,迁移能力有所增强。VEGF可以促进诱导后内皮细胞的增殖能力、迁移能力和形成毛细血管样结构的能力,而Notch信号对细胞的增殖能力、迁移能力以及形成毛细血管样结构的能力有抑制作用。
Baekgroud The incidence and the fatality of coronary artery disease are ascending with the development of the living standard of the people, acute myocardial infarction is one of the main causes leading to the death to the people who have the cornary artery disease.After myocardial infarcation,the necrosis and the apoptosis of the cardiomyocytes resulted in the decrease of the cells' number,the necrosis cardiomyocyte substitute by the scar tissue,and ventricular remodeling appeared step by step and at last,cardiac systolic function decreased and even congestive heart failure was happened.Now the thearpy of the cardial infarcion include drugs therapy,interventional therapy and surgical theatment.By decrease the consumption myocardium oxygen,the drugs can release the symptom of the patients to a certain degree.Interventional therapy and surgical treatment can improve the blood supply to the heart and retrieve the survival cells,deferred the ventricular remodeling and improved the prognosis,but they cannot regenerate the death cells,so there are some patients finally developed in the cardiac insufficiency and even resulted in cardiac death.
     Cell transplant therapy providing a new method to the cardial infraction and received wide public concern.By increase the cell's number,cell transplant therapy will be a effective therapy to cardial infraction.In addition,angiogenes therapy have been developed into a new method for the ischemic disease at the moment,but the key problem is the resouce of the seed cells.Mesenchymal stem cells(MSCs) are defined as cells that can differentiate into multiple mesenchymal lineage cells such as adipocyte,muscle cells,cartilage cells,nerve cells, endothelial cells,osteoblasts and so on.Because of the multilineage potential of MSCs for differentiation and relatively easy isolation,there has been a continuing interest in therapeutic applications of MSCs from the bone.Makino first sussessfully induced MSCs differentiate into cardiomyocyte by 5-azacytidine(5-aza) in vitro.At the same time,MSCs have basic theory and experiment background to differentiate into endothelial cells.Oswald has discovered that VEGF can induced MSCs differentiate into endothlial cells in vitro.These studies provide some experiment bases for the cell transplant therapy for coronary cardial diease.
     The notch pathway is an evlutionary highly conserved signaling machinery with roles in invertebrates as well as in almost erery veterbrate organ and tissue.The notch pathway is a versatile regulator of cell fate specification,growh,differentiation,and patterning processes in metazoan organisms.It has a important role in the development of the cardiovascular,its dificient or overdose will result in death because of the abnormal in cardiovascular.What's more,the notch pathway has a important role in the vascular regeneration.Notch signaling mybe has a significant role in the MSCs differentiation into endothelial cells.In this experiment,in order to provide perfect seed cells for the cell transplant therapy for coronary cardial disease,we studied the feasibility of MSCs differentiation into cardiomyocyte and endothelial cells in vitro,explored the effect of notch signaling on the differentiation of MSCs into endothelial cells.
     Aim
     1.Isolate and cultivate rat bone MSCs in vitro,study the biological characteristics of MSCs.Induced MSCs to differentiate into cardiomyocytes in vitro.Research the feasility of MSCs differentiation into cardiomyocytes.
     2.Induced MSCs to differentiate into endothelial cells by VEGF and bFGF in vitro.Research the feasility of MSCs differentiation into endothelial cells.Detecte the change of the differentiated cells' proliferation ability,migration ability and capillary-like structure' s informing ability.
     3.The mRNA expressions of notch signaling receptors and ligands on rat bone MSCs were detected by RT-PCR.Research the change of mRNA expression of Notch receptor and its ligand on the cells treated by VEGF and bFGF.the gene of VEGF was imported into cells which were treated by VEGF and bFGF to promote the proliferation and migration ability of the cells,mRNA expression change of the Notch receptor and its ligand on these cells also detected.The proliferation ability,migration ability and capillary-like structure's informing ability of these cells were mesured.Explore the effect of notch signaling on the differentiation of MSCs into endothelial cells.
     Moths
     1.Isolate the rat bone mononuclearcells by density gradient centrifugation,through change the culture fluid,non-adherent cells were removed.The form of the cells were observed under the microscope,surface antigen of MSCs were detected by flow cytometry;MSCs were induced to differentiate into cardiomyocyte by 5-aza,the form of the differentiated cells were observed under the microscope;in order to identificate the differentiated cells' nature, cardiomocyte specific markers of connexin 43 and troponin I were detected by immunofluorescence.
     2.Isolate the rat bone mononuclearcells by density gradient centrifugation,through change the culture fluid,non-adherent cells were removed.MSCs were induced to differentiate into endothelial cells by VEGF and bFGF,the form of the differentiated cells were observed under the microscope;in order to identificate the differentiated cells' nature,endothlial cells specific markers of Flk1 and CD31 were detected by immunofluorescence;inoculate MSCs and the differentiated cells on the semisolid gel to study the cells' ability of informing the capillary-like structure.The proliferation and migration ability of the differentiated cells were mesured by ~3H-thymidine incorporation and by scarification test.
     3.The receptors and the ligands of the Notch signaling were detected by RT-PCR;There are four groups in the following experiment:group A: rat bone MSCs;group B:MSCs which treated by VEGF and bFGF; group C:the cells in group B were imported in the gene of VEGF_(165); group D:the cells in group C which were inhibited the notch signaling.Notch signaling receptor and its ligand on these cells were detected by RT-PCR;the proliferation and migration ability of these cells were mesured by ~3H-thymidine incorporation and by scarification test.Inoculate these cells on the semisolid gel to study theirs ability of informing the capillary-like structure.
     Results
     1.The shape of rat bone MSCs were mainly appeared as long fusiform and fusiform,it expressed antigens of CD29 and CD44,do not expressed antigens of CD34 and CD45,after treated by 5-aza,the cells form didn't has significant change and they expressed the cardiomyocyte' specific markers of connexin 43 and torponin I.
     2.The experiment showed that after induced by VEGF and bFGF,the cells' form mainly appeared as round and ellipse,they have the morphological characteristic of the endothlial cells and they expressed the endothelial cells' specific markers of Flk1 and CD31,at the same time,they also gained the ability of mature endothelial cells to inform the capillary-like structure on the semisolid gel.Compared to rat bone MSCs,the proliferation ability of the differentiated cells was decreased(P<0.01 ) and theirs migration ability was increased(P<0.01 ).
     3.The results RT-PCR experiment showed that there are Notch 1 and Jaggedl's mRNA expressed on rat bone MSCs;the mRNA expression of the receptor Notch1 and its ligand Jagged 1 have no significant change on the differentiated cells;After treated by VEGF and bFGF, the cells' proliferation ability were decreased(P<0.01),and its migration ability were increased(P<0.01),at the same time,they gained the ability to inform the capillary-like structure on semisolid gel.When imported the gene of VEGF_(165) into the cells which have treated by VEGF and bFGF,the mRNA expression of notch signaling ligand Jaggedl was strenghened(P<0.01) and the cells' proliferation ability,migration ability and informing capillary-like structure' ability were all increased(P<0.05,P<0.05,P<0.05);when notch signaling were inhibited,these abilities of these cells were further increased(P<0.05,P<0.05,P<0.05 ).
     Conclusions:
     1.The differentiation of rat bone MSCs into cardiomyocytes after treated by 5-aza in vitro is feasible,the defferentiated cells gained part of the phenotypes of the cardiomyocytes.
     2.The differentiation of rat bone MSCs into endothelial cells after treated by VEGF and bFGF in vitro is feasible,the defferentiated cells have part of the phenotypes of the endothelial cells and at the same time,the differentiated cells also gained the function of the mature endothelial cells.
     3.There are Notch signaling receptor Notch1 and its ligand Jaggedl's mRNA expressed on rat bone MSCs.After imported the gene of VEGF into the differentiated cells,the mRNA expression level of the Jagged 1 was upgrade.When rat bone MSCs were induced to differentiate into endothelial cells,its proliferation ability was decreased and its migration ability was increased,and they also gained the ability to inform the capillary-like structure on semisolid gel.VEGF can promote the differentiated cells' proliferation ablility, migration ablility and informing capillary-like structure' ability but notch signaling has the reversed effect.
引文
[1]Bolognese L,Neskovic A,Parodi G,et al.Left ventricular remodeling following primary coronary angioplasty[J].Circulation,2002;106(18):2351-2357
    [2]Mann DL.Mechanisms and models in heart failure:acombinatorial approach[J].Circulation,1999;100(9):999-1008.
    [3]Lumelsky N,Blondel O,Laeng P,et al.Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreaticislets.Science,2001,2925520:1389-1394.
    [4]张浩,胡盛寿.细胞移植治疗心肌梗塞的治疗进展.中国循环杂志,2000;15(3):188-189.
    [5]El Oakley RM,Ooi Oc,Bongso A,et al.Myocyte transplantation form myocardial repair:afew good cells can mend a broken heart.Ann Thorac Surg,2001;71(5):1724-1733.
    [6]Taylor DA,Atkins BZ,Hungspreugs P,et al.Regenerating functiongal myocardium:Improved performance after skeletal myoblast transplantation.Nat Med,1998;4(8):929-933.
    [7]Klug GM,Soonpaa MH,Koh GY,et al.Genetically selected cardiomycytes from differentiating embryonic stem cells form stable intracardiac grafts.J Clin Invest.1996,98(1):216-224.
    [8]Koh GY,Soonpaa MH,Klug MG,et al.Stable fetel cardiomycytes grafts in the hearts of dystrophic mice and dogs.J Clin Invest.1995;96(4):2034-2042.
    [9]Badorff C,Brandes RP,Popp R,et al.Transdifferentiation of functiongallly active cardiomyocytes.Circulation.2003;107(7):1024-1032.
    [10]Weiss RA.The Leeuwenhoek Lecture,2001.Animal origins of human infectious disease.Philos Trans R Soc Lond B Biol Sci,2001;356(1410):957-977.
    [11]Vasa M,Fichtlscherer S,Adler K,et al.Increase in circulating endothelial progenitor cells by statin theerapy in patients with stable coronary artery disease [J].Circulation,2001;103(24):2885-2890.
    [12]Frankel MS.In search of stem cell policy.Science,2000;287(5457):1397
    [13]Paolo B,Pamela GR.Marrow stromal stem cells.J Clin Invest,2000,105(12):1663-1668.
    [14]Owen M.Marrow stromal stem cells.J Cell Sci Suppl,1988;10:63
    [15]史春梦,邹仲敏,罗成基等骨髓间充质干细胞的研究前景.中国实验血液学杂志,2000;8(1):61-65.
    [16]Friedenstein AJ,Gorskaja U,Kalugina NN.Fibroblast precursors in normal and irradiated mouse hematopoieticorgans.Experimental Hemateology,1976;4:267-274.
    [17]Huss R,Lange C,Weissinger EM,et al.Evidence of peripheral boold derived,plastic asherent CD 34~(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics[J].Stem Cells,2000;18(4):252-260.
    [18]Zvaifler NJ,Marinova ML,Adams G,et al.Mesenchymal precursor cells in the blood of normal inviduals[J].Arthritis Res,2000;2(6):477-488.
    [19]Erices A,Conget P,Minguell JJ.Mesenchymal progenitor cells in human umbilical cord blood[J].Br J Haematol,2000;109(1):235-242.
    [20]Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell based therapies[J].Tissue Eng,2001;7(2):211-228.
    [21]Safford KW,Hicok KC,Safford SD,et al.Neurogenic differentiation of marine and human adipose-derived stromal cells[J].Biochem Biophys Res Commun,2002;294(2):371-379.
    [22]Noort WA,Kruisselbrink AB,Anker PS,et al.Mesenchymal stem cells promote engraftment of human umbilical cord blood derived CD34(+) cells in NOD/SCID mice[J].Exp Hematol,2002;30(8):870-878.
    [23]Williams JT,Southerland SS,Souza J,et al.Cells isolated from adult human skeletal muscle capable of differentiating into multiplemesodermal phenotypes[J].Am Surg,1999;65(1):22-26.
    [24]Liu F,Malaval L,Gupta AK,et al.Simultaneous detection of multiple bone-related mRNAs and protein expression during osteoblast differentiation: polymerase chain reaction and immunocytochemical studies at the single cell level[J]. Dev Biol, 1994; 166(1): 220-234.
    [25] Jiang Y, Vaessen B, Lenvi KT, et al. Multipotent progenitor cells can be isolated from postnatal marine bone marrow, muscle, and brain[J]. Exp Hematol, 2002;30(8): 896-904.
    [26] Almeida PG, Elshabrawy D, Porada C, et al. Differentiative potential of human metanephric mesenchymal cells[J]. Exp Hematol, 2002; 31(12): 1454-1462.
    [27] Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro [J]. J Clin Inves, 1999,103: 697-705.
    [28] Nagaya N, Fujii T, Iwase T, et al. Inravenous administration mesenchymal stem cells inproves cardiac function in rats with aute myoardialin farction through angiogenesis and myogenesis [J]. Am J Physiol Heart Circ Physiol, 2004, 287:2670-2676.
    [29] Bittira B, Kuang JQ, Al-Khaldi A, et al. In vitro preprogramming of marrow stromal cells for myocardial regeneration[J]. Ann Thorac Surg, 2002, 74:1154-1159.
    [30] Liu J, Hu Q, Wang Z, et al. Autologous stem cell transplantation for mycardial repair [J]. Am J Physiol Heart Circ Physiol, 2004,287: 501-511.
    [31] Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardio myocyte pheno type in the adult murine heart [J].Circulation, 2002, 105(1): 93-98.
    [32] Chedrawy EG, Wang JS, Nguyen DM, et al. Incorporation and integration of implanted myogenic and stem cells into native myocardial fibers: anatomic basis for functional improvements [J]. J Thorac Cardiovasc Surg, 2002, 124(3):584-590.
    [33] Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart [J].Circulation, 2002, 105(1): 93-98.
    [34] Perm E C. The use of stem cell therapy for cardiovascular disease [J]. Tex Heart Inst J, 2005, 32(3): 390- 392.
    [35] Wollert KC, Drexler H. Clinical applications of stemcells for the heart [J]. Circ Res,2005,96(2):151- 163.
    [36]王彤,黄子通,符岳,等。心肌梗死后骨髓间充质干细胞治疗改进心功能及心肺复苏结果的研究。中山大学学报(医学科学版),2007,28(5):529-534.
    [37]Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284(5411):143-147.
    [38]Friedenstein A J,Chailakhyan RK,Gerasimou UV,et al.Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers[J].Cell Tissue Kinet,1987,20(3):263-267.
    [39]Nuttall ME,Patton AJ,Olivera DL,et al.Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype:implication for osteopenic disorders[J].J Bone Miner Res,1998,13(3):371-378.
    [40]Zohar R,Sodek J,McCulloch CA.Characterization of stromal progenitor cells enriched by flowcytometry[J].Blood,1997,90(9):3471-3481.
    [41]Fortier LA,Nixon AJ,Williams J,et al.Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells[J].Am J Vet Res,1998,59(9):1182-1187.
    [42]Ghilzon R,Me Culloch CA,Zohar R.Stromal mesenchymal progenitor cells in processcitation[J].Leuk Lymphoma,1999,32(3-4):211-221.
    [43]Van Vlasselaer P,Falla N,Snoeck H,et al.Characterization and purification of osteogenic cells from murine bone marrow by two color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin.Blood,1994;84(3):753-763.
    [44]Pittenger MF,Mosca JD,McIntosh KR.Human mesenchymal stem cells:progenitor cells for cartilage,bone,fat and stroma.Curr Top Microbiol Immunol,2000,251:3-11.
    [45]Elisabeth HJ,David CC,Emily JS,et al.Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells.Stem Cells,2001;19:219-225.
    [46]Bruder SP,Jaiswal N,Haynesworth SE.Growth kinetics self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive sub cultivation following cryopreservation.J Cell Biochem,1997;64:278-294.
    [47]Guo Z,Yang J,Liu X,et al.Biological features of mesenchymal stem cells from human bone marrow.Chin Med J(Engl),2001;114(9):950-953.
    [48]Johnson BA,Haines GK,Harlow LA,et al.Adhesion molecule expression in human synovial tissue.Arthritis Rheum,1993;36:137-146.
    [49]Baddoo M,Hill K,Wilkinson R.Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection.J Cell Biochem,2003;89(6):1235-1249.
    [50]Jackson KA,Majka SM,Wang H,et al.Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells[J].J Clin Invest,2001,107(13):1395-1402.
    [51]Jiang YH,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow[J].Nature,2002,418(6983):41-49.
    [52]Wakitani S,Saito T,Caplan AI.Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.Muscle Nerve,1995;18(12):1417-1426.
    [53]Fukuda K.Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering.Artif Organs,2001;25(3):187-193.
    [54]吴铁军,蔡振杰,俞世强,等。不同浓度5-氮胞苷对骨髓间质干细胞体外诱导分化的作用[J]。第四军医大学学报,2003,24(15):1373-1375.
    [55]Reiffert S,Jaquet K,Helimeyer L,et al.Step wise subunit interaction changes by mono and bisphosphorylation of cardiac troponi Ⅰ.Biochemistry,1998;37:13516-13525.
    [56]Sasse S,Brand NJ,Kyprianou P,et al.Troponin Ⅰ gene expression during human cardiac development and in end-stage heart failure.Circ Tes.1993;72(5):932-938.
    [57]Dennis JE,Charbord P.Origin and differentiation of human and murine stroma[J].Stem cell,2002,20(3):205-214.
    [58]Lattanzi L,Salvatori G,Coletta M,et al.High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer.An alternative strategy for ex vivo gene therapy of primary myopathies[J].J Clin Invest, 1998, 101(10): 2119-2128.
    [59] Koniecany SF, Emerson CP. 5-Azacytidine induction of stable mesoderaial stem cell lineages from 101T1/2 cells: evidence for regulatory genes controlling determination. Cell, 1984; 28(3): 791-800.
    [1]方利君,付小兵,孙同柱,等。骨髓间充质干细胞分化为血管内皮细胞的实验研究。中华烧伤杂志,2003;19(1):22-24.
    [2]Yang Li-Xin,Xu Zhi-Yun,Zhang Bao-Ren,et al.In vitro induction of bone marrow stromal stem cells to differentiate into endothelial cells[J].Academic Journal of Second Military Medical University,2003;24(12):1300-1304.
    [3]Oswald J,Boxberqer S,Jorqensen B,et al.Mesenchymal stem cells can be differentiated into endothelial cells in vitro.Stem Cells,2004;22(3):377-384.
    [4]Wilmut I,Schnieke AE,McWhir J,et al.Viable offspring derived from fetal andadult mammalian cells.Nature,1997;385(6619):810-813.
    [5]殷晓雪,陈仲强,郭昭庆,等。人骨髓间充质干细胞定向诱导分化为成骨细胞及其鉴定。中国修复重建外科杂志,2004,18(2):88-91
    [6]卓本慧,江和碧,瞿平,等。骨髓间充质干细胞向神经细胞定向分化的体外研究。中国修复重建外科杂志,2005,19(5):373-376.
    [7]Tremain N,Korkko J,Ibberson D,et al.MicrosAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages.Stem Cells,2001,19(5):408-418.
    [8]Caplan AI.The mesengenic process[J].Clin Plast Surg,1994;21(3):429-435.
    [9]Majumdar MK,Thiede MA,Mosca JD,et al.Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells(MSCs) and stromal cells[J].J Cell Physiol,1998;176(1):57-66.
    [10]Dennis JE,Merriam A,Awadallah A,et al.A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse[J].J Bone Miner Res.,1999;14(5):700-709.
    [11]Reyes M,Verfaillie CM.Characterization of multipotent adult progenitor cells,a subpopulation of mesenchymal stem cells[J].Ann N Y Acad Sci.,2001;938:231-233.
    [12]Black IB,Woodbury D.Adult rat and huamn bone marrow stromal cells differentiate into neurons[J].Blood Cells Mol Dis.,2001;27(3):632-636.
    [13] Woodbury D, Reynolds K, Black IB, et al. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal gene prior to neurogenesis [J]. JNeuro Res., 2002; 69(6): 908-917.
    [14] Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells [J]. J. Clin. Invest., 2002; 109(10): 1291-1302
    [15] Haynesworth SE, Baber MA, Caplan Al. Cell surface antigenes on human marrow-derived mesenchymal cells are detected by monoclonal antibodies.Bone, 1992; 13(1): 69-80.
    [16] Barry FP, Boynton RE, Haynesworth S, et al. The monoclonal antibody SH-2,raised against human mesenchymal stem ells, recognizes an epitope on endoglin( CD105 ). Biochem Biophys Res., Commun, 1999; 265: 134-139.
    [17] Fleming JE Jr, Haynesworth Se, Cassiede P, et al. Monoclonal antibody against adult marrow-derived mesenchymal stem cells recognizes developing vasculature in embryonic human skin. Dev Dyn, 1998; 212(1): 119-132.
    [18] Huss R. Perspectives on the morphology and biology of CD 34-negative stem cells. J Hematother Stem Cell Res., 2000; 9(6): 783-793.
    [19] Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density and improve heart function in a canine chronic ischemia model. Circulation, 2005; 111(2): 150-156.
    [20] Kamihata H, Matsubara H, Nishiue T. Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler Thromb Vasc Biol., 2002;22(11): 1804-1810.
    [21] Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoat tractant protein 212 dependent manner and accelerate reendothelialization as endothelial progenitor cells[J]. Circ Res., 2003; 93(10): 980-989.
    [22] Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model [J]. Ann Thorac Surg., 2003; 75(1): 204-209.
    [23]Padilla L,Krotzsch E,Schalch P,et al.Administration of bone marrow cells into surgically induced fibrocollagenous tunnels induced angiogenesis in ischemic rat hindlimb model[J].Microsurgery,2003;23(6):568-574.
    [24]Ciulla MM,Lazzari L,Pacchiana R,et al.Homing of pheripherally injected bone marrow cells in rat after experimental myocardial injury[J].Haematologica,2003;88(6):614-621.
    [25]Saigawa T,Kato K,Ozawa T,et al.Clinical application of bone marrow implantation in patients with ateriosclerosis obliterans,and the association between efficacy and the number of implanted bone marrow cells.Circ J.,2004;68(12):1189-1193.
    [26]Makino S,Fukuda K,Myoshi S,et al.Cardiomyocytes can be generated from marrow stromal cells in vitro.J Clin Invest,1999,103(5):697-705
    [27]Jackson KA,Majka SM,Wang H,et al.Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells[J].J Clin Invest,2001,107(13):1395-1402
    [28]Jiang YH,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow[J].Nature,2002,418(6983):41-49.
    [29]赵鹏,李玉明。血管内皮细胞生长因子治疗冠心病研究进展。武警医学院学报。2004;13(4):336-339.
    [30]Mustonen T,Alitalo K.Endothelial receptor tyrosine kinases involved in angiogenesis[J].J Cell Biol.,1995;129(4):895-898.
    [31]Ziegler BL,Valtied M,Porada GA,et al.KDR receptor:a key marker defining hematopotic stem cells.Science,1999,285(5433):1553-1558.
    [32]Peichev M,Naiver AJ,Pereira D,et al.Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors[J].Blood,2000;95(3):952-958.
    [33]Edelberg JM,Tang L,Hattori K,et al.Young adult bone marrow-derived endothelial precursor cells restore aging imparied cardiac angiogenic function.Circ Res.,2002;90(10):89-93.
    [34]Wu H,Riha GM,Yang H,et al.Differentiation and proliferation of endothelial progenitor cells from canine peripheral blood mononuclear cells.J Surg Res., 2005; 126(2): 193-198.
    [35] Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology [J]. Cell, 1997; 88(3): 287-298.
    [36] Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor [J]. Endocr Rev., 1997; 18(1): 4-25.
    [37] Lebherz C, von Degenfeld G, Karl A, et al. Therapeutic angiogenesis/arteriogenesis in the chronic ischemic rabbit hindlimb: effect of venous basic fibroblast growth factor retroinfusion [J]. Endothelium, 2003; 10(4-5): 257-265.
    [38] Kucia M, Reca R, Jala VR, et al. Bone marrow as a home of heterogenous population of nonhematopoietic stem cells. Leukemia, 2005, 19(7): 1118-1127
    [39] Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002,109(3): 337-346.
    [40] Miller JW, Adamis AP, Shima DT, Vascular entothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model [J]. Am J Pathol., 1994; 145(3): 574-584.
    [41] Ernfors P, Lonnerberg P, Ayer-LeLievre C, et al. Developmental and regional expression of basic fibroblast growth factor mRNA in the rat central nervous system. J Neurosci Res., 1990; 27(1): 10-15.
    [42] Woodward WR, Nishi R, Meshul CK, et al. Nuclear and cytoplasmic localization of basic fibroblast growth factor in astrocytes and CA2 hippocampal neurons [J]. J Neurosci., 1992; 12(1): 142-152.
    [43] Lippoldt A, Andbjer B, Rosen L, et al. Photochemically induced focal cerebral ischemia in rat: time dependent and global increase in expression of basic fibroblast growth factor mRNA. Brain Res., 1993; 625(1): 45-56.
    [44] Stavri GT, Zachary IC, Baskerville PA, et al. Basic fibroblast growth factor up regulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interacton with hypoxia. Circulation, 1995; 92(1):11-14.
    [45] Nelson NJ. Angiogenesis research is on fast forward. J Natl Cancer Inst., 1999;91:820-822.
    [1]Suchting S,Freitas C,Noble FL,et al.The Notch ligand Delta-like-4 negatively regulates endothelial tip cell formation and vessel branching[J].PNAS,2007,104(9):3225-3230.
    [2]Williams CK,Li JL,Murga M,et al.Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function[J].Blood,2006,107(3):931-939.
    [3]Faloon P,Arentson E,Kazarov A,et al.Basic fibroblast growth factor positively regulates hematopoietic development.Development.2000,127(9):1931-1941.
    [4]Larsson J,Goumans MJ,Sjostrand LJ,et al.Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type Ⅰ receptor-deficient mice.EMBO J.2001,20(7):1663-1673.
    [5]Adams RH,Klein R.Eph receptors and ephrin ligands,essential mediators of vascular development.Trends Cardiovasc Med.2000,10(5):183-188
    [6]Leong KG,Hu X,Li L,et al.Activated Notch4 inhibit angiogenesis:role of beta 1-integrin activation[J].Mol Cell Biol.,2002;22(8):2830-2841.
    [7]Pires-dasilva A,Sommer RJ.The evolution of signaling pathways in animal development[J].Nat Rev Genet,2003,4(1):39-49.
    [8]Artavanis-Tsakonas S,Rand MD,Lake RJ.Notch signaling:cel fate control and signal integration in development[J].Science,1999,284(5415):770-776.
    [9]Allman D,Aster JC,Pear WS.Notch signaling in hematopoiesis and early lymphocyte development[J].Immunol Rev,2002,187(1):75-86.
    [10]史阳,王军臣。癌干细胞及其信号转导通路[J]。国际病理科学与临床杂志,2007,27(6):502-506.
    [11]Bush G,Disibio G,Miyamoto A,et al.Ligand-induced signaling in the absence of furin processing of Notch1[J].Dev Biol,2001,229(2):494-502.
    [12]Redmond L,Oh SR,Hicks C,et al.Nuclear Notch1 signaling and the regulation of dendritic development[J].Nat Neurosci,2000,3(1):30-40.
    [13]Schroeder T,Just U.Notch sigaling via RBP-J promotes myeloid differentiation [J].EMBO J,2000,19(11):2558-2568.
    [14]Milner LA,Bigas A,Kopan R,et al.Inhibition of granulocytic differentiation by mNotch1[J].Proc Natl Acad Sci U S A,1996,93(23):13014-13019.
    [15]Nam Y,Weng AP,Aster JC,et al.Structural requirements for assembly of the CSL intracellular Notch1.Mastermind-like 1 transcriptional activation complex [J].J Biol Chem,2003,278(23):21232-21239.
    [16]姜昕,周建华。Notch信号通路及其在肺癌发生中的作用[J]。国际病理科学与临床杂志,2007,27(3):231-234.
    [17]Iso T,Kedes L,Hamamori Y.HES and HERP families:Multiple effectors of the Notch signaling pathway[J].J Cell Physiol,2003,194(3):237-255.
    [18]Baron M,Aslam H,Flasza M,et al.Multiple levels of Notch signal regulation [J].Mol Membr Biol,2002,19(1):27-38.
    [19]Baron M.An overview of the Notch signalling pathway[J].Semin Cell Dev Biol,2003,14(2):113-119.
    [20]Rand MD,Grimm LM,Artavanis-Tsakonas S,et al.Calcium depletion dissociates and.activates heterodimeric Notch receptors[J].Mol Cell Biol,2000,20(5):1825-1835.
    [21]Bray SJ.Notch signaling:a simple pathway becomes complex[J].Nat Rev Mol Cell Biol,2006,7(9):678-689.
    [22]Brou C,Logeat F,Guptan N,et al.A novel proteolytic cleavage involved in notch signaling:The role of the disintegrin metalloproteinase TACE[J].Mol Cell,2000,5(2):207-216.
    [23]Fortini ME.Gamma-secretase-mediated proteolysis in cell-surface-receptor signaling[J].Nat Rev Mol Cell Biol,2002,3(9):673-684.
    [24]Struhl G,Greenwald I.Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila[J].Proc Natl Acad Sci USA,2001,98(1):229-234.
    [25]Matsuno K,Eastman D,Mitsiades T,et al.Human deltex is a conserved regulator of Notch signaling[J].Nat Genet,1998,19(1):74-78.
    [26]Nemir M,Croquelois A,Pedrazzini T,et al.Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling[J].Circ Res,2006,98(12):1471-1478.
    [27] Andreas F, Manfred G. Hey genes in cardiovascular development [J]. Trends Cardiovasc Med, 2003, 13(6): 221-226.
    [28] Iso T, Hamamori Y, Kedes L. Notch signaling in vascular development [J]. Arterioscler Thromb Vasc Biol, 2003,23(4): 543-553.
    [29] Gale NW, Dominguez MG, Noguera L, et al. Haploinsufficiency of dela-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development[J]. Proc Natl Acad Sci, 2004,101 (45): 15949-15954.
    [30] Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man [J]. Bioessays, 2004, 26(3): 225-234.
    [31] Zhong TP, Childs S, Leu JP, et al. Gridlock signaling pathway fashions the first embryonic artery [J]. Nature, 2001,414(6860): 216-220.
    [32] Villa N, Walker L, Lindsell CE, et al. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels [J]. Mech Dev, 2001,108(1-2): 161-164.
    [33] Shutter JR, Scully S, Fan W, et al. D114, a novel Notch ligand expressed in arterial endothelium [J]. Genes Dev, 2000, 14(11): 1313-1318.
    [34] Mailhos C, Modlich U, Lewis J, et al. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis [J]. Differentiation, 2001,69(2-3): 135-144.
    [35] Duarte A, Hirashima M, Benedito R, et al. Dosage-sensitive requirement for mouse D114 in artery development [J]. Genes & Dev., 2004,18(20): 2474-2478.
    [36] Leong KG, Hu X, Li L, et al. Activated Notch4 inhibit angiogenesis :role of beta 1-integrin activation [J]. Mol Cell Biol., 2002; 22(8): 2830-2841.
    [37] Noseda M, Chang L, McLean G, et al. Notch activation induces endothelial cell cycle arrest and participates in contact inhibitiong: role of p21 Cip 1 repression [J].Mol Cell Biol., 2004; 24(20): 8813-8822.
    [38] Itoh F, Itoh S, Goumans MJ, et al. Synergyand antagonism between Notch and BMP receptor signaling pathways in endothelial cells [J]. EMBOJ., 2004; 23(3):541-551.
    [39] Mailhos C, Modlich U, Lewis J, et al. Delta 4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis [J]. Differentiation, 2001; 69(2-3): 135-144.
    [40] Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis [J]. Nature. 1992;359(6398): 843-845.
    [41] Liu ZJ, Shirakawa T, Li Y, et al. Regulation of Notch 1 and D114 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol., 2003; 23(1): 14-25.
    [42] Taylor KL, Henderson AM, hughes CC. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and down regulates VEGFR-2/KDR expression [J]. Microvasc Res., 2002; 64(3):372-383.
    [43] Williams CK, Li JL, Murga M, et al. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function [J]. Blood, 2006;107(3): 931-939.
    [44] Henderson AM, Wang SJ, Taylor AC, et al. The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation [J]. J Biol Chem., 2001; 276(9): 6169-6176.
    [45] Fischer A, Schumacher N, Maier M, et al. The Notch target genes Heyl and Hey2 are required for embryonic vascular development [J]. Genes Dev., 2004;18(8): 901-911.
    [46] He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin Ⅲ [J]. Cell, 1997; 90(4): 739-751.
    [47] Kolodkin AL, Levengood DV, Rowe EG, et al. Neuropilin is a semaphorin Ⅲ receptor [J]. Cell, 1997; 90(4): 753-762.
    [48] Murga M, Fernandez-Capetillo O, Tosato G. Neuropilin-1 regulates attachment in human endothelial cells independently of vascular endothelial growth factor receptor-2 [J]. Blood, 2005; 105(5): 1992-1999.
    [49] Shimizu M, Murakami Y, Suto F, et al. Determination of cell adhesion sites of neuropilin-1 [J]. J Cell Biol., 2000; 148(6): 1283-1293.
    [50] Gu C, Rodriguez ER, Reimert DV, et al. Neuropilin-1 conveys semphorin and VEGF signaling during neural and cardiovascular development [J]. Dev Cell, 2003; 5(1): 45-57.
    [51] Kitsukawa T, Shimizu M, Sanbo M, et al. Neuropilin-semaphorin Ⅲ/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron, 1997; 19(5): 955-1005.
    [52] Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement for neuropilin-1 in embryonic vessel formation. Development, 1999; 126(21): 4895-4902.
    [1]Pires-dasilva A,Sommer RJ.The evolution of signaling pathways in animal development[J].Nat Rev Genet,2003,4(1):39-49.
    [2]Artavanis-Tsakonas S,Rand MD,Lake RJ.Notch signaling:cel fate control and signal integration in development[J].Science,1999,284(5415):770-776.
    [3]Allman D,Aster JC,Pear WS.Notch signaling in hematopoiesis and early lymphocyte development[J].Immunol Rev,2002,187(1):75-86.
    [4]史阳,王军臣。癌干细胞及其信号转导通路[J]。国际病理科学与临床杂志,2007,27(6):502-506.
    [5]Bush G,Disibio G,Miyamoto A,et al.Ligand-induced signaling in the absence of furin processing of Notch1[J].Dev Biol,2001,229(2):494-502.
    [6]Redmond L,Oh SR,Hicks C,et al.Nuclear Notch1 signaling and the regulation of dendritic development[J].Nat Neurosci,2000,3(1):30-40.
    [7]Schroeder T,Just U.Notch sigaling via RBP-J promotes myeloid differentiation [J].EMBO J,2000,19(11):2558-2568.
    [8]Milner LA,Bigas A,Kopan R,et al.Inhibition of granulocytic differentiation by mNotch1[J].Proc Natl Acad Sci U S A,1996,93(23):13014-13019.
    [9]Nam Y,Weng AP,Aster JC,et al.Structural requirements for assembly of the CSL intracellular Notch1.Mastermind-like 1 transcriptional activation complex [J].J Biol Chem,2003,278(23):21232-21239.
    [10]姜昕,周建华。Notch信号通路及其在肺癌发生中的作用[J]。国际病理科学与临床杂志,2007,27(3):231-234.
    [11]Iso T,Kedes L,Hamamori Y.HES and HERP families:Multiple effectors of the Notch signaling pathway[J].J Cell Physiol,2003,194(3):237-255.
    [12]Baron M,Aslam H,Flasza M,et al.Multiple levels of Notch signal regulation [J].Mol Membr Biol,2002,19(1):27-38.
    [13]Baron M.An overview of the Notch signalling pathway[J].Semin Cell Dev Biol,2003,14(2):113-119.
    [14]Rand MD,Grimm LM,Artavanis-Tsakonas S,et al.Calcium depletion dissociates and.activates heterodimeric Notch receptors[J].Mol Cell Biol,2000,20(5):1825-1835.
    [15]Bray SJ.Notch signaling:a simple pathway becomes complex[J].Nat Rev Mol Cell Biol,2006,7(9):678-689.
    [16]Brou C,Logeat F,Guptan N,et al.A novel proteolytic cleavage involved in notch signaling:The role of the disintegrin metalloproteinase TACE[J].Mol Cell,2000,5(2):207-216.
    [17]Fortini ME.Gamma-secretase-mediated proteolysis in cell-surface-receptor signaling[J].Nat Rev Mol Cell Biol,2002,3(9):673-684.
    [18]Struhl G,Greenwald I.Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila[J].Proc Natl Acad Sci USA,2001,98(1):229-234.
    [19]Iso T,Kedes L,Hamamori Y.HES and HERP families:multiple effectors of the Notch signaling pathway[J].J Cell Physiol,2003,194(3):237-255.
    [20]Matsuno K,Eastman D,Mitsiades T,et al.Human deltex is a conserved regulator of Notch signaling[J].Nat Genet,1998,19(1):74-78.
    [21]Loomes KM,Taichman DB,Glover CL,et al.Characterization of Notch receptor expression in the developing mammalian heart and liver.Am J Med Genet,2002,112(2):181-189.
    [22] Timmerman LA, Grego-Bessa J, Raya A. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation [J]. Genes Dev, 2004, 18(1): 99-115.
    [23] Rones MS, McLaughlin KA, Raffin M, et al. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis [J]. Development, 2000,127(17): 3865-3876.
    [24] Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature, 2005,437(7056): 270-274.
    [25] Conlon RA, Reaume AG, Rossant J. Notch 1 is required for the coordinate segmentation of somites [J]. Development, 1995, 121(5): 1533-1545.
    [26] Swiatek PJ, Lindsell CE, del Amo FF, et al. Notchl is essential for postimplantation development in mice [J]. Genes Dev, 1994, 8(6): 707-719.
    [27] Xue Y, Gao X, Lindsell CE, et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jaggedl[J]. Hum Mol Genet, 1999, 8(5): 723-730.
    [28] McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jagl haploinsufficiency [J]. Development, 2002, 129(4):1075-1082.
    [29] Pedrazzini T. Control of cardiogenesis by the Notch pathway [J]. TCM, 2007,17(3): 83-90.
    [30] Chau MD, Tuft R, Fogarty K, et al. Notch signaling plays a key role in cardiac cell differentiation [J]. Mech Dev, 2006,123(8): 626-640.
    [31] Han Z, Bodmer R. Myogenic cells fates are antagonized by Notch only in asymmetric lineages of the Drosophila heart, with or without cell division [J].Development, 2003,130(13): 3039-3051.
    [32] Kwon C, Han Z, Olson EN, et al. MicroRNAl influences cardiac differentiation in Drosophila and regulates Notch signaling [J]. Proc Natl Acad Sci USA, 2005,102(52): 18986-18991.
    [33] Nemir M, Croquelois A, Pedrazzini T, et al. Induction of cardiogenesis in embryonic stem cells via downregulation of Notchl signaling [J]. Circ Res, 2006,98(12): 1471-1478.
    [34] Andreas F, Manfred G. Hey genes in cardiovascular development [J]. Trends Cardiovasc Med, 2003, 13(6): 221-226.
    [35] Thomas G. Notch signaling and inherited disease syndromes [J]. Human Molecular Genesis, 2003,12(1): 9-13.
    [36] Iso T, Hamamori Y, Kedes L. Notch signaling in vascular development [J].Arterioscler Thromb Vasc Biol, 2003,23(4): 543-553.
    [37] Gale NW, Dominguez MG, Noguera L, et al. Haploinsufficiency of dela-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development[J]. Proc Natl Acad Sci, 2004,101(45):15949-15954
    [38] Iso T, Maeno T, Oike Y, et al. D114-selective Notch signaling induces ephrinB2 gene expression in endothelial cells [J]. Biochem Biophys Res Commun, 2006, 341(3): 708-714.
    [39] Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man [J]. Bioessays, 2004,26(3): 225-234.
    [40] Zhong TP, Childs S, Leu JP, et al. Gridlock signaling pathway fashions the first embryonic artery [J]. Nature, 2001,414(6860): 216-220.
    [41] Villa N, Walker L, Lindsell CE, et al. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels [J]. Mech Dev, 2001,108(1-2): 161-164.
    [42] Shutter JR, Scully S, Fan W, et al. D114, a novel Notch ligand expressed in arterial endothelium [J]. Genes Dev, 2000,14(11): 1313-1318.
    [43] Mailhos C, Modlich U, Lewis J, et al. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis [J].Differentiation, 2001,69(2-3): 135-144.
    [44] Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascular morphogenesis in mice [J]. Genes & Dev., 2000, 14(11): 1343-1352.
    [45] Fischer A, Schumacher N, Maier M, et al. The Notch target genes Heyl and Hey2 are required for embryonic vascular development [J]. Genes & Dev., 2004,18(8): 901-911.
    [46] Duarte A, Hirashima M, Benedito R, et al. Dosage-sensitive requirement for mouse D114 in artery development [J]. Genes & Dev., 2004,18(20): 2474-2478.
    [47] Suchting S, Freitas C, Noble FL, et al. The Notch ligand Delta-like-4 negatively regulates endothelial tip cell formation and vessel branching[J].PNAS,2007,104(9):3225-3230.
    [48]Williams CK,Li JL,Murga M,et al.Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function[J].Blood,2006,107(3):931-939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700