Notch信号通路对大鼠脑缺血后神经再生的调控及辛伐他汀与神经再生关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑血管病(cerebral vascular disease,CVD)严重危害人类健康,它主要的病理损害为局部血液循环障碍和神经元缺失,因此,血供的再恢复和神经修复是缺血性脑损伤临床治疗的两个关键环节。虽然超早期溶栓治疗和急性期神经元保护方面的研究取得了重大进展,但对于大多数患者而言,神经元的死亡不可避免,如何积极有效地促进恢复期神经功能的修复,仍是目前脑缺血研究的热点。
     传统观念认为,成年哺乳动物中枢神经系统不可再生,神经元的损伤和神经功能的丧失难以修复,神经功能的重建几乎不可能。上世纪90年代,成年脑内神经干细胞(neural stem cells,NSCs)的发现,改变了这一观念,为脑损伤的治疗提供了新的思路和策略。已有研究发现,实验性脑缺血可诱导侧脑室的脑室下区(subventricular zone,SVZ)和海马齿状回颗粒下层(subgranular zone,SGZ)的内源性NSCs,使其增殖、分化。但由于NSCs数量上的不足及其向神经元分化的比例较少,致使脑缺血后的神经再生难以有效替代神经元的缺失。明确脑缺血后神经再生的机制,通过干预手段促进神经再生,将给脑缺血的治疗带来新的希望。
     Notch信号通路是调节细胞增殖、分化的一条重要途径,主要介导细胞的分化抑制信号,许多研究显示,中枢神经系统中Notch信号通路的作用为保持NSCs的增殖状态,抑制神经细胞的分化,阻断Notch信号通路后,神经细胞分化增强。研究Notch信号通路对脑缺血后NSCs的增殖、分化的作用机制,进一步通过干预这一机制促进神经再生,可望为脑缺血治疗提供新的思路。
     辛伐他汀作为一种降血脂药物,通过抑制胆固醇合成降低心、脑血管疾病的发病率和死亡率。除降血脂作用外,还可降低血管炎症反应、抑制血小板聚集和血栓形成,称为多效性,这些作用可减少血管的继发性损伤。已有实验证实,用他汀类药物治疗脑出血大鼠,可增强神经再生、突触形成和血管再生,改善神经功能恢复,改善预后。有人证实,辛伐他汀对卒中后血管再生的促进作用是通过影响Notch信号活性实现的。
     本实验采用线栓法制备大鼠MCAO模型,以Morris水迷宫检测学习、记忆能力;利用免疫组织化学和免疫荧光化学方法研究脑缺血后内源性NSCs增殖、分化的变化特点,揭示大鼠脑缺血后自体NSCs动员的变化规律;Western-Blot法检测Notch1蛋白表达的动态变化,以DAPT为Notch信号通路阻断剂,观察Notch信号通路对脑缺血后神经再生的调控作用;观察辛伐他汀对脑缺血后神经再生的影响及其与Notch信号的关系,揭示他汀类药物促进神经再生的机制。从行为水平、细胞水平及分子水平研究Notch信号通路及他汀类药物对脑缺血后神经再生的调控机制,为探讨脑缺血的治疗新策略提供实验依据。
Ischemic cerebralvascular disease endangers human health seriously. The prominent pathological hallmark are focal circulation disorder and the loss of neurons. To regain blood supply and repair the neurons are the two key points of clinical treatment. Although the ultra-early arterial thrombolysis is effective, for most patients, neuron death is unavoidable. How to promote functional recovery is still in research. There is evidence that cerebral ischemia can induce the neural stem cells to proliferate and differentiate in the subventricular zone and the subgranular zone. This process is regulated by the Notch signaling. Simvastatin could promote neurogenesis after cerebral ischemia. But the mechanism is less well understood. This study was undertaken to investigate the role of Notch signaling on neurogenesis after cerebral ischemia, to observe the effect of simvastatin on neurogenesis and the relationship between simvastatin and Notch1 hoping to provide a theoretical and experimental foundation for clinical care on ischemic cerebralvascular diseases.
     Objective: To observe the dynamic changes of neurogenesis after focal cerebral ischemia in adult rats, to identify the effect of theγ-secretase inhibitor-DAPT on neurogenesis after focal cerebral ischemia and to observe the influence of simvastatin on neurogenesis and the relationship with Notch1. Methods: Total 120 male Wistar rats were randomly divided into the following groups: Sham group, MCAO group, DAPT group and simvastatin group, 6 rats in each group. Rats in experimental groups suffered from focal cerebral ischemia with a nylon suture method. Neurologic impairment was evaluated by Longa five-grade scoring standard. Learning and memory function was tested with Morris water maze. Western-Blot was used to detect Notch1 protein, immunohistochemistry and immunofluorescence for BrdU, BrdU/DCX and BrdU/NeuN expression. The gama-secretase inhibitor-DAPT was used as the blocker of Notch signaling pathway to observe the influence of Notch signaling on neurogenesis after cerebral ischemia. The effect of simvastatin on neurogenesis and its relationship with Notch1 was investigated. Results: (1) From day 3 after ischemia, BrdU and BrdU/DCX double-labeled positive cells began to increase, peaked at day 14, started to decrease at day 21, and more evident at day 28. BrdU/NeuN double-labeled positive cells appeared at day 3 after ischemia, began to increase at day 7, peaked at day 21, then decreased from day 28. (2) After blocking Notch signaling pathway, the escape latency shortened compared with the MCAO group (P<0.05). Notch1 protein expression at different time points was reduced. At each time point the BrdU-positive cells were more than the sham group, but less than the MCAO group (P<0.05). The trend of BrdU/DCX consistented with BrdU. But the BrdU/NeuN double-labeled positive cells were more than the MCAO group at the same time point. (3) The escape latency of simvastatin group was obviously shorter than the MCAO group (P<0.05). Western-Blot result showed significantly decreased expression of Notch1. BrdU, BrdU/DCX and BrdU/NeuN positive cells were more than the same time point of MCAO (P<0.05). Conclusions: (1) Proliferation and differentiation of endogenous neural stem cells can be induced by cerebral ischemia. (2) Notch signaling passway play a key role in ischemia-induced neurogenesis. (3) Simvastatin could promote neurogenesis and functional recovery after cerebral ischemia. The mechanism may be achieved by influencing the activity of Notch signaling.
引文
[1]隋立森.大鼠颅脑损伤后神经干细胞原位诱导、增殖分化及Notch信号通路调控机制的实验研究[D]. 2008.
    [2] Alex Zacharek, Jieli Chen, Xu Cui, et al. Simvastatin Increases Notch Signaling Activity and Promotes Arteriogenesis After Stroke[J]. Stroke, 2009, 40(1): 254–260.
    [3] Balu DT, Lucki I. Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology[J]. Neurosci Biobehav Rev, 2009, 33(3): 232-252.
    [4] Shors TJ, Townsend DA, Zhao M, et al. Neurogenesis may relate to some but not all types of hippocampal-dependent learning[J]. Hippocampus, 2002,12(5): 578-584.
    [5] Reif A, Fritzen S, Finger M, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression[J]. Mol Psychiatry, 2006, 11(5): 514-522.
    [6] Manganas LN, Zhang X, Li Y, et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain[J]. Science, 2007, 318(5852): 980-985.
    [7] Dayer AG, Cleaver KM, Abouantoun T, et al. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors[J]. J Cell Biol, 2005, 168(3): 415-427.
    [8] Luzzati F, De Marchis S, Fasolo A, et al. Neurogenesis in the caudate nucleus of the adult rabbit[J]. J Neurosci, 2006, 26(2): 609-621.
    [9] Kokoeva MV, Yin H, Flier JS. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance[J]. Science, 2005, 310(5748): 679-683.
    [10] Sohur US, Emsley JG., Mitchell BD, et al. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells[J]. Philos Trans R Soc Lond B Biol Sci, 2006, 361(1473): 1477-1497.
    [11] Encinas JM, Vaahtokari A, Enikolopov G.. Fluoxetine targets early progenitor cells in the adult brain[J]. Proc Natl Acad Sci USA, 2006, 103(21): 8233-8238.
    [12] Rao MS, Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus[J]. Eur J Neurosci, 2004, 19(2): 234-246.
    [13] Encinas JM, Enikolopov G. Identifying and quantitating neural stem and progenitor cells in the adult brain[J]. Methods Cell Biol, 2008, 85: 243-272.
    [14] Verwer RW, Sluiter AA, Balesar RA, et al. Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin[J]. Brain, 2007, 130(Pt 12): 3321-3335.
    [15] Esposito MS, Piatti VC, Laplagne DA, et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development[J]. J Neurosci, 2005, 25(44): 10074-10086.
    [16] Ge S, Goh EL, Sailor KA, et al. GABAregulates synaptic integration of newly generated neurons in the adult brain[J]. Nature, 2006, 439(7076): 589-593.
    [17] Overstreet WL, Bromberg DA, Bensen AL, et al. GABAergic signaling to newborn neurons in dentate gyrus[J]. J Neurophysiol, 2005, 94(6): 4528-4532.
    [18] Overstreet LS, Bensen AL, Westbrook GL. Delayed development of adult-generated granule cells in dentate gyrus[J]. J Neurosci, 2006, 26(8): 2326-2334.
    [19] Tashiro A, Sandler, VM, Toni N, et al. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus[J]. Nature, 2006, 442(7105): 929-933.
    [20] McDonald HY, Wojtowicz JM. Dynamics of neurogenesis in the dentate gyrus of adult rats[J]. Neurosci Lett, 2005, 385(1): 70-75.
    [21] Elder GA, de Gasperi R, Gama Sosa MA. Research update:neurogenesis in adult brain and neuropsychiatric disorders[J]. Mt Sinai J Med, 2006, 73(7):931-940.
    [22] Filippov V, Kronenberg G, Pivneva T, et al. Subpopulation of nestin expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes[J]. Mol. Cell. Neurosci. 2003, 23(3): 373- 382.
    [23] Melanson-Drapeau L, Beyko S, Dave S, et al. Oligodendrocyte progenitor enrichment in the connexin32 null-mutant mouse[J]. J Neurosci, 2003, 23(5): 1759-1768.
    [24] Ekdahl CT, Claasen JH, Bonde S, et al. Inflammation is detrimental for neurogenesis in adult brain[J]. Proc Natl Acad Sci USA, 2003, 100(23): 13632-13637.
    [25] Chumley MJ, Catchpole T, Silvany RE, et al. EphB receptors regulate stem/progenitorcell proliferation, migration, and polarity during hippocampal neurogenesis[J]. J Neurosci, 2007, 27(49): 13481-13490.
    [26] Pechnick RN, Zonis S, Wawrowsky K, et al. p21Cip1 restricts neuronal proliferationinthe subgranular zone of the dentate gyrus of the hippocampus[J]. Proc Natl Acad Sci U S A, 2008, 105(4): 1358-1363.
    [27] Kao HT, Li P, Chao HM, et al. Early involvement of synapsin III in neural progenitor cell development in the adult hippocampus[J]. J Comp Neurol, 2008, 507(6):1860-1870.
    [28] Zhao M, Li D, Shimazu K, et al. Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis[J]. Biol Psychiatry, 2007, 62(5): 381-390.
    [29] Trejo JL, Llorens-Martin MV, Torres-Aleman I. The effects of exercise on spatial learning and anxiety-like behavior are mediated byan IGF-I-dependent mechanism related to hippocampal neurogenesis[J]. Mol Cell Neurosci, 2008, 37(2): 402-411.
    [30] Schanzer A, Wachs FP, Wilhelm D, et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor[J]. Brain Pathol, 2004, 14(3): 237-248.
    [31] Shimazu K, Zhao M, Sakata K, et al. NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis[J]. Learn Mem, 2006, 13(3): 307-315.
    [32] Frielingsdorf H, Simpson DR, Thal LJ, et al. Nerve growth factor promotes survival of new neurons in the adult hippocampus[J]. Neurobiol Dis, 2007, 26(1): 47-55.
    [33] Howell OW, Silva S, Scharfman HE, et al. Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus. Neurobiol Dis, 2007, 26(1): 174-188.
    [34] Karlsson RM, Choe JS, Cameron HA, et al. The neuropeptide Y Y1 receptor subtype is necessary for the anxio-lytic-like effects of neuropeptide Y, but not the antidepressant- like effects of fluoxetine, in mice[J]. Psychopharmacology (Berl), 2008, 195(4): 547- 557.
    [35] Saravia FE, Beauquis J, Revsin Y, et al. Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment[J]. Cell Mol Neurobiol, 2006, 26(4-6): 943-957.
    [36] Spritzer MD, Galea LA. Testosterone and dihydrotestosterone, but not estradiol, enhance survival of new hippocampal neurons in adult male rats[J]. Dev Neurobiol, 2007, 67(10): 1321-1333.
    [37] Bursztajn S, Falls WA, Berman SA, et al. Cell proliferation in the brains of NMDAR NR1 transgenic mice[J]. Brain Res, 2007, 1172: 10-20.
    [38] Jessberger S, Zhao C, Toni N, et al. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling[J]. J Neurosci, 2007, 27(35): 9400-9407.
    [39] Tozuka Y, Fukuda S, Namba T, et al. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells[J]. Neuron, 2005, 47(6): 803-815.
    [40] Earnheart JC, Schweizer C, Crestani F, et al. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states[J]. J Neurosci, 2007, 27(14): 3845-3854.
    [41] Kulkarni VA, Jha S, Vaidya VA. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation,of granule cell progenitors in the adult rat hippocampus[J]. Eur J Neurosci, 2002, 16(10): 2008-2012.
    [42] Hoglinger GU, Rizk P, Muriel MP, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease[J]. Nat Neurosci, 2004, 7(7): 726-735.
    [43] Dominguez-Escriba L, Hernandez-Rabaza V, Soriano-Navarro M, et al. Chronic cocaine exposure impairs progenitor proliferation but spares survival and maturation of neural precursors in adult rat dentate gyrus[J]. Eur J Neurosci, 2006, 24(2): 586-594.
    [44] Kaneko N, Okano H, Sawamoto K. Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb[J]. Genes Cells, 2006, 11(10): 1145-1159.
    [45] Kotani S, Yamauchi T, Teramoto T, et al. Pharmacological evidence of cholinergic involvement in adult hippocampal neurogenesis in rats[J]. Neuroscience, 2006, 142(2): 505-514.
    [46] Jha S, Rajendran R, Davda J, et al. Selective serotonin depletion does not regulatehippocampal neurogenesis in the adult rat brain: differential effects of p-chloropheny- lalanine and 5,7-dihydroxytryptamine[J]. Brain Res, 2006, 1075(1): 48-59.
    [47] Wang JW, David DJ, Monckton JE, et al. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells[J]. J Neurosci, 2008, 28(6): 1374-1384.
    [48] Fritzen S, Schmitt A, Koth K, et al. Neuronal nitric oxide synthase (NOS-I) knockout increases the survival rate of neural cells in the hippocampus independently of BDNF[J]. Mol Cell Neurosci, 2007, 35(2): 261-271.
    [49] Hua Y, Huang XY, Zhou L, et al. DETA/NONOate, a nitric oxide donor, produces antidepressant effects by promoting hippocampal neurogenesis[J]. Psychopharmacology (Berl), 2008, 200(2): 231-242.
    [50] Koehl M, Meerlo P, Gonzales D, et al. Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin[J]. FASEB J, 2008, 22(7): 2253-2262.
    [51] Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis[J]. Nature, 2005, 437(7063): 1370-1375.
    [52] Breunig JJ, Silbereis J, Vaccarino FM, et al. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus[J]. Proc Natl Acad Sci USA, 2007, 104(51): 20558-20563.
    [53] Fan XT, Xu HW, Cai WQ, et al. Antisense Noggin oligodeoxynucleotide administration decreases cell proliferation in the dentate gyrus of adult rats[J]. Neurosci Lett, 2004, 366(1): 107-111.
    [54] Han YG, Spassky N, Romaguera-Ros M, et al. Hedgehog signaling and primary ciliaare required for the formation of adult neural stem cells[J]. Nat Neurosci, 2008, 11(3): 277-284.
    [55] Gur TL, Conti AC, Holden J, et al. cAMP response element-binding protein deficiency allows for increased neurogenesis and a rapid onset of antidepressant response[J]. J Neurosci, 2007, 27(29): 7860-7868.
    [56] Pieper AA, Wu X, Han TW, et al. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice[J]. Proc NatlAcad Sci U S A, 2005, 102(39): 14052-14057.
    [57] Pickard BS, Pieper AA, Porteous DJ, et al. The NPAS3 gene–emerging evidence for a role in psychiatric illness[J]. Ann Med, 2006, 38(6): 439-448.
    [58] Mirescu C, Gould E. Stress and adult neurogenesis[J]. Hippocampus, 2006, 16(3): 233-238.
    [59] Wong EY, Herbert. J. Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus[J]. Neuroscience, 2006, 137(1): 83-92.
    [60] Murray F, Smith DW, Hutson PH. Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice[J]. Eur J Pharmacol, 2008, 583(1): 115-127.
    [61] Koo JW, Duman RS. IL-1 beta is an essential mediator of the antineurogenic and anhedonic effects of stress[J]. Proc Natl Acad Sci U S A, 2008, 105(2): 751-756.
    [62] Ben Menachem-Zidon O, Goshen I, Kreisel T, et al. Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis[J]. Neuropsychopharmacology, 2008, 33(9): 2251-2262.
    [63] Goshen I, Kreisel T, Ben-Menachem-Zidon O, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippo- campal neurogenesis suppression[J]. Mol Psychiatry, 2008, 13(7): 717-728.
    [64] Jacobsen JP, Mork A. Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat[J]. Brain Res, 2006, 1110(1): 221-225.
    [65] Heine VM, Zareno J, Maslam S, et al. Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression[J]. Eur J Neurosci, 2005, 21(5): 1304-1314.
    [66] Warner-Schmidt JL, Madsen TM, Duman RS. Electroconvulsive seizure restores neurogenesis and hippocampus-dependent fear memory after disruption by irradiation[J]. Eur J Neurosci, 2008, 27(6): 1485-1493.
    [67] Bruel-Jungerman E, Rampon C, Laroche S. Adult hippocampal neurogenesis, synapticplasticity and memory: facts and hypotheses[J]. Rev Neurosci, 2007, 18(2): 93-114.
    [68] Saxe MD, Battaglia F, Wang JW, et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus[J]. Proc Natl Acad Sci U S A, 2006, 103(46): 17501-17506.
    [69] Zhang CL, Zou Y, He W, et al. A role for adult TLX-positive neural stem cells in learning and behaviour[J]. Nature, 2008, 451(7181): 1004-1007.
    [70] Sisti HM, Glass AL, Shors TJ. Neurogenesis and the spacing effect: learning over time enhances memory and the survival of new neurons. Learn Mem, 2007, 14(5): 368-375.
    [71] Bédard A, Parent A. Evidence of newly generated neurons in the human olfactory bulb[J]. Brain Res Dev Brain Res, 2004, 151(1-2): 159-168.
    [72] Curtis MA, Penney EB, Pearson J, et al. The distribution of progenitor cells in the subependymal layer of the lateralventricle in the normal and Huntington’s disease human brain[J]. Neuroscience, 2005, 132(3): 777-788.
    [73] Boekhoorn K, Joels M, Lucassen PJ. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippo- campus[J]. Neurobiol Dis, 2006, 24(1): 1-14.
    [74] Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease[J]. Proc Natl Acad Sci USA, 2004, 101(1): 343-347.
    [75] Bhardwaj RD, Curtis MA, Spalding KL, et al. Neocortical neurogenesis in humans is restricted to development[J]. Proc Natl Acad Sci U S A, 2006, 103(33): 12564-12568.
    [76] Spalding KL, Bhardwaj RD, Buchholz BA, et al. Retrospective birth dating of cells in humans[J]. Cell, 2005, 122(1): 133-143.
    [77] Park JH, Enikolopov G.. Transient elevation of adult hippocampal neurogenesis after dopamine depletion[J]. Exp Neurol, 2010, 222(2): 267-276.
    [78] Cova L, Armentero MT, Zennaro E, et al. Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson's disease[J]. Brain Res, 2010, 1311: 12-27.
    [79] Shen CC, Yang YC, Chiao MT, et al. Characterization of endogenous neural progenitor cells after experimental ischemic stroke[J]. Curr Neurovasc Res, 2010, 7(1): 6-14.
    [80] Fishell G, Goldman JE. A silver lining to stroke: does ischemia generate new cortical interneurons[J]? Nat Neurosci, 2010, 13(2): 145-146.
    [81] Shruster A, Melamed E, Offen D. Neurogenesis in the aged and neurodegenerative brain[J]. Apoptosis, 2010, Mar 26, [DB/OL].
    [82] Lopez-Toledano MA, Ali Faghihi M, Patel NS, et al. Adult Neurogenesis: A Potential Tool for Early Diagnosis in Alzheimer's Disease[J]? J Alzheimers Dis, 2010, Feb 17, [DB/OL].
    [83] Sahay A, Hen R. Adult hippocampal neurogenesis in depression[J]. Nat Neurosci, 2007, 10(9): 1110-1115.
    [84] Wang JW, David DJ, Monckton JE, et al. Chronic fluoxetine stimulates maturation andsynaptic plasticity of adult-born hippocampal granule cells[J]. J Neurosci, 2008, 28(6): 1374-1384.
    [85] Airan RD, Meltzer LA, Roy M, et al. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression[J]. Science, 2007, 317(5839): 819-823.
    [86] Perera TD, Coplan JD, Lisanby SH, et al. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates[J]. J Neurosci, 2007, 27(18): 4894-4901.
    [87] Duan X, Chang JH, Ge S, et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain[J]. Cell, 2007, 130(6): 1146-1158.
    [88] Zhao S, Chai X, Frotscher M. Balance between neurogenesis and gliogenesis in the adult hippocampus: role for reelin[J]. Dev Neurosci, 2007, 29(1-2): 84–90.
    [89] Reif A, Fritzen S, Finger M, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression[J]. Mol Psychiatry, 2006, 11(5): 514–522.
    [90] Hellsten J, West MJ, Arvidsson A, et al. Electroconvulsive seizures induce angiogenesis in adult rat hippocampus[J]. Biol Psychiatry, 2005, 58(11): 871–878.
    [91] Fahrner A, Kann G., Flubacher A, et al. Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients[J]. Exp Neurol, 2007, 203(2): 320–332.
    [92]陈佳俊,石岩殊,韩雪梅.线栓法大鼠局灶性脑缺血模型(MCAO)的实验研究[J].吉林医学, 2004, 25(10): 16-17.
    [93] Tang H, Wang Y, Xie L, et al. Effect of neural precursor proliferation level on neurogenesis in rat brain during aging and after focal ischemia[J]. Neurobiol Aging, 2009, 30(2): 299-308.
    [94] Kee N, Teixeira CM, Wang AH, et al. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus[J]. Nat Neurosci, 2007, 10(3): 355-62.
    [95] Wang X, Mao X, Xie L, et al. Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo[J]. J Cereb Blood Flow Metab, 2009, 29(10): 1644-1654.
    [96]王晓梅,饶明俐,冯加纯.大鼠局灶性脑缺血损伤后星形胶质细胞和神经元的动态变化[J].中风与神经疾病杂志, 2005, 22(3): 206-208.
    [97]董铭,于澎.脑内神经再生的进展[J].中风与神经疾病杂志, 2003, 20(3): 279-280.
    [98] Sanai N, Tramontin AD, Qui?ones-Hinojosa A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration[J]. Nature, 2004, 427(6976): 740-744.
    [99] Shen J, Xie L, Mao X, et al. Neurogenesis after primary intracerebral hemorrhage in adult human brain[J]. J Cereb Blood Flow Metab, 2008, 28(8): 1460-1468.
    [100] Wu H, Lu D, Jiang H, et al. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury[J]. J Neurotrauma, 2008, 25(2): 130-139.
    [101] Borghese L, Dolezalova D, Opitz T, et al. Inhibition of Notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo[J]. Stem Cells, 2010, Mar 16. [DB/OL].
    [102] Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and Notch2 have opposite effects on embryonal brain tumor growth [J ]. Cancer Res, 2004 , 64 (21) : 7787-7793.
    [103] Cuevas IC, Slocum AL, Jun P, et al. Meningioma transcript profiles reveal deregulatedNotch signaling pathway[J ]. Cancer Res, 2005, 65(12): 5070-5075.
    [104] Lanz TA, Himes CS, Pallante G, et al. The gamma-secretase inhibitor N-[N- (3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther, 2003, 305(3): 864-871.
    [105] Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation[J]. Endocrinology, 2003, 144(2): 681-692.
    [106] Laufs U, Liao JK. Rapid effects of statins: from prophylaxis to therapy for ischemic stroke[J]. Arterioscler Thromb Vasc Biol, 2003, 23(2): 156-157.
    [107] Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation[J]. Endocrinology, 2003, 144(2): 681-692.
    [108] Laufs U, Liao JK. Rapid effects of statins: from prophylaxis to therapy for ischemic stroke[J]. Arterioscler Thromb Vasc Biol, 2003, 23(2): 156-157.
    [109] Lu D, Qu C, Goussev A, et al. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury[J]. Neurotrauma, 2007, 24(7): 1132-1146.
    [110] Karki K, Knight RA, Han Y, et al. Simvastatin and atorvastatin improve neurological outcome after experimental intracerebral hemorrhage[J]. Stroke, 2009, 40(10): 3384-3389.
    [111] Greisenegger S, Müllner M, Tentschert S,et al. Effect of pretreatment with statins on the severity of acute ischemic cerebrovascular events[J]. J Neurol Sci, 2004, 221(1-2): 5-10.
    [112] Reeves MJ, Gargano JW, Luo Z, et al, Effect of pretreatment with statins on ischemic stroke outcomes[J]. Stroke, 2008, 39(6): 1779-1785.
    [113] Zheng Z, Chen B. Effects of Pravastatin on neuroprotection and neurogenesis after cerebral ischemia in rats[J]. Neurosci Bull, 2007, 23(4): 189-197.
    [114]周卿,陈书艳.他汀类药物对血管新生作用及机制的研究[J].国际心血管病杂志,2006, 33(1): 45-48.
    [115] Goldstein LB, Amarenco P, Zivin J. Statin treatment and stroke outcome in the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial[J]. Stroke, 2009, 40(11): 3526-3531.
    [116] Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow--derived endothelial progenitor cells[J]. J Clin Invest, 2001, 108(3): 399-405.
    [117]张林明,马静萍,刘艳明,等.辛伐他汀预处理对脑缺血再灌注损伤Bcl-2和Bax表达的影响[J].神经解剖学杂志, 2010, 26(1): 64~68.
    [118] Chang H, Schimmer AD. Livin/ melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy[J]. Mol Cancer, 2007, 6(1) :24.
    [119]张益,蔡志友,晏勇.阿托伐他汀对大鼠脑缺血再灌注脑组织Livin、caspase3表达的影响[J].重庆医学, 2009, 38(9): 1112-1114.
    [120]陈江君,刘宁,陈军,等.阿托伐他汀钙对大鼠脑缺血再灌注后NF-κB表达及神经细胞凋亡的影响[J].中国康复, 2009, 24(2): 81-83.
    [121] Chen J, Zhang ZG, Li Y, et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke[J]. Ann Neurol, 2003, 53:743 - 751.
    [122] McCarey DW, Melunes IB, Madhok R, et al. Trial of Atorvastatin in Rheumatoid Arthritis(TARA): double-blind, randomized placebo controlled trial[J]. Lancet, 2004, 363(9426): 2015-2021.
    [123] Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol, 2005, 45: 89-118.
    [124]曲莉,刘宗武,赵学忠.他汀类药物多效性研究进展[J].中国老年学杂志, 2010, 30(2): 280-283.
    [125]孙鼎明,张志珺.他汀类药物作用机制及其在卒中防治中的应用[J].国际脑血管病杂志, 2007, 15(10): 757-761.
    [126]李珺,吴家幂,储照虎,等.他汀类药物神经保护作用的研究进展[J].国际脑血管病杂志, 2006, 14(9): 696-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700