锂基和钾基稀燃氮氧化物储存还原催化剂结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀薄燃烧技术不仅能减少燃油消耗,而且能减少CO_2和碳氢化合物的排放。然而在稀燃条件下,传统的三效催化剂不能有效去除稀燃尾气中的NO_x,因此有必要开发新的NO_x消除技术。NO_x储存-还原(NSR)技术是消除稀燃NO_x的一种有效方法。目前广泛研究的Pt/Ba/Al_2O_3体系因抗硫性差,难以推广使用。本文以碱金属(Li和K)代替碱土金属Ba作为储存剂,以TiO_2基复合氧化物TiO_2-MO_x(M=Al, Zr, Si, Sn)为载体,制备了相应的NSR催化剂,并筛选出合适的载体TiO_2-Al_2O_3,对其组份配比进行了优化,研究了负载不同Li含量的催化剂性能并与不同Ba含量的催化剂进行了比较。同时考察了掺杂La_2O_3的影响,对La_2O_3的含量进行了优化,并对载体焙烧温度,储存剂K的前驱体的影响进行了系统考察。在此基础上,提出了氮氧化物的储存机理。
     采用沉淀法合成了一系列TiO_2基复合氧化物TiO_2-MO_x (M=Al, Zr, Si, Sn),并分步浸渍贵金属Pt和Li制成NSR催化剂,结果表明:NSR催化剂Pt/Li/TiO_2经Al_2O_3或ZrO_2改性后,其储存能力大幅增加。原因是催化剂的比表面积的提高和贵金属Pt分散度的降低。催化剂的抗硫能力与载体的总酸量密切相关,总酸量越大,抗硫性能越好。而催化剂的氧化能力由贵金属的粒子大小(分散度)决定,分散度越低,粒子越大,其氧化性能越强。以碱金属Li作为储存剂的NSR催化剂对NO_x的储存适宜温度为350 ~ 400 oC,在350 oC,NO_x在催化剂Pt/Li/TiO_2-MO_x (M=Al,Zr,Si,Sn)上只是以单一的离子硝酸盐形式吸附。催化剂硫中毒主要因为形成了体相硫酸盐。
     对于TiO_2-Al_2O_3负载的NSR催化剂体系,优化了载体TiO_2-Al_2O_3中的原子比例,并进一步研究了Li基催化剂与Ba基催化剂之间的差异。结果表明:TiO_2的掺杂可以大幅提高催化剂Pt/Li/Al_2O_3的抗硫性。与纯TiO_2作为载体相比,Pt与Li在TiO_2-Al_2O_3复合载体上的分散性更好,催化剂的NO_x储存量也较大。从催化剂的储存能力和抗硫性能考虑,适宜的TiO_2添加量为:质量比TiO_2/(TiO_2 + Al_2O_3)=0.40,摩尔比Ti/(Ti + Al)=0.30。In-situ DRIFT表征结果表明:500 oC下,NO在Pt/Li/Al_2O_3和Pt/Li/TA (40)上主要以双齿硝酸盐形式储存,主要储存活性位为-OLi。而在Pt/Li/TiO_2则是以离子态硝酸盐形式吸附,主要吸附中心为Li2CO3。以碱金属Li和碱土金属Ba作为储存剂时,当催化剂含有相同摩尔量的碱性组分时,Li基与Ba基催化剂的NO_x储存量大致相当,但Li基催化剂具有更好的抗硫性。为了改进Pt/K/TiO_2-Al_2O_3催化剂的热稳定性和抗硫性能,对载体进行了改性,发现载体中掺杂少量La_2O_3可以显著催化剂Pt/K/TiO_2-Al_2O_3的热稳定性,储存及抗硫性能。La_2O_3的最佳掺杂量为:质量比La_2O_3/(TiO_2 + Al_2O_3 + La_2O_3)为3%。当载体在较低温度焙烧时(500 oC),主要以无定形形式存在,载体酸性较强,K在载体上主要以-OK形式存在,NO_x在催化剂上以单齿或双齿硝酸盐的形式吸附,此时的硝酸盐热稳定性差,催化剂的储存能力不大。当载体在较高温度焙烧时(750 oC),载体表面酸性较弱,K在载体上主要以K2CO3的形式存在,K2CO3相对于-OK更容易与NO_x作用,生成自由硝酸根,其热稳定性较高,因此高温焙烧的载体负载的NSR催化剂对NO_x的储存能力更大。然而,K2CO3也容易与SO_2反应生成难以脱除的硫酸盐。不同K盐的前驱体能显著影响NSR催化剂Pt/K/TiO_2-Al_2O_3-La_2O_3的储存性能。采用KNO3为前驱体时,新鲜样品的催化剂储存能力最强,但抗硫性最差。采用KCl为前驱体时,新鲜样品的储存能力最弱,但抗硫性最强。In-situ DRIFT表征结果表明,采用不同前驱体制得的样品在350 oC富氧气氛下主要以离子态硝酸盐形式储存NO_x。
Lean-burn combustion is a promising technique to increase fuel efficiency and decrease hydrocarbons (HCs) and carbon dioxide (CO_2) emission. However, under lean-burn condition nitrogen oxides (NO_x) can not be effectively removed by traditional three-way catalysts (TWCs). So, it is necessary to explore new catalytic technique for lean-burn NO_x abatement. The NO_x storage-reduction (NSR) technique is a promising solution to lean-burn NO_x pollution. At present, the most widely studied catalyst system is Pt/Ba/Al_2O_3, which can be hardly applied extensively due to its poor sulfur-resistance. In this work, alkali metal Li and K was used as storage medium to replace Ba. The performance of Li-based catalysts supported on TiO_2 and TiO_2-MO_x (M=Al, Zr, Si, Sn) was investigated carefully. Based on NO_x storage ability and SO_x-resisting performance, the TiO_2-Al_2O_3 is selected as the support. The weight ratio of TiO_2/(TiO_2 + Al_2O_3) was optimized, meanwhile, the difference between Li-based and Ba-based catalysts was systematically investigated. In addition, the effect of La_2O_3 doping on the performance of Pt/K/TiO_2-Al_2O_3 was also studied. The optimized weight ratio La_2O_3/(TiO_2 + Al_2O_3 + La_2O_3) in the support is 3%. Besides, the effects of calcination temperature of the support and the different precursor of K were also investigated. Based on this, potential NO_x storage mechanisms were proposed.
     A series of NSR catalysts Pt/Li/TiO_2-MO_x (M=Al, Zr, Si, Sn) were prepared by sequential impregnation using the supports TiO_2-MO_x synthesized by co-precipitation. The NO_x storage capacity (NSC) of fresh Pt/Li/TiO_2 is greatly improved after doped with Al_2O_3 or ZrO_2 due to the increase of specific surface area and decrease of Pt dispersion. The regeneration of sulfated Pt/Li/TiO_2-MO_x strongly depends on the total acidity of the supports, including Br?nsted acid or Lewis acid. The oxidation ability of Pt/Li/TiO_2-MO_x is largely determined by crystallite size of Pt. Larger Pt crystallite corresponds to stronger oxidation ability. In-situ DRIFT results show that the NO_x is mainly stored as nitrate at 350 oC. At this temperature, NO_x is mainly stored as ionic nitrates over Pt/Li/TiO_2-MO_x (M=Al, Zr, Si, Sn). Sulfur poisoning of the catalysts is mainly resulted from the formation of bulk sulfates.
     As for the NSR catalysts supported on TiO_2-Al_2O_3, the weight ratio of TiO_2 to TiO_2 + Al_2O_3 was optimized, and the difference between Li-based and Ba-based catalysts for NO_x storage and sulfur-resistance was investigated. The doping of TiO_2 into the Al_2O_3 could significantly improve the sulfur-resistance performance of the catalyst Pt/Li/Al_2O_3. Compared with those on pure TiO_2, the Pt and lithium species are more highly dispersed on TiO_2–Al_2O_3 mixed oxides, giving higher NO_x storage capacity. Taking both the NO_x storage capacity and the sulfur-resistance performance into account, the optimal weight ratio of TiO_2/(TiO_2 + Al_2O_3) in the catalysts is 40%. In-situ DRIFT results show that on Pt/Li/Al_2O_3 and Pt/Li/TiO_2–Al_2O_3 NO_x is mainly stored via bidentate nitrate intermediate at the temperature of 500 oC, while on Pt/Li/TiO_2, NO_x is mainly stored as ionic nitrates. The–OLi groups are regarded as the main NO_x storage sites for Pt/Li/Al_2O_3 and Pt/Li/TiO_2–Al_2O_3 catalysts, while lithium carbonate may be the prevailing NO_x storage phase for Pt/Li/TiO_2. When Pt/Li/TA(40) and Pt/Ba/TA(40) possess equal molar amounts of storage medium, they show almost the same NO_x storage ability. However, the Pt/Li/TA(40) exhibits much better sulfur-resistance performance than the Ba-based NSR catalyst.
     To improve the thermal stability and sulfur-resistance of Pt/K/TiO_2-Al_2O_3, the support TiO_2-Al_2O_3 is further modified by La_2O_3. The La_2O_3 doping can obviously improve both the NO_x storage capacity and the sulfur-resisting performance of Pt/K/TiO_2-Al_2O_3. The most suitable weight ratio of La_2O_3/(TiO_2 + Al_2O_3 + La_2O_3) is 3%. When the support was calcined at 500 oC, it exists in amorphous state and possesses large amount of acidity, with the K existing mainly as–OK groups. On the corresponding catalyst, the main NO_x storage species are monodenate or bidenate nitrates. As the support was calcined at 750 oC, the surface hydroxyl groups greatly decrease and even disappear. In this case, K2CO3 is the dominating storage medium which is more efficient for NO_x storage than–OK groups. In a summary, the catalyst with its support calcined at higher temperature possesses higher NSC, however, K2CO3 can react with SO_2 more easily to form sulfates, decreasing its sulfur-resistance. The performance of Pt/K/TiO_2-Al_2O_3-La_2O_3 is also influenced by different K precursors. When KNO3 is used, the fresh catalyst possesses the best NO_x storage ability but the worst sulfur-resistance performance. On the contrary, when KCl is used, the fresh catalyst possesses the highest sulfur-resistance performance and the lowest NSC value. In-situ DRIFT results indicate that the storage mechanism is varied with different calcination temperature of the support and the different K precursors.
引文
[1]大平洋汽车网www.pcauto.com.cn
    [2]张远航,李金龙,中国城市光化学烟雾污染研究,北京大学学报:自然科学版,1998,34(2):392-400
    [3]王大全,“京都议定书”与“二氧化碳绿色化”,化学工业,2007, 25:8-11
    [4]邝生鲁,全球变暧与二氧化碳减排,现代化工,2007,8:1-12
    [5]郑小明,周仁贤,环境保护中的催化治理持术,北京:化学工业出版社,2003,4
    [6]外山敏夫,香川顺,在烟雾中生活(燃料化工设计院译),北京:燃料化工出版社,1973,3
    [7]田广生,区柏森,陈罕立,近地层氮氧化物和臭氧的区域分布研究,环境科学研究,1995,8(6):1-6
    [8] Thomas J M, Zamaraev K I, Perspectives in catalysis, London: Blackwell Sci. pub., 1992, 1
    [9] Truex T J, Searles R A, Sun D C, Catalysts for nitrogen oxides control under lean burn conditions, Platinum metals Rev., 1992, 36(1): 2-10
    [10] Talor K C, Nitric oxide catalysis in automotive exhaust systems, Catal. Rev. Sci. Eng., 1993, 35(4): 457-481
    [11] Roth J F, Industrial catalysis: poised for innovation, Chemtech., 1991, 21(6): 357-360
    [12]齐立文,王文兴,我国低纬度、亚热带地区的降水化学及其雨水酸化趋势分析,环境科学研究,1995,8(1):12-20
    [13] Beilke S, Elshout A J, Acid deposition: Commission of the European communities, Springer, 1983, 40
    [14]王务林,赵航,王继先,汽车催化转化器系统概论,北京:人民交通出版社,1999,20
    [15]吴咏,张尚娇,国外的汽车排放法规,汽车科技,2001,1:31-35
    [16]杨柳,何洪,汽车尾气的危害及治理,城市问题,2008,8:100-102
    [17]贾海亭,满瑞林,稀燃发动机尾气净化催化技术进展,汽车科技,2004,3:8-10
    [18] Heck R M, Farrauto R J, Catalytic Air Pollution Control, New York: Van Nostrand Reinhold, 1995, 106
    [19]王建昕,汽车排气污染治理及催化转化器,北京:石油工业出版社,2000,15-16:242-244
    [20]周玉明,内燃机废气排放及控制技术,北京:人民交通出版社,2001,152-153
    [21] Heck R M, Farrauto R J, Automobile exhaust catalysts, Appl. Catal. A., 2001, 221(1-2): 443-457
    [22]邵潜,龙军,贺振富,规整结构催化剂及反应器,北京:化学工业出版社,2005,70
    [23]朱振忠,田群,陈宏德,汽车尾气三效催化剂,中国环保产业,2002,7:34-36
    [24] Jr J B, Duprez D, Steam effects in three-way catalysis, Appl. Catal. B., 1994, 4(2-3): 105-140
    [25] Matsumoto Sh, Recent advances in automobile exhaust catalysts, Catal. Today., 2004, 90(3-4): 183-190
    [26] Ohtsuka H, Tabata T, Roles of palladium and platinum in the selective catalyatic reduction of NO_x on palladium-platinum-loaded sulfated zirconia, Appl. Catal. B., 2001, 29(3): 177-183
    [27] Liotta L F, Deganello G, Influence of barium and cerium oxides on alumina supported Pd catalysts for hydrocarbon combustion, Appl. Catal. A., 2002, 229(1-2): 217-227
    [28] Iwamoto M, Yahiro H, Mizuno N, et al., Removal of nitrogen monoxide through a novel catalytic process. 2. Infrared study on surface reaction of nitrogen monoxide adsorbed on copper ion-exchanged ZSM-5 zeolites, J. Phys. Chem., 1992, 96(23): 9360-9366
    [29] Hoost T E, Laframboise K A, Otto K, Co-adsorption of propene and nitrogenoxides on Cu-ZSM-5: an FTIR study, Appl. Catal. B., 1995,7(1-2): 79-93
    [30] Tofan C, Klvana D, Kirchnerova J, Decomposition of nitric oxide over perovskite oxide catalysts: effect of CO_2, H2O and CH4, Appl. Catal. B., 2002, 36(4): 311-323
    [31] Ishihara T, Ando M, Sada K,et al., Direct decomposition of NO into N2 and O_2 over La(Ba)Mn(In)O3 perovskite oxide, J. Catal., 2003, 220(1): 104-114
    [32] Ishihara T, Anami K, Takiishi K, et al., Direct decomposition of NO on Cu-doped La(Ba)Mn(In)O3 perovskite oxide under coexistence of O_2, H2O, and SO_2, Chem. Lett., 2003, 32(12):1176-1177
    [33]刘钰,杨向光,赵震,Study on the elimination of NO over the La-Ba-Cu mixed oxide catalysts with perovskite structure,高等化学学报, 1998, 19(3): 414-418
    [34] Winter, E R S, The catalytic decomposition of nitric oxide by metallic oxides, J. Catal., 1971, 22(2):158-170
    [35] Iwamoto M, Hamada H, Removal of nitrogen monoxide from exhaust gases through novel catalytic processes, Catal. Today., 1991, 10(1): 57-71
    [36] Iwamoto M, Yahiro H, Mine Y, Excessively copper ion-exchanged ZSM-5 zeolites as highly-active catalysts for direct decomposition of nitrogen monoxide, Chem. Lett., 1989, 2: 213-216
    [37] Iwamoto M, Yahiro H, Torikai Y, Novel preparation method of highly copper ion-exchanged ZSM-5 zeolites and their catalytic activities for NO decomposition, Chem. Lett., 1990, 11: 1967-1970
    [38]伍武,童志权,NO分解催化剂的研究进展,工业催化,2005,13(7):52-55
    [39] Goralski C T, Schneider W F, Analysis of the thermodynamic feasibility of NO_x decomposition catalysis to meet next generation vechicle NO_x emissions standards, Appl. Catal. B., 2002, 37(4): 263-277
    [40]胡晓宏,刘艳华,董淑萍,氮氧化物选择性催化还原催化剂研究综述,环境科学与技术,2007,30(11):107-111
    [41] Held W, Koening A, Richter T, et al., Catalytic NO_x reduction in net oxidizing exhaust gas, SAE Paper, 1990, 900496
    [42] Iwamoto M, Yahiro H, Shundo S, et al., Selective reduction of NO by lower hydrocarbons in the presence of O_2 and SO_2 over cuppoe ion-exchanged zeolites, Shokubai(Catalyst), 1990, 32: 430-433
    [43] Iwamoto M, Proc of symposiumon catalytic technology for the removal of nitrogen oxides, Catal. Soc. Japan., 1990, 17
    [44] Li Y J, Armor J N, Catalytic reduction of nitrogen oxides with methane in the presence of excess of oxygen, Appl. Catal. B., 1992, 1(4): L31-L40
    [45] Campa M C, Rossi S D, Ferraris G, et al., Catalytic activity of Co-ZSM-5 for the abatement of NO_x with methane in the presence of oxygen, Appl. Catal. B., 1996, 8(3): 315-331
    [46] Li Y J, Armor J N, Selective catalytic reduction of NO with methane on gallium catalysts, J. Catal., 1994, 145(1): 1-9
    [47] Nishizaka Y, Misono M, Catalytic reduction of nitrogen monoxide by methane over palladium-loaded zeolites in the presence of oxygen, Chem. Lett., 1993, 22(8): 1295-1298
    [48] Wang X P, Yu Sh Sh, Yang H L, et al., Selective catalytic reduction of NO by C2H2 over MoO3/HZSM-5, Appl. Catal. B., 2007, 71(3-4): 246-253
    [49] Sato S, Yu Y, Yahiro H, et al., Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines, Appl. Catal., 1991, 70(1): L1-L5
    [50] Li Y J, Armor J N, Selective catalytic reduction of NO_x with methane over metal exchange zeolite, Appl. Catal. B., 1993, 2(2-3): 239-256
    [51] Iwamoto M, Yahiro H, Sgundo S, et al., Influence of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5 zeolite, Appl. Catal., 1991, 69(2): L15-L19
    [52]朱兵,李平,贫燃NO_x选择性催化还原技术及其研究进展,化学世界,1996(6):283-287
    [53] Tabata M, Tsuchida H, Miyamoto K, et al., Reduction of NO_x in diesel exhaust with methanol over alumina catalyst, Appl. Catal. B., 1995, 6(2): 169-183
    [54] Ohno T, Hatayama F, Toda Y, et al., Fourier transform infrared studies of reduction of nitric oxide by ethylene over V2O5 layered on ZrO_2, Appl. Catal. B., 1994, 5(1-2): 89-101
    [55] Bethke K A, Alt D, Kung M C, NO reduction by hydrocarbons in an oxidizing atomphere over transition metal-zirconium mixed oxides, Catal. Lett., 1994, 25(1-2): 37-48
    [56] Kintaichi Y, Hamada H, Tabata M, et al., Selective reduction of nitrogen oxides with hydrocarbons over solid acid catalysts in oxygen-rich atmospheres, Catal. Lett., 1990, 6(2): 239-244
    [57] Burch R, Millington P J, Selective reduction of NO_x by hydrocarbons in excess oxygen by alumina- and silica-supported catalysts, Catal. Today., 1996, 29(1-4): 37-42
    [58] Nakatsuji T, Studies on the structural evolution of highly active Ir-based catalysts for the selective reduction of NO with reductants in oxidizing conditions, Appl. Catal. B., 2000, 25(2-3): 163-179
    [59] Skoglundh M, L?wendahl L, Jansson K, et al., Characterization and catalytic properties of perovskites with nominal composition La1-xSrxAl1-2yCuyRuyO3, Appl. Catal. B., 1994, 3(4): 259-274
    [60] Teraoka Y, Nakano K, Kagawa S, et al., Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides, Appl. Catal. B., 1995, 5(3): L181-185
    [61] Feeley J S, Deeba M, Farrauto R J, et al., Lean NO_x reduction with hydrocarbons over Ga/S-ZrO_x and S-GaZr/Zeolites catalysts, Appl. Catal. B., 1995, 6(1): 79-96
    [62] He H, Yu Y B, Selective catalytic reduction of NO_x over Ag/Al_2O_3 catalyst: from reaction mechanism to diesel engine test, Catal.Today., 2005, 100(1-2): 37-47
    [63] Wu Q, Gao H W, He H, Conformational analysis of sulfate species on Ag/Al_2O_3 by means of theoretical and experimental vibration spectra, J. Phys. Chem. B., 2006, 110(16): 8320-8324
    [64] He H, Zhang X L, Wu Q, et al., Review of Ag/Al_2O_3-reductant system in the selective catalytic reduction of NO_x, Catal. Surv. Asia., 2008, 12: 38-55
    [65] Yu Y B, He H, Feng Q C, Novel enolic surface species formed during partial oxidation CH3CHO, C2H5OH and C3H6 on Ag/Al_2O_3: an in situ DRIFTS study, J. Phys. Chem. B., 2003, 107(47): 13090-13092
    [66] Yu Y B, He H, Feng Q C, et al., Mechanism of the selective catalytic reduction of NO_x by C2H5OH over Ag/Al_2O_3, Appl. Catal. B., 2004, 49(3): 159-171
    [67] Zhang X L, Yu Y B, He H, Effect of hydrogen on reaction intermediate in the selective catalytic reduction of NO_x by C3H6, Appl. Catal. B., 2007, 76(3-4): 241-247
    [68] Zhang X L, He H, Ma Z C, Hydrogen promotes the selective catalytic reduction of NO_x by ethanol over Ag/Al_2O_3, Catal. Commun., 2007, 8(2): 187-192
    [69] Wang J, He H, Xie S X, et al. Novel Ag-Pd/Al_2O_3-SiO_2 for lean NO_x reduction by C3H6 with high tolerance of SO_2, Catal. Commun., 2005, 6(3): 195-200
    [70] Wu Q, He H, Yu Y B, In Situ DRIFTS study of the selective reduction of NO_x with alcohols over Ag/Al_2O_3 catalyst: Role of surface enolic species, Appl. Catal. B., 2005, 61(1-2): 107-113
    [71] Wu Q, Feng Q C, He H, Disparate effects of SO_2 on the selective catalytic reduction of NO by C2H5OH and IPA over Ag/Al_2O_3, Catal. Commun., 2006, 7(9): 657-661
    [72] Meunier F C, Breen J P, Zuzaniuk V, et al., Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysism, J. Catal., 1999,187(2): 493-505
    [73] Yoshida K, Makino S, Sumiya S, Simultaneous reduction of NO_x and particulate emissions from diesel engine exhaust, SAE paper, 1989, 892046
    [74] Sangguan W F, Teraoka Y, Kagawa S, Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NO_x and diesel soot particulate, Appl. Catal. B., 1998, 16(2): 149-154
    [75] Shangguan W F, Teraoka Y, Kagawa S, Simultaneous catalytic removal of NO[chi] and diesel soot particulates over ternary AB2O4 spinel-type oxides, Appl. Catal. B., 1996, 8(2): 217-227
    [76] Liu J, Zhao Z, Xu C M, et al., Simultaneous removal of NO_x and diesel soot particles over nanometric La2-xKxCuO4 complex oxide catalysts, Catal. Today., 2007(1-4), 119: 267-272
    [77] Liu J, Zhao Z, Xu C M, et al., The Structures, Adsorption Characteristics of La-Rb-Cu-O Perovskite-like Complex O_xides, and Their Catalytic Performances for the Simultaneous Removal of Nitrogen O_xides and Diesel Soot, J. Phys. Chem. C., 2008, 112(15): 5930-5941
    [78] Liu J, Zhao Z, Xu C M, et al., Simultaneous removal of NO_x and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts, Appl. Catal. B., 2008, 78(1-2): 61-72
    [79] Wang H, Zhao Z, Liang P, et al., Highly active La1-xKxCoO3 perovskite-type complex oxide catalysts for the simultaneous removal of diesel soot and nitrogen oxides under loose contant conditions, Catal. Lett., 2008, 124(1-2): 91-99
    [80] Wang H, Zhao Z, Xu C M, et al., Nanometric La1-xKxMnO3 perovskite-type oxides-highly active catalysts for the combustion of diesel soot particle under loose contact conditions, Catal. Lett., 2005, 102: 251-256
    [81] Sun D C, Johnson Matthey Internal report, 1991, No.91A2-9.0
    [82] B?gner W, Kr?mer M, Krutzsch B, et al., Removal of nitrogen oxides from the exhaust of a lean-burn gasoline engines, 1995, Appl. Catal. B., 7(1-2): 153-171
    [83] Shinjoh H, Takahashi N, Yokota K, et al., Effect of periodic operation over Pt catalyst in simulated oxidizing exhaust gas, Appl. Catal. B., 1998, 15(3-4): 189-201
    [84] Roy S, Baiker A, NO_x Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performanc, Chem. Rev., 2009, 109(9): 4054–4091
    [85] Meshari A H, Epling W S, Investigating the Effect of NO Versus NO_2 on the Performance of a Model NO_x Storage/Reduction Catalyst, Catal Lett., 2009 130(1-2): 121–129
    [86] Ohtsuka H, Tabata T, Roles of palladium and platinum in the selective catalytic reduction of nitrogen oxides by methane on palladium-platinum-loaded sulfated zirconia, Appl. Catal. B., 2001, 29(3): 177-183
    [87] Amberntsson A, Fridell E, Skoglundh M, Influence of platinum and rhodium composition on the NO_x storage and sulphur torelance of a barium based NO_x storage catalyst, Appl. Catal. B., 2003, 46(3): 429-439
    [88] Salasc S, Skoglundh M, Fridell E, A comparison between Pt and Pd in NO_x storage catalysts, Appl. Catal. B., 2002, 36(2): 145-160
    [89] Huang H, Long R, Yang R, The promoting role of noble metals on NO_x storage catalyst and mechanistic study of NO_x storage under lean-burn conditions, Energy & Fuel, 2001, 15(1): 205-213
    [90] Schmitz P J, Kudla R J, Drews A R, NO oxidation over supported Pt: Impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation, Appl. Catal. B., 2006, 67(3-4): 246–256
    [91] Xue E, Seshan K, Ross J R H, Roles of supports, Pt loading and Pt dispersion in the oxidation of NO to NO_2 and of SO_2 to SO3, Appl. Catal. B.,1996, 11(1): 65-79
    [92] Olsson L, Fridell E, The influence of Pt oxide formation and Pt dispersion on the reactions NO_2?NO+1/2O_2 over Pt/Al_2O_3 and Pt/BaO/Al_2O_3, J. Catal., 2002, 210(2): 340-353
    [93] Li L D, Shen Q, Cheng J, Hao Z P, Catalytic oxidation of NO over TiO_2 supported platinum clusters I. Preparation, characterization and catalytic properties, Appl. Catal. B., 2010, 93(3-4): 259–266
    [94] Kim D H, Chin Y F, Muntean G G, Relationship of Pt Particle Size to the NO_x Storage Performance of Thermally Aged Pt/BaO/Al_2O_3 Lean NO_x Trap Catalysts, Ind. Eng. Chem. Res., 2006, 45(26): 8815-8821
    [95] Szanyi J, Kwak J H, Kim D H, et al., NO_2 Adsorption on BaO/Al_2O_3:The Nature of Nitrate Species, J. Phys. Chem. B., 2005, 109(1): 27–29
    [96] Kwak J H, Mei D H, Yi C W, et al., Understanding the nature of surface nitrates in BaO/γ-Al_2O_3 NO_x storage materials: A combined experimental and theoretical study, J. Catal., 2009, 261(1): 17-22
    [97] Bowker M, Automotive catalysis studied by surface science, Chem. Soc. Rev., 2008, 37(10): 2204-2211
    [98] Liotta L F, Macaluso A, Arena G E, et al., A study of the behaviour of Pt supported on CeO_2-ZrO_2/Al_2O_3-BaO as NO_x storage-reduction catalyst for the treatment of lean burn engine emissions, Catal. Today., 2002, 75(1-4): 439-449
    [99] Westerberg B, Fridell E, A transient FTIR study of species formed during NO_x storage in the Pt/BaO/Al_2O_3 system, J. Mol. Catal. A., 2001, 165(1-2): 249-263
    [100] Hodjati S, Petit C, Ptichon V, et al., Absorption/desorption of NO_x process on perovskites: Nature and stability of the species formed on BaSnO3, Appl. Catal B., 2000, 27(2): 117-126
    [101] Hodjati S, Bernhardt P, Petit C, et al., Removal of NO_x: Part I. Sorption/desorption process on barium aluminate, Appl. Catal. B., 1998, 19(3-4): 209-219
    [102] Fridell E, Persson H, Westerberg B, et al., The mechanism for NO_x storage, Catal. Lett., 2000, 66(1-2): 71-74
    [103] Rodrigues F, Juste L, Potvin C, et al., NO_x storage on barium-containing three-way catalyst in the presence of CO_2, Catal. Lett., 2002, 72(1-2): 59-64
    [104] James D, FourréE, Ishii M, et al., Catalytic decomposition/regeneration of Pt/Ba(NO3)2 catalysts: NO_x storage and reduction, Appl. Catal. B., 2003, 45(2): 147-159
    [105] Fang H, Wang J, Yu R, et al., A fundamental consideration of NO_x adsorber technology for DI diesel application, SAE paper, 2002, 2002-01-2889
    [106] Basile F, Fornasari G, Grimandi A, et al., Effect of Mg, Ca and Ba on the Pt-catalyst for NO_x storage reduction, Appl. Catal. B., 2006, 69(1-2): 58-64
    [107] Hodjati S, Vaezzadeh K, Petit C, et al., Absorption/desorption of NO_x process on perovskite: performance to remove NO_x from a lean exhaust gas, Appl. Catal. B., 2000, 26(1): 5-16
    [108] Iwachido K, Tanada H,Watanabe T, et al., Development of NO_x adsorber catalyst for use with high-temperature condition, SAE Paper, 2001, 1298(1): 953-964
    [109] Han P H, Lee Y K, Han S M, et al., NO_x storage and reduction catalysts for automotive lean-burn engines: Effect of parameters and storage materials on NO_x conversion, Top. Catal., 2001, 16/ 17(1-4): 165-170
    [110] Takahashi N, Shinjoh H, Iijima T, et al., The new concept 3-way catalyst for automotive lean-burn engine: NO_x storage and reduction catalyst, Catal. Today., 1996, 27(1-2): 63-69
    [111] Fornasari G, Trifiro F, Vaccari A, et al., Noval low temperature NO_x storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds, Catal. Today., 2002, 75(1-4): 421-429
    [112] Hachisuka I, Yoshida T, Ueno H, et al., Improvement of NO_x Storage-Reduction Catalyst, SAE Tech. Paper, 2002, 2002-01-0732
    [113] Yamamoto K, Kikuchi R, Takeguchi T, et al., Development of NO sorbents tolerant to sulfur oxides, J. Catal., 2006, 238(2): 449-457
    [114] Li X G, Chen J F, Lin P Y, et al., A study of the NO_x storage catalyst of Ba-Fe-O complex oxide, Catal. Comm., 2004, 5(1): 25-28
    [115] Yu J J, Jiang Z H, Zhu L, et al., Adsorption/Desorption studies of NO_x on well-mixed oxides derived from Co-Mg/Al hyfrotalcite-like compounds, J. Phys. Chem. B., 2006, 110(9): 4291-4300
    [116] Yu J J, Tao Y X, Liu C H, et al., Novel NO trapping catalysts derived from Co-Mg/X-Al(X=Fe, Mn, Zr, La) hydrotalcite-like compounds, Environ. Sci. Technol., 2007, 41(4): 1399-1404
    [117] Shimizu K, Saito Y, Nobukawa T, et al., Effect of supports on formation and reduction rate of stored nitrates on NSR catalysts as investigated by in situ FT/IR, Catal. Today., 2008, 139(1-2): 24-28
    [118] Maeda N, Urakawa A, Baiker A, Support Effects and Chemical Gradients along the Catalyst Bed in NO_x Storage-Reduction Studied by Space- and Time-Resolved In Situ DRIFTS, J. Phys. Chem. C., 2009, 113(38): 16724-16735
    [119] Adams, K M, Graham G. W, Impact of redox conditions on thermal deactivation of NO_x traps for diesel, Appl. Catal. B., 2008, 80: 343-352
    [120] Casapu M, Grunwaldt J, Maciejewski M, et al., Formation and stability of barium aluminate and cerate in NO_x storage-reduction catalysts, Appl. Catal. B., 2006, 63(3-4): 232-242
    [121] Takahashi N, Suda A, Hachisuka I, Sulfur durability of NO_x storage and reduction catalyst with supports of TiO_2, ZrO_2 and ZrO_2-TiO_2 mixed oxides, Appl. Catal. B., 2007, 72(1-2): 187-195
    [122] Liu Y, Meng M, Li X G, et al., NO_x storage behavior and sulfur-resisting performance of the third-generation NSR catalysts Pt/K/TiO_2-ZrO_2, Chem. Eng. Res. DES., 2008, 86(8): 923-940
    [123] William S, Epling W S, Campbell G C, et al., The effects of CO_2 and H2O on the NO_x destruction performance of a model NO_x storage/reduction catalyst, Catal. Lett., 2003, 909(1-2): 45-56
    [124] Li Y, Roth S, Dettling J, et al., Effects of lean/rich timing and nature of reductant on the performance of a NO_x trap catalyst, Top. Catal., 2001, 16(1-4): 139-144
    [125] Lietti L, Forzatti P, Nova I, et al., NO_x storage reduction over Pt-Ba/gamma-Al_2O_3 catalyst, J. Catal., 2001, 204(1): 175-191
    [126] Mahzoul H, Brilhac J F, Gilot P, Experimental and mechanistic study of NO_x adsorption over NO_x trap catalysts. Appl. Catal. B., 1999, 20(1): 47-55
    [127] Fridell E, Skoglundh M, Westerberg B, NO_x Storage in Barium-Containing Catalysts, J. Catal., 1999, 183(2):196-209
    [128] Li X G, Meng M, Lin P, et al., Study on the properties and mechanisms for NO_x storage over Pt/BaAl_2O_4-Al_2O_3 catalyst, Top. Catal., 2003, 22(1-2): 111-115
    [129] Crocoll M, Kureti S, Weisweiler W, Mean field modeling of NO oxidation over Pt/Al_2O_3 catalyst under oxygen-rich conditions, J. Catal., 2005, 229(2): 480-489
    [130] Epling W S, Parks J E, Campbell G C, Further evidence of multiple NO_x sorption sites on NO_x storage/reduction catalysts, Catal. Today., 2004, 96(1-2): 21-30
    [131] Mahzoul H, Brilhac J F, Gilot P, Experimental and mechanistic study of NO_x adsorption over NO_x trap catalysts, Appl. Catal. B., 1999, 20(1): 47-55
    [132] Nova I, Castoldi L, Lietti L, et al., NO_x adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments, J. Catal., 2004, 222(2): 377-388
    [133] Sedlmair C, Seshan K, Jentys A, et al., Elementary steps of NO_x adsorption and surface reaction on a commercial storage-reduction catalyst, J. Catal., 2003, 214(2): 308-316
    [134] Matsumoto SH, Ikeda Y, Suzuki H, et al., NO_x storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning, Appl. Catal. B., 2000, 25(2-3): 115–124
    [135] Amberntsson A, Skoglundh M, Ljungstr?m, et al., Sulfur deactivation of NO_x storage catalysts: influence of exposure conditions and noble metal, J. Catal., 2003, 217(2): 253-263
    [136] Abdulhamid H, Fridell E, Dawody J, et al., In situ FTIR study of SO_2 interaction with Pt/BaCO3/Al_2O_3 NO_x storage catalysts under lean and rich conditions, J. Catal., 2006, 241(1): 200–210
    [137] Sedlmair C, Seshan K, Jentys A, et al., Studies on the deactivation of NO_x storage-reduction catalysts by sulfur dioxide, Catal. Today., 2002, 75(1-4): 413-419
    [138] Hachisuka I, Hirata H, Ikeda Y, et al., Deactivation mechanism of NO_x storage-reduction catalyst and improvement of its performance, SAE Paper, 2000, 1196(1): 791-797
    [139] Huang H Y, Long R Q, Yang R T, A highly sulfur resistant Pt-Rh/TiO_2/Al_2O_3 storage catalyst for NO_x reduction under lean-rich cycles, Appl. Catal. B., 2001, 33(2): 127–136
    [140] Despres J, Koebel M, Kr?cher O, et al., Storage of NO_2 on Ba/TiO_2 and the influence of NO, Appl. Catal. B., 2003, 43(4): 389-395
    [141] Breen J P, Marella M, Pistarino C, et al., Sulfur-tolerant NO_x storage traps: an infrared and thermodynamic study of the reactions of alkali and alkaline-earth metals sulfates, Catal. Letter., 2002, 80(3-4): 123-128
    [142] Miyoshi N, Matsumoto S, NO_x storage-reduction catalyst (NSR catalyst) for automotive engines: sulfur poisoning mechanism and improvement of catalyst performance, Stud. Surf. Sci. Catal., 1999, 121: 245-250
    [143] Yamazaki K, Suzuki T, Takahashi N, et al., Effect of the addition of transition metals to Pt/Ba/Al_2O_3 catalyst on the NO_x storage-reduction catalysis under oxidizing condition in the presence of SO_2, Appl. Catal. B., 2003, 30(3-4): 459-468
    [144] Luo J Y, Meng M, Zha Y Q, et al., A comparative study of Pt/Ba/Al_2O_3 and NSR catalysts: New insights into the interaction of Pt-Ba and the function of Fe, Appl. Catal. B., 2008, 78(1-2): 38-52
    [145] Hammache S, Evans L R, Coker E N, et al., Impact of copper on the performance and sulfur tolerance of barium-based NO_x storage-reduction catalysts, Appl. Catal. B., 2008, 78(3-4): 315-323
    [146] Ansell G P, Diwell A F, Golunski S E, et al., Mechanism of the lean NO_x burn reaction over Cu/ZSM-5, Appl. Catal. B., 2003, 21: 3-5
    [147] Imagawa H, Takahashia N, Tanaka T et al., Improved NO_x storage-reduction catalysts using Al_2O_3 and ZrO_2–TiO_2 nanocomposite support for thermal stability and sulfur durability, Appl. Catal. B., 2009, 92(1-2): 23-29
    [148] Imagawa H, Tanaka T, Naoki Takahashi N, et al., Titanium-doped nanocomposite of Al_2O_3 and ZrO_2–TiO_2 as a support with high sulfur durability for NO_x storage-reduction catalyst, Appl. Catal. B., 2009, 86(1-2): 63-68
    [149] Imagawa H, Tanaka T, Naoki Takahashi N, et al., Synthesis and characterization of Al_2O_3 and ZrO_2–TiO_2 nano-composite as a support for NO_x storage–reduction catalyst, Appl. Catal. B., 2007, 251(2): 315-320
    [150] Miyoshi N, Matsumoto S, Katoh K, et al., Development of new concept three-way catalyst for automotive lean-burn engines, SAE Paper, 1995, 950809: 1361-1369
    [151] Reddya B M, Chowdhury B, Smirniotis P G, An XPS study of the dispersion of MoO3 on TiO_2–ZrO_2, TiO_2–SiO_2, TiO_2–Al_2O_3, SiO_2–ZrO_2, and SiO_2–TiO_2–ZrO_2 mixed oxides, Appl. Catal. A., 2001(1), 211:19–30
    [152] Zhou M H, Yu J G, Liu S W, et al., Effects of calcination temperatures on photocatalytic activity of SnO_2/TiO_2 composite films prepared by an EPD method, J. Hazard. Mater., 2008, 154(1-3): 1141–1148
    [153] Sing K S W, Everett D H, Haul R A W, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure. Appl. Chem., 1985, 57(4): 603–619
    [154] Epling W S, Campbell L E, Yezerets A, et al., Over view of the fundamental reactions and degradation mechanisms of NO_x storage/reduction catalysts, Catal. Rev., 2004, 46: 163–245
    [155] Zou Z Q, Meng M, Tsubaki N, et al., Influence of Co or Ce addition on the NO_x storage and sulfur-resistance performance of the lean-burn NO_x trap catalyst Pt/K/TiO_2-ZrO_2, J. Hazard. Mater., 2009, 170(1): 118–126
    [156] Ballarini A D, Ricci C G, de Miguel S R, et al., Use of Al_2O_3–SnO_2 as a support of Pt for selective dehydrogenation of light paraffins, Catal. Today., 2008, 133-135: 28–34
    [157] Ito K, Kakino S, Ikeue K, et al., NO adsorption/desorption property of TiO_2–ZrO_2 having tolerance to SO_2 poisoning, Appl. Catal. B., 2007(1-2), 74: 137-143
    [158] Jin F, Li Y D, A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule, Catal. Today., 2009, 145(1-2): 101-107
    [159] Maijanen A, Derouane E G, Nagy, J B, FT-IR and solid-state NMR investigation of surface hydroxyl groups on dealuminated ZSM-5, Appl. Surf. Sci., 1994, 75 (1-4): 204-212
    [160] Fu Y H, Ma H C, Wang Z L, et al., Characterization and reactivity of SnO_2-doped V2O5/γ-Al_2O_3 catalysts in dehydrogenation of isobutane to isobutene, J. Mol. Catal.A-Chem., 2004, 221(1-2): 163–168
    [161] Sedlmair C, Seshan K, Jentys A, et al., Studies on the deactivation of NO_x storage-reduction catalysts by sulfur dioxide, Catal. Today., 2002, 75(1-4): 413-419
    [162] Su Y, Amiridis M D, In situ FTIR studies of the mechanism of NO_x storage and reduction on Pt/Ba/Al_2O_3 catalysts, Catal. Today., 2004, 96(1-2): 31-41
    [163] Luo J Y, Meng M, Li X G, et al., Highly thermo-stable mesoporous catalyst Pt/BaCO3-Al_2O_3 used for efficient NO_x storage and desulfation: Comparison with conventional impregnated catalyst, Micropor. Mesopor. Mat., 2008, 113(1-3): 277-285
    [164] Liu Y, Meng M, Zou Z Q, et al., In situ DRIFTS investigation on the NO_x storage mechanisms over Pt/K/TiO_2-ZrO_2 catalyst, Catal. Commun., 2008, 10(2): 173-177
    [165] Escobar J, De los Reyes J A, Viveros T, Influence of the Synthesis Additive on the Textural and Structural Characteristics of Sol-Gel Al_2O_3-TiO_2, Ind. Eng. Chem. Res., 2000, 39(3): 666-672
    [166] Chang J R, Chang S L, Lin T B,γ-Alumina-Supported Pt Catalysts for Aromatics Reduction: A Structural Investigation of Sulfur Poisoning Catalyst Deactivation, J. Catal., 1997, 169(1): 338–346
    [167] Anderson J A, Liu Z Q, García M F, Use of in situ FT-IR and XAS/XRD to study SO_2 poisoning over model Pt/Ba/Al_2O_3 NO_x storage and reduction (NSR) catalysts, Catal. Today., 2006, 113(1-2): 25-33
    [168] Uy D, Wiegand K A, O’Neill A E, In Situ UV Raman Study of the NO_x Trapping and Sulfur Poisoning Behavior of Pt/Ba/γ-Al_2O_3 Catalysts, J. Phys. Chem. B., 2002, 106(2): 387-394
    [169] Wei X Y, Liu X S, Deeba M, Characterization of sulfated BaO-based NO_x trap, Appl. Catal. B., 2005, 58(1-2): 41–49
    [170] Hadjiivanov K, Bushev V, Kantcheva M, Infrared Spectroscopy Study of the Species Arising during NO_2 Adsorption on TiO_2 (Anatase), Langmuir, 1994,10(2): 464-471
    [171] Zou Z Q, Meng M, Zhou X Y, The Effect of Al_2O_3 Doping into TiO_2–ZrO_2 on the Storage and Sulfur-resistance Performance of the NO_x Trap Catalyst Pt/K/TiO_2–ZrO_2, Catal Lett., 2009, 128(3-4): 475–482
    [172] Resende N S De, Eon J G., Schmal M, Pt–TiO_2–γ-Al_2O_3Catalyst: I. Dispersion of Platinum on Alumina-Grafted Titanium O_xide, J. Catal., 1999, 183(1): 6-13
    [173] Sánchez-Sánchez M C, Navarro R M, Fierro J L G, Ethanol steam reforming over Ni/La–Al_2O_3 catalysts: Influence of lanthanum loading, Catal. Today., 2007, 129(3-4): 336-345
    [174] Strobel R, Pratsinis S E, Baiker A, Flame-made Pd/La_2O_3/Al_2O_3 nanoparticles: thermal stability and catalytic behavior in methane combustion, J. Mater. Chem., 2005, 15(5): 605–610
    [175] Araujo J C S, Zanchet D, Rinaldi R,et al., The effects of La_2O_3 on the structural properties of La_2O_3-Al_2O_3 prepared by the sol-gel method and on the catalytic performance of Pt/La_2O_3-Al_2O_3 towards steam reforming and partial oxidation of methane, Appl. Catal. B., 2008, 84(3-4): 552-562
    [176] Vazquez A, Lopez T, Gomez R, et al., Synthesis, characterization and catalytic properties of Pt/CeO_2–Al_2O_3 and Pt/La_2O_3–Al_2O_3 sol–gel derived catalysts, J. Mol. Catal. A: chem., 2001, 167(1-2): 91–99
    [177] Bendahou K, Cherif L, Siffert S, et al., The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene, Appl. Catal. A., 2008, 351(1): 82-87
    [178] Barrera A, Viniegra M, Fuentes S, et al., The role of lanthana loading on the catalytic properties of Pd/Al_2O_3-La_2O_3 in the NO reduction with H2, Appl. Catal. B., 2005, 56(4): 279–288
    [179] Angel G D, Torres T, Bertin V, et al., The role of lanthanum oxide in the formation of NO_2 over Pt-Pb/Al_2O_3-La_2O_3 catalysts under lean-burn conditions, Catal. Commun., 2006, 7(4): 232-235
    [180] Farhikhteh S, Maghsoudipour A, Raissi B, Synthesis of nanocrystalline YSZ (ZrO_2–8Y2O3) powder by polymerized complex method, J. Alloy Compd., 2010, 491(1-2): 402–405
    [181] Reddy B M, Ganesh I, Characterization of La_2O_3-TiO_2 and V2O5/La_2O_3-TiO_2 catalysts and their activity for synthesis of 2,6-dimethylphenol, J. Mole. Catal. A: Chem., 2001, 169(1-2): 207-223
    [182] Barrera A, Viniegra M, Bosch P, Lara V H, et al., Pd/Al_2O_3-La_2O_3 catalysts prepared by sol–gel: characterization and catalytic activity in the NO reduction by H2, Appl. Catal. B., 2001, 34(2): 97-111
    [183] Cassinelli W H, Feio L S F, Araújo J C S, et al., Effect of CeO_2 and La_2O_3 on the activity of CeO_2-La_2O_3/Al_2O_3-supported Pd catalysts for steam reforming of methane, Catal. Lett., 2008, 120(1-2):86-94
    [184] Huang S J, Walters A B, Vannice M A, TPD, TPR and DRIFTS studies of adsorption and reduction of NO on La_2O_3 dispersed on Al_2O_3, Appl. Catal. B., 2000, 26(2): 101-118
    [185] Peralta M A, Ulla M A, Querini C A, SO_2 influence on the K/La_2O_3 soot combustion catalyst deactivation, Catal. Today., 2008, 133–135: 461–466
    [186] Rhor F, Peter S D, Lox E, et al., On the mechanism of sulphur poisoning and regeneration of a commercial gasoline NO_x-storage catalyst, Appl. Catal. B., 2007, 56(3): 201-212
    [187] Toops T J, Smith D B, Epling W S, et al., Quantified NO_x adsorption on Pt/K/gamma-Al_2O_3 and the effects of CO_2 and H2O, Appl. Catal. B., 2005, 58(3-4): 255-264
    [188] Krupay B W, Amenomiya Y, Alkali-promoted alumina catalysts: I. Chemisorption and oxygen exchange of carbon monoxide and carbon dioxide on potassium-promoted alumina catalysts, J. Catal., 1981, 67(2): 362-370
    [189] Kantschewa M, Albano E V, Etrl G, et al., Infrared and X-ray photoelectron spectroscopy study of K2CO3/γ-Al_2O_3, Appl. Catal., 1983, 8: 71-84
    [190] Amenomiya Y, Pleizier G, Alkali-promoted alumina catalysts: II. Water-gas shift reaction, J. Catal., 1982, 76(2): 345-353
    [191] Weng D, Li J, Wu X D, et al., Promotional effect of potassium on soot oxidation activity and SO_2-poisooning resistance of Cu/CeO_2 catalyst, Catal. Commun., 2008, 9(9): 1898-1901

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700