用微粒过滤器和EGR同时降低柴油机微粒和NOx排放
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究的目标是联合使用高过滤效率的红外再生微粒陶瓷过滤器和废气再循环(EGR),同时降低柴油机的微粒排放和NOx排放。试验结果表明:本文研究开发的柴油机微粒陶瓷过滤器平均过滤效率在95%以上,达到欧Ⅲ及以上微粒排放标准;基于宽范围氧传感器(UEGO)的闭环控制柴油机EGR系统能有效地降低NOx排放,NOx的降低率最高可达42%,平均降低率约为30%。
     首先通过试验对柴油机微粒过滤器的过滤特性和再生特性进行了基础研究。过滤试验表明:壁流陶瓷具有良好的过滤效率,平均过滤效率在95%以上。壁流陶瓷的压降近似线性增长。在6120柴油机台架上,排气烟度为3BSU时,单个过滤器持续工作时间达2个小时以上,两个过滤器同时使用,具有较长的再生间隔时间,可以满足实际车辆的需要。再生试验表明:微粒沉积量对再生过程有重要的影响。微粒量多,再生温度高,过多将导致陶瓷内部熔融;微粒量少则再生温度低,过少则导致再生不稳定甚至终止。微粒物质量在适当范围内时,具有最好的再生性能综合指标。过滤器利用柴油机排气作为再生气流。再生气流对再生过程有很大的影响,具体表现为再生气流的氧含量对燃烧的影响和气流流动对热量传输的影响。再生气流流量小,由于氧气不足再生缓慢;流量大,则因为排气温度低于燃烧温度,再生气流具有冷却作用,也会导致再生困难。调节再生气量是控制再生过程的关键问题,需要进一步的优化。
     通过调整加热器流通孔的分布密度和调整电热丝在辐射盘上的分布密度,以及采用双层壳体过滤器,过滤器再生性能综合指标得到进一步提高。
     从多孔介质理论出发,推导了壁流陶瓷压力降与柴油机运行参数间的关系。由试验数据应用线性回归解出待定系数,得到壁流陶瓷压力降与柴油机转速和排气温度的关系。由上述关系确定的再生时机能将微粒物质量控制在适当的范围内,解决了实际应用中过滤器再生时机的确定这一关键技术难题。
     从流体力学基本原理出发,结合柴油机的特点,推导出了再生调节阀开度与负荷、排气温度和背压间的函数关系。实际应用时,分两步来确定再生调节阀开度。首先根据基准负荷调节阀开度MAP确定对应基准负荷的再生调节阀开度,然后根据实测的负荷由开度修正公式进行修正。这样确定的再生调节阀开度能实现再生时氧气流量基本不变的目标,满足实际应用的要求,解决了实际应用中过滤器再生废气量控制这一关键技术难题。
     由ECU自动控制再生调节阀开度时,在柴油机稳态工况和瞬态工况下进行了再生试验。再生温度变化平缓,陶瓷中心峰值温度被控制在1000℃以下,径向温度梯度低于30℃/cm,再生效率平均可达80%以上,再生过程稳定,再生成功率97%以上。
     在微粒过滤器的基础上,建立了具有清洁再循环废气的、基于宽范围氧传感器(UEGO)的闭环控制柴油机EGR系统。用UEGO测得的空燃比作为反馈信号进行闭环控制,使EGR系统的控制与柴油机的混合比和燃烧状况紧密地结合在了一起,基本消除了柴油机制造公差、磨损、燃油成分改变、以及环境条件的变化对NOx降低效果的影响,能充分发挥EGR系统降低NOx的潜力。UEGO在柴油机上的应用正顺应了最新的研究动向——柴油机的λ控制技术,可以认为,基于UEGO的EGR系统是柴油机λ控制技术的一个重要组成部分。
     在柴油机稳态工况下,通过试验测定了不同空燃比时,NOx、HC、CO、烟度和油耗的变化。通过对测试数据的分析,确定了最佳空燃比MAP。
This study presents the exhaust gas recirculation (EGR), coupled with a high-collection efficiency particulate ceramic filter (DPF) to simultaneously control particulate and NOx emissions from diesel engine.Experiments are carried out using 6120 Diesel engine equipped with DPF. The results indicate that the filter's average particulate cleaning efficiency is above 95 percent, the back pressure increases approximate linearly. And the filtration period of single filter is more than 2 hours at 3 BSU soot emission level, therefore two filters working simultaneously can work enough time continuously before the back pressure comes to the certain guideline value. Effect of trapped particulate amounts on the regeneration process is notable. The more the amount of particulates trapped is, the higher the temperature in ceramic during the regeneration process is, but excessive particulates amount will cause melting inside the ceramic. The less the amount of particulates trapped is, the lower the temperature in ceramic during the regeneration process is, but too little particulates amount will cause unstable regeneration process, even stop the regeneration. When the particulates amount is between 23g and 25g, the best regeneration performance can be obtained.By adjusting the distribution of both holes and electric heater components, and adopting double-layer filter, the regeneration performance can be further improved.Based on the porous medium theory, the formula which relates the pressure drop of the wall-flow ceramic and the engine conditions is deduced, the wall-flow ceramic pressure drop depends on two variables, the engine speed and the exhaust gas temperature. The coefficients are determined by disposing experimental data using the linear regression method, then, the pressure drop can be calculated using the formula and the two measured values of engine speed and exhaust gas temperature. The particulates amount on the occasion of regeneration determined by the former formula can be controlled in range of 22gm and 28gm. The key technical problem of how to determine regeneration occasion in the practical application is solved efficiently.The valve used to adjusting the regeneration gas flow is referred to as the regeneration valve. On the basis of fluid mechanics principle, considering the character of the engine, the formula which relates the regeneration valve opening and engine load, the exhaust gas temperature and back pressure is also deduced. Two steps are involved to determine the regeneration valve opening in practical application. First, determine the regeneration valve opening according to standard valve opening MAP. Secondly, correct the regeneration valve opening using the opening correction formula according to experimental load. Thus determined regeneration valve opening realizes the aim that the oxygen flux keeps almost unchangeable during the regeneration process, satisfies the requirement in practical application, and solves the key technical problem of how to determine the exhaust flux in the filter during the regeneration process.Regeneration experiments are carried out at both steady and transient engine operation conditions while the regeneration valve opening is controlled by ECU. The results show that the regeneration temperature distribution is even, the peak temperature in the ceramic centeris controlled under 1000℃, and the radial temperature gradient is under 30℃/cm , the regeneration process is steady, the average regeneration efficiency can reaches above 80 percent, and the regeneration success ratio reaches above 97 percent.A new EGR system, which is based on universal exhaust gas oxygen (UEGO) sensor and controlled by a closed loop, is developed. The system uses the filtered clean recirculation exhaust gas. Using the air-fuel ratio measured by UEGO as the feedback to control EGR,
引文
[1] John P. A. Neeft, et al. Diesel Particulate Emission Control. Fuel Processing Technology, 1996, 47: 1-69.
    [2] 李勤编著.现代内燃机排气污染物的测量与控制.北京:机械工业出版社.1999.75-85.
    [3] Koji Yamane, et al. Measurement of Particulate and Unburnt Hydrocarbon Emissions from Diesel Engines. SAE Paper 880343.
    [4] M. K. Abbass, et al. A Comparison of the Particulate Composition between Turbocharged and Naturally Aspirated DI Diesel Engines. SAE Paper 910733.
    [5] M. K. Abbass, et al. The Survivability of Diesel Fuel Components in the Organic Fraction of Particulate Emissions from a DI Diesel. SAE Paper 910487.
    [6] Faulo C. F. Gomes, et al. The Influence of Some Engine Operating Parameters on Particulate Emissions. SAE Paper 922222.
    [7] John H. Johnson, Susan T. Bagley, Linda D. Gratz, David G. Leddy. A Review of Diesel Particulate Control Technologies and Emissions Effects. SAE Paper 940233.
    [8] 杜曹剑等.柴油机排气中碳烟微粒的测量和特性.内燃机学报,1987,12(5):23-25.
    [9] Khatri, N. I., et al. Physical Size Distribution Characterization of Diesel Particulate Matter and the Study of the Coagulation Process. SAE Paper 780788.
    [10] 季雨,彭美春.柴油机排气微粒中可溶有机成分及苯并(a)芘的实验测定.内燃机学报,1990,8(3):203-208.
    [11] Du Caojian, et al. Measurement of Polycyclic Aromatic Compounds in the Cylinder of an Operating Diesel Engine. SAE Paper 840364.
    [12] 郭英男等.轻型车用柴油机排气微粒的物理特性及其后处理器的开发.吉林工业大学学报,1987,4:30-35.
    [13] 世界卫生组织.第三届环境与卫生部长会议纪要.1999,6:25-40.
    [14] 李疏松.柴油机排气微粒.国外内燃机,1982,2:10-13.
    [15] 林肇信等.环境保护概论.北京:高等教育出版社.1999:89-93.
    [16] Emission Standards: Cars and light Trucks. European Union, 1999.
    [17] Emission Standards: Heavy-Duty Diesel Truck and Bus Engines. European Union, 1999.
    [18] 中华人民和国国家标准 GB14761-1999——汽车排放污染物限值及测试方法.北京:国家质量技术监督局.1999.3.
    [19] 国家最新机动车环保法规及标准汇编.北京:国家汽车工业重要政策与法规编辑部,2000.
    [20] 刘巽俊.内燃机的排放与控制.北京:机械工业出版社.2003:100-220.
    [21] Satoshi Kato, et al. Development of OSKA-DH Diesel Engine Using Fuel Jet Impingement and Diffusion Investigation of Mixture Formation and Combustion. SAE Paper 940667.
    [22] S. Yoshikawa, et al. Optimizing Spray Behavior to Improve Engine Performance and to Reduce Exhaust Emissions in a Small DI Diesel Engine. SAE Paper 890463.
    [23] 姚春德.高喷射压力与涡流强度对直喷式柴油机性能的影响.内燃机学报,1998,16(2):230-235.
    [24] 宫长明.降低车用直喷式柴油机有害污染物排放的试验研究.汽车工程,1998,19(6):30-33.
    [25] Fenton J.适应EUR03及更严格排放标准的排放控制对策.国外内燃机,1997(1):23-26.
    [26] 许斯都,段家修.柴油机混合气形成条件对瞬态火焰温度和碳烟质量浓度影响的研究.内燃机学报,1997,15(4):418-423.
    [27] 乔向东.汽车有害排放物控制技术与措施.世界汽车,1997(3):30-32.
    [28] 王宪成,宁智.柴油机排气微粒静电金属丝网捕集器的试验研究.内燃机学报,2000,18(2):123-126.
    [29] 资新运,宁智.泡沫陶瓷过滤机理的研究.内燃机学报,2000,18(2):156-160.
    [30] Thomas F. Cash, et al. Ceramic Catalysis Supports and Particulate Filters for Diesel Engine Exhaust Aftertreatment. SAE Paper 943342.
    [31] Suresh T. Gulati, Michael J. Pierotti. Systems Approach for Designing Cordierite Ceramic Converters for Automotive Emissions Control. SAE Paper 972251.
    [32] K. Umehara. Evolution of Ceramic Substrate and Related Technology. NGK Reference Number: JB-992008.
    [33] 季雨,许允.重型车用柴油机排气微粒过滤器的开发.汽车技术,1990(4):16-25.
    [34] K. N. Pattas, et al. Catalytic Activity in the Regeneration of the Ceramic Diesel Particulate Trap. SAE Paper 920362.
    [35] Pelham Hawker, et al. Effect of a Continuously Regenerating Diesel Particulate Filter on Non-regulated Emissions. SAE Paper 980189.
    [36] D. S. Park, et al. h Burner-Type Trap for Particulate Matter from a Diesel Engine. COMBUSTION AND FLAME, 1998(114): 585-590.
    [37] A. D. Tuteja, et al. Selection and Development of a Particulate Trap System for a Light Duty Diesel Engine. SAE Paper 920142.
    [38] 段家修,龚晓晖.柴油机微粒过滤器电加热再生技术的试验研究.内燃机学报,1999,17(1):22-26.
    [39] Ryan Shirk, et al. Fiber Wound Electrically Regenerable Diesel Particulate Filter Cartridge for Small Diesel Engines. SAE Paper 950153.
    [40] Xu Xiaoguang, Gao Xiyan. Study on Microwave Regeneration System for Diesel Exhaust Particulate Filter. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings.
    [41] 张春润,刘军民.微波能应用于柴油机排气微粒过滤体再生机理的研究.内燃机学报,1992,10(4):347-353.
    [42] 宁智,资新运.柴油机排气微粒过滤器微波再生试验研究.内燃机学报,1998,16(4):492-496.
    [43] 王宪成.一种新的柴油机排气微粒后处理系统的研究。大连理工大学博士学位论文,1999.
    [44] Tarroh Uchiyarna, et al. Development of Particulate Trap System with Cross Flow Ceramic Filter and Reverse Flow Cleaning Regeneration. SAE Paper 940463.
    [45] 尧命发,许斯都.柴油机有害排放物控制技术的新发展.内燃机工程,18(3):39-45.
    [46] T. Kreuzer, E. S. Lox, D. Lindner, J. Leyrer. Advanced Exhaust Gas After treatment System for Gasoline and Diesel Fuelled Vehicles. EATALYSIS TODAY, 1996(29) 17-27.
    [47] 宁智,张广龙.柴油机微粒排放的机外后处理技术及其发展趋势.车用发动机,1995(4):1-4.
    [48] 张广龙.柴油机碳烟微粒催化转化研究.大连理工大学博士学位论文,1993.
    [49] K. Fujii, et al. Simultaneous Removal of NOx, COx, SOx, and Soot in Diesel Engine Exhaust. NATO ASI Science, Part B. SAE Paper.
    [50] E. Robert Fanick, Bruce B. Bykowski. Simultaneous Reduction of Diesel Particulate and NOx Using a Plasma. SAE Paper 942070.
    [51] Peter Mullins. Regenerative Particulate Filter Based on Plasma Technology. DIESEL PROGRESS, 2000.
    [52] 徐绍曾,马朝臣.柴油机排气微粒静电旋风捕集器的试验研究.内燃机学报,1993,11(1):51-56.
    [53] 朱崇基,周有平,何文华.汽车环境保护学.杭州:浙江大学出版社,2001:84-98.
    [54] 钱耀义.汽车发动机排气污染与控制.北京:人民交通出版社,1987:128-132.
    [55] Peter L. Herzog, Ludwig Burgler, Ernst Winklhofer. NOx Reduction Strategies for DI Diesel Engines. SAE Paper 920470.
    [56] Dr. Cornelis Havenith, Ruud P. Verbeek, et al. Development of a Urea DeNOx Catalyst Concept for European Ultra-Low Emission Heavy-Duty Diesel Engines. SAE Paper 952652.
    [57] Nicos Ladommatos, Razmik Balian, Roy Horrocks, Laurence Cooper. The Effect of Exhaust Gas Recirculation on Combustion and NO_x Emissions in a High-Speed Direct-injection Diesel Engine. SAE Paper 960840.
    [58] N. Ladommatos, S. M. Abdelhalim, H. Zhao. The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions-Part 1: Effect of Reducing Inlet Charge Oxygen. SAE Paper 961165.
    [59] N. Ladommatos, S. M. Abdelhalim, H. Zhao. The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions-Part 2: Effects of Carbon Dioxide. SAE Paper 961167.
    [60] Ulf Lundqvist, Gudmund Smedler, Per Stalhammar. A Comparison between Different EGR Systems for HD Diesel Engines and Their Effect on Performance, Fuel Consumption and Emissions. SAE Paper 2000-01-0226
    [61] Dimitrios Psaras, Pranab K. Das, Magdi K. Khair. Achieving the 2004 Heavy-Duty Diesel Emissions Using Electronic EGR and a Cerium Based Fuel Borne Catalyst. SAE Paper 970189.
    [62] 横田克彦,南利贵.日本商用车柴油机的演变和发展动向.国外内燃机,2003(1):9-14.
    [63] Noboru Uchida, Yasuhiro Daisho and Takeshi Saito, Hideaki Sugano. Combined Effects of EGR and Supercharging on Diesel Combustion and Emissions. SAE Paper 930601.
    [64] Claus Mayer. Latest Design and Development Aspects of Engines for Light Commercial Vehicles to Meet Future Emission Limits. AVL LIST G. M. B. H, GRAZ.
    [65] Paul Zelenka, Hans Aufinger, Walter Reczek. Cooled EGR-A Key Technology for Future Efficient HD Diesels. SAE Paper 980190.
    [66] J. G. Hawley, F. J. Wallace, A. Cox, R. W. Horrocks. Reduction of Steady State NOx Levels from an Automotive Diesel Engine Using Optimised VGT/EGR Schedules. SAE Paper 1999-01-0835.
    [67] P. Gabrielsson, I. Gekas, P. Schoubye, S. Mikkelsen, S. Frederiksen. Combined Silencers and Urea-SCR Systems for Heavy-duty Diesel Vehicles for OEM and Retrofit Markets. SAE Paper 2001-01-0517.
    [68] Hug H. T., A. Mayer, A. Hartenstein. Off-Highway Exhaust Aftertreatment: Combining Urea-SCR Oxidation Catalysts and Traps. SAE Paper 930363.
    [69] Gibson, J., O. Groene. Selective Catalytic Reduction on Marine Diesel Engines. Automotive Engineering, 1991(10).
    [70] B. H. Engler, J. Leyrer, E. S. Lox, K. Ostgathe. Catalytic reduction of NOx with Hydrocarbons under Lean Diesel Exhaust Gas Conditions. SAE Paper 930735.
    [71] M. Kawanami, A. Okumura, and M. noriuchi. Advanced Catalyst Studies of Diesel NO_x Reduction for Heavy-duty Diesel Trucks. SAg Paper 961129.
    [72] J. Leyrer, E. S. Lox, K. Ostgathe, W. Strehlau, T. Kreuzer. Advanced Studies on Diesel Aftertreatment Catalysts for Passenger Cars. SAE Paper 960133.
    [73] Michael P. Walsh. Global Trends in Diesel Emissions Control—A 1999 Update. SAE Paper 1999-01-0107.
    [74] S. P. Edwards, G. R. Frankle, K. Binder, Wirbeleit. Strategic Analysis of Technologies for Future Truck Engines. SAg PAPER 2000-01-3458.
    [75] 许晓光.红外加热再生柴油机壁流陶瓷微粒过滤器的研制.大连理工大学博士学位论文,2001.
    [76] Kazuyuki Narusawa, Matsuo Odaka, Noriyuki Koike. An EGR Control Method for Heavy-duty Diesel Engines under Transient Operations. SAE Paper 900444, 1990.
    [77] Chris Larsen, Frederick Oey, Yiannis A. Levendis. An Optimization Study on the Control of NO_x and Particulate Emissions from Diesel Engines. SAE Paper 960473, 1996.
    [78] Itoh A., et al. Study of SiC Application to Diesel Particulate Filter (part 1): Material Development. SAE Paper 930360.
    [79] Okazoe H., et al. Study of SiC Application to Diesel Particulate Filter (part 2): Engine Test Result. SAE Paper 930360.
    [80] Sorenson S. C., et al. Flow Characteristic of SiC Diesel Particulate Filter Material. SAE Paper 940236.
    [81] Martin J. Murtagh, et al. Development of a Diesel Particulate Filter Composition and Its Effect on Thermal Durability and Filtration Performance. SAE Paper 940235.
    [82] 张春润,资新运,吴良勤等.6110A柴油机排气微粒过滤器通过特性的研究.内燃机学报,1997,15(1):22-27.
    [83] Alkidas A. C., et al. Relationship between Smoke Measurements and Particulate Measurement. SAE Paper 840412.
    [84] 杨德胜,高希彦,王宪成,刘瑞祥.柴油机微粒陶瓷过滤器电加热再生时机的研究.内燃机工程.2003,24(4):42-45.
    [85] J. Kitagawa, T. Hijikata, and M. Makino. Effects of DPF Volume on Thermal Failures During Regeneration. SAE Paper 890173.
    [86] Gulati ST and Helfinstin JD. High Temperature Fatigue in Ceramic Wall-Flow Diesel Filters. SAE Trans. 1985, 94(1): 70-76.
    [87] Gulati ST, Lambert DW, Hoffman MB et al. Thermal Durability of a Ceramic Wall-Flow Diesel Filter for Light-Duty Vehicles. SAg Paper 920143.
    [88] 资新运,宁智,张春润等.柴油车微粒捕捉器再生控制策略.内燃机学报,2000,02(2):106.
    [89] Pattas K. N., Samaras Z. C., Kikidis P. S. Operation Characteristics of the Ceramic Diesel Particulate Trap during Forced Regeneration. SAE Paper 870252.
    [90] A. Konstandopoulos and J. H. Johnson. Wall-Flow Diesel particulate Filters-Their Pressure Drop and Collection Efficiency. SAE Paper 890405.
    [91] Mansour Masoudi, Achim Heibel and Paul M. Then. Predicting Pressure Drop of Wall-Flow Diesel Particulate Filters-Theory and Experiment. SAg Paper 2000-01-0184.
    [92] Beavers G.S., Sparrow E. M. Non-Darcy Flow Through Fibrous Porous Media. Journal of Applied Mechanics Transactions of the ASME, 1969(10): 711-714.
    [93] Mayer A., Buck A., Bressler H. The Knitted Particulate Trap: Field Experience and Development Progress. SAE Paper 930362.
    [94] 孙文策,李元明,周美,刘超.工程流体力学.大连:大连理工大学出版社,1995:6-10.
    [95] H. Tsunemoto and H. Ishitani. The Role of Oxygen in Intake and Exhaust on NO emission, Smoke and BMEP of a Diesel Engine with EGR System. SAE Paper 800030: 132-140.
    [96] 何邦全.废气再循环对柴油机燃烧过程影响的研究.天津大学博士论文,2001,6.
    [97] Hajib Khalil, Yiannis A. Levendis, Richard F. Abrams. Reducing Diesel Particulate and NOx Emissions via Filtration and Particle-Free Exhaust Gas Recirculation. SAE Paper 950736.
    [98] J. Berrebi, P. E. Martinsson, M. Willatzen, J. Delsing. Ultrasonic Flow Metering Errors Due to Pulsating Flow. Flow Measurement and Instrumentation, 2004(15): 179-185.
    [99] Matthew J. Hall and Patrick Zuzek. Fiber Optic Sensor for Time-Resolved Measurements of Exhaust Gas Recirculation in Engines. SAE Paper 2000-01-2865.
    [100] 侯玉春,肖福明,陆辰,黄震.空气反馈信号控制柴油机排气再循环系统研究.内燃机工程,2004,25(1).
    [101] Kishi, Noriyuki, et al. Development of the High-Performance L4 Engine ULEV System. SAE Paper 980415.
    [102] 王贤仁.限流型氧传感器.仪表技术与传感器,1998,8:5-7.
    [103] 徐家龙,藤泽英也.内燃机燃油喷射和控制,2001(1):4-14.
    [104] 陈其萃.冷却EGR调节——符合汽车直喷式柴油机欧4排放标准的策略.国外内燃机,2003(5).
    [105] S. Yurkovich, M. Simpson. Crank-Angle Domain Modeling and Control for Idle Speed. SAE Paper 970027.
    [106] L. Guzzella and A. Amstutz. Control of Diesel Engines. IEEE Control Systems Magazine, 1998, 18(5): 53-71.
    [107] 杜德基.船舶柴油机推进系统的建模方法.上海交通大学学报,1987,21(3):57-68.
    [108] 翁史烈.船舶动力装置仿真技术.上海:上海交通大学出版社,1987:263-279.
    [109] Ljung L. Convergence Analysis of Parametric Identification Methods. IEEE Trans. On Automatic Control, 1978, AC-23: 770-783.
    [110] 倪维斗,徐向东等.热动力系统建模与控制的若干问题.北京:科学出版社,1996.
    [111] 胡德文.非线性与多变量系统相关辨识.长沙:国防科技大学出版社,2001:4-6,95-115.
    [112] 方崇智,萧德云.过程辨识.北京.清华大学出版社,1988:197-200.
    [113] 肖建.现代控制系统综合与设计.北京:中国铁道出版社,2000:252-254.
    [114] 万百五,吴受章.大系统的模型简化.自动化学报,1981,6(1):57-66.
    [115] 张启人.线性系统频域模型简化的连分式法.信息与控制,1988,4(2):60-66.
    [116] Richard C.Dorf著,谢红卫等译.现代控制系统.北京.高等教育出版社,2001:222-225.
    [117] E.O.多比林.系统建模与响应——理论及实验方法.机械工业出版社,1987:369-379.
    [118] F. Millo, C. V. Ferraro and L. Pilo. A Numerical Contribution to the Improvement of Individual Cylinder AFR Control in a 4 Cylinder S. I. Engine. SAE Paper 2001-01-1009.
    [119] 汪秉文,李国宽,姜新.一种改进的Smith预估补偿方法.华中理工大学学报,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700