类水滑石衍生混合氧化物同时催化去除碳颗粒物和氮氧化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机以其低油耗、高功率、耐久性好的优势,在汽车、轮船以及各种动力装置上得到日益广泛的应用,但其尾气排放中的有害物质对环境和人类健康带来了严重的危害。世界各国都制定了日益严格的柴油机排放法规,柴油机排气污染控制是防止大气污染必须解决的重要环境问题,成为能源与环境领域的一个重大研究课题。
     柴油机排气控制主要针对碳颗粒物(PM)和氮氧化物(NOx)进行,由于PM和NOx的机内净化存在trade-off关系,发展柴油机尾气后处理技术成为同时降低PM和NOx排放的有效手段。本文模拟柴油机排气环境,采用程序升温反应技术,以类水滑石纳米复合材料为前体制备了系列具有介孔结构的混合氧化物催化剂,在同一催化床层上使干碳烟(soot)和NOx互为氧化还原剂实现污染物的同时去除,并运用多种现代分析技术,揭示了催化剂结构和性能之间的关系,在计算催化反应动力学基础上,分析了类水滑石材料同时催化去除NOx和soot的反应机理。具体工作如下:
     1.采用稳态沉淀法和超声辅助法合成了镁铝水滑石(HT)纳米复合材料,两种方法合成的HT均为较规则的六边形片状颗粒,粒径大约在40~60 nm范围,后者可在超声处理一定时间内(10~20 min)得到粒径较小、结晶度较好晶相单一的HT。超声处理可以缩短HT合成时间,促进层间阴离子交换。以超声处理20 min合成的HT为前体经450℃焙烧可制得孔径均一的介孔混合氧化物LDO,其比表面积大,孔径分布窄,最大几率孔径分布约4 nm,SBET为168.8 m~2·g~(-1),孔容为0.37 cm~3·g~(-1)。通过控制前体HT的合成条件,可有效控制LDO的孔径分布。
     2.以稳态沉淀法合成的含过渡金属的类水滑石纳米复合材料M(П)Al-HT (M代表Ni、Co和Cu)为前体,制备了MAlO和K/MAlO两类具有相同介孔结构的混合金属氧化物催化剂。研究了过渡金属对物相组成、热稳定性、孔结构性质以及氧化还原性能的影响,MAlO和K/MAlO具有良好的soot催化氧化能力;与soot非催化燃烧相比,MAlO的起燃温度T_i下降200℃左右,大约为320℃,负载K_2CO_3后,K/MAlO的T_i和Tp都向低温方向移动;反应气氛中NO不但降低了soot的燃烧温度,而且提高了soot的氧化反应速率,这主要是反应中生成氧化能力更强的NO_2和在催化剂表面吸附生成的硝酸盐物种的促进作用。
     3.采用稳态沉淀法在较大Co/Al比范围内(2~7)合成晶相单一的纳米类水滑石CA-HT,以此为前体制备的CAO-500和CAO-800混合氧化物呈Co尖晶石相,两类催化剂具有较大的表面积,80%以上的孔都位于中孔范围,平均孔径介于20~40 nm之间;XPS结果表明钴以Co~(2+)和Co~(3+)同时存在于尖晶石结构中,催化剂表面除存在晶格氧外,还有大量的吸附氧。两类催化剂具有良好的同时催化去除soot和NOx的能力,CAO-800的soot催化燃烧活性以及N_2的选择性S_(N2/C)都高于同一Co/Al比的CAO-500;CAO催化剂的介孔结构有利于气体分子的吸附、扩散和脱附,因而具有较高的N_2的选择性。4CAO-800是一个综合性能好的催化剂,T_i = 290℃,S_(N2/C) = 3.5%,S_(N2O) = 15.1%。通过XPS和H_2-TPR等方法推测,在CAO催化剂同时去除soot和NO反应中,soot的催化燃烧过程中溢流机理和氧化还原机理协同发生作用。
     4.以Cu取代型类水滑石(Cu-Mg/Al-HT)为前体制备了具有介孔结构的含Cu混合氧化物催化剂,其晶相以CuO相为主,同时伴生少量的尖晶石相,具有较大的比表面积(20~100 m~2·g~(-1)),SBET随Cu取代量增加而降低,样品80%以上的孔位于中孔范围。含Cu混合氧化物具有良好的同时催化去除soot和NOx的能力,Cu取代量增加或焙烧温度升高,催化剂的soot燃烧活性和NO去除性能呈上升趋势;与纯CuO相比,类水滑石催化剂活性大大提高,这与其介孔结构和较大的比表面积有关。催化剂适宜的焙烧温度为800℃,Cu的最佳取代量为3.0,即活性较好的催化剂3.0Cu-800,其T_i = 260℃,S_(N2/C)=4.37%,S_(N2O) = 16.6%。
     5.Soot非催化燃烧时生成CO_2的表观活化能E_a = 158.4 kJ·mol~(-1),T_i = 530℃,以具有介孔结构的含Cu混合氧化物为催化剂时E_a下降至60 kJ·mol~(-1)左右,T_i大幅下降至260~300℃,同时有大量的N_2生成,这表明通过催化燃烧可以降低生成CO_2的活化能,使soot可在较低的温度下得以催化去除;以CuO为主要晶相的催化剂同时去除soot和NOx的反应中,指前因子和表观活化能之间存在补偿效应。
     6.以3.0Cu-800为催化剂,研究了soot含量、NO浓度、O_2浓度、气体流速、催化剂与碳颗粒物的接触方式以及催化剂重复使用对同时催化去除soot和NOx的影响。研究发现,soot含量、气体流速和升温速率变化对T_i影响不大,而NO或O_2浓度的增加提高了起燃活性,但对NO最大去除率X_(N2-max)影响不大;良好的接触状况有利于soot和NOx的同时催化去除,而松接触条件下催化剂仍具有相当高的活性;催化剂经重复使用后活性下降,是由于在反应中生成的中间产物如碳酸盐等吸附于催化剂表面,覆盖了表面的活性位,从而抑制了催化剂的活性。
     7.宏观反应动力学研究表明在非稳态的程序升温反应中,当催化剂与PM混合物中的微量碳基本不变,动力学分析是可行的。在上述实验的基础上,利用催化反应表观速率常数r与反应温度T间的指数关系(Arrhenius方程)进行了NO-O_2-soot催化反应动力学的计算;在低温反应温度区间内,获得了同时去除PM和NOx反应中CO_2生成和N_2生成的经验速率方程。
     8.在分析NOx在类水滑石催化剂表面吸附、脱附过程以及NOx吸附物种的基础上,结合催化反应历程及前人对反应机理的探讨,推测了含Cu类水滑石材料同时催化去除soot和NO的反应机理。该机理充分考虑了NOx吸脱附过程对催化反应的影响,认为O_2的存在促进了反应的进行,NO/O_2在催化剂表面生成的NO_2和大量吸附物种提高了催化反应速率。
     总之,含过渡金属的类水滑石材料具有良好的同时催化去除soot和NOx的能力,而该技术则集“PM的捕集、PM的催化燃烧、NOx的催化还原”三功能于一体,有望成为一种非常有发展前途的柴油机排放后处理技术。
The high efficiency, economy and durability of diesel engines have resulted in widely use in various power systems, trucks, buses, ship and nonroad vehicles in recent years. Meanwhile, the pollutants emitted by diesel engines have been causing severe environmental and human health problems. More and more stringent regulations have been established by many countries. Then the emission control on diesel engines has been an important research topic in energy and environmental area.
     Nitrogen oxides (NOx) and particulate matters (PM) are the main harmful substances. Since the reduction of NOx and PM cannot be accomplished by engine modifications alone, aftertreatment technology should be developed. A promising process to meet this demand is the simultaneous catalytic removal of NOx and soot. In this paper, mesoporous mixed oxides derived from hydrotalcites have been firstly used for NOx-soot removal under simulated diesel emission conditions. The detailed works are as follows:
     1. Mg-Al hydrotalcites (HT) nanometer materials have been prepared by two different methods: conventional co-precipitation (the CP method) and co-precipitation assisted by ultrasound (the US method). Mixed oxides (LDO) was derived from LDH calcined at 450℃for 6 h. The results showed that well crystallized LDH of high purity could be obtained by the US method within acceptable times. Ultrasonic treatment could also accelerate anions exchange in the interlayer space. The mixed oxide, whose precursors were prepared by 20 minutes of ultrasonic treatment, showed mesoporous structures with monomodal pore size distribution and a very small amount of micropores. Its BJH desorption pore size distribution exhibited a narrow peak with maxima at 4 nm with SBET of 168.8 m~2·g~(-1) and pore volume of 0.37 cm~3·g~(-1). The amount of micropores decreased and the pore size distribution become broader when the ultrasonic radiation time exceeds 40 minutes. The pore size distribution of LDO can be controlled by ultrasonic treatment.
     2. MAlO (where M = Ni~(2+), Co~(2+) and Cu~(2+)) mixed oxides derived from hydrotalcites and potassium-promoted MAlO catalysts (designated as K/MAlO) have been studied for soot oxidation. The catalysts were characterized by XRD, N_2 adsorption, TPR, FT-IR and TPO techniques. The hydrotalcites calcined at 800℃have large surface areas in the range 17-88 m~2/g and uniform mesoporous features, which resulted in high activity for diesel soot oxidation under the conditions of tight contact between soot and catalyst powders. Potassium increased the activity due to the improvement of surface mobility. The presence of NO_x considerably enhanced the catalytic soot oxidation rate. The enhancement was attributed to the acceleration of soot oxidation due to NO_2 as a strong oxidizing agent and intermediates of nitrate and/or nitrite species formed on the catalyst surface.
     3. Co-Al mixed oxides (CAO) was prepared by co-precipitation method from hydrotalcites (HT) as precursors, and their catalytic activity was investigated for the simultaneously catalytic removal of NOx and diesel soot particulates by the Temperature-programmed Reaction (TPR) technique. All HT samples present well crystallized, layered structures, no excess phases were detected. A nonstoichiometric spinel phase was formed by calcining the CAO at 500℃and 800℃, irrespective of the Co/Al ratio. Both the activity of soot oxidation and the selectivity to N_2 formation of CAO catalysts calcined at 800℃were higher than that at 500℃. The observed difference in the catalytic performance was related to the redox properties of the catalysts and the crystallite size of HT precursors. The active species might come from Co_3O_4, which acted for redox-type mechanism for soot oxidation in the NO_x-soot reaction.
     4.Mesoporous mixed oxides catalysts were derived from Cu substituted Mg/Al hydrotalcites at the ratio of M~(2+)/M~(3+) = 3. CuO was the predominant phase in the catalyst, while traces of spinels were also detected. Cu-containing mixed oxides had large surface areas in the range 20-100 m~2/g and 80% of catalyst pores were mesopores. The catalysts showed high activity for the simultaneously catalytic removal of NO_x and diesel soot particulates. Both the activity of soot oxidation and the selectivity to N_2 formation increased with the increase of Cu content or calcined temperature. Compared with pure CuO, hydrotalcite derived catalysts had high activities, which maybe related to the mesoporous structure and large suface areas. The optimal calcined temperature was 800 ℃and the appropriate Cu/Mg molar ratio was 3.0. Then 3.0Cu-800 may be a good catalyst with high activity (T_i = 260℃, S_(N2/C) = 4.37%, S_(N2O) = 16.6%).
     5. The apparent activation energy (E_a) for CO_2 formation and T_i value under noncatalytic soot combustion was 158.4 kJ·mol~(-1) and 530℃respectively. Both E_a and T_i value decreased when simultaneous NOx-soot removal reactions took place over Cu-containing mixed oxides catalysts. Large amounts of N_2 were formed at the same time. The compensation effect between the apparent activation energy and the pre-exponentail factor were observed over Cu-containing mixed oxides.
     6. Effects of reaction conditions including soot content, concentrations of inlet gas, total flow rate, heating rate, contact conditions and reuse of catalyst were investigated over 3.0Cu-800 samples. Soot content, total flow rate and heating rate hardly affect the ignition temperature of soot, while NO and O_2 concentration positive affect the catalytic acitivity. The contact between catalyst and soot was a very important factor for the catalytic performance. The relatively high activity over 3.0Cu-800 catalyst under loose contact correlated with the low melting point and high partial pressure of CuO phases. The catalytic performace decreased during catalyst reuses due to the coverage of active sites by the adsorption inermediates species in the reactions.
     7. The kinetics analysis of non-steady TPR results for the simultaneous NOx-soot removal has been revealed to be possible when a substantial amount of the charged soot remained in the soot/catalyst mixture. Based on the above experiments, the reaction orders of CO_2 and N_2 formation in NO-O_2-soot reactions at lower temperatures were calculated by Arrhenius-type plot. The power law expressions of reaction rates of CO_2 and N_2 formation were obtained.
     8. The reaction mechanisms of simultaneous NOx-soot removal over 3.0Cu-800 were discussed based on the NOx adsorption-desportion behavior, catalytic experiments and the results by other researchers. In the proposed mechanisms, the effect of NOx adsoption-desportion on the reaction was considered. The coexisting of O_2 promoted the NOx adsorption. NO_2 and the adsorption species formed on the catalysts surface increased the reation rate.
     In conclusion, transition metal containing hydrotalcites derived catalysts showed high activity for the simultaneously catalytic removal of nitrogen oxides and diesel soot particulates. This technology can be regarded as a combined process of PM trapping, soot oxidation and NOx reduction by soot, and, if realized, this should be the most desirable aftertreatment of desel exhausts because it is capable of simultaneously removing both harmful substances.
引文
[1] Lloyd, A. C., Cackette, T. A. Diesel engines: Environmental impact and control[J]. Journal of the Air & Waste Management Association. 2001, 51(6):809-847.
    [2] 高松, 曲金玉, 路传国等 国外柴油机排放法规与排放控制技术发展现状[J]. 山东工程学院学报. 2001, 15(3):38-42.
    [3] 朱天乐, 王建昕, 傅立新等 柴油机排气后处理技术[J]. 车用柴油机. 2002, (6):1-5.
    [4] Neeft, J. P. A., Makkee, M., Moulijn, J. Diesel particulate emission control[J]. Fuel Processing Technology. 1996, 47:1-69.
    [5] 魏善真. 内燃机低污染化[J]. 柴油机设计与制造. 1999, (1):3-15.
    [6] 刘志明, 郝郑平, 沈迪新等 柴油机排放碳颗粒物和NOx催化净化技术的研究进展[J]. 环境污染治理技术与设备. 2000, 1(5):78-86.
    [7] Ambrogio, M., Saracco, G., Specchia, V. Combining filtration and catalytic combustion in particulate traps for diesel exhaust treatment[J]. Chemical Engineering Science. 2001, 56(4):1613-1621.
    [8] van Setten, B. A. A. L., Schouten, J. M., Makkee, M.et al. Realistic contact for soot with an oxidation catalyst for laboratory studies[J]. Applied Catalysis B-Environmental. 2000, 28(3-4):253-257.
    [9] 杜明. 柴油机 NOx 排放物的生成机理及净化技术[J]. 科技情报开发与经济. 2001, 11(5):49-50.
    [10] Zelenka, P., Cartellieri, W., Herzog, P. Worldwide diesel emission standards, current experiences and future needs [J]. Applied Catalysis B: Environmental 1996, 10(1-3):3-28.
    [11] Fischer, S., Rusch, K., Amon, B. SCR technology to meet future diesel emission regulations in Europe[C]. Asian Vehicle Emission Control Conference. Beijing, China, 2004.
    [12] 王建昕, 傅立新, 黎维彬. 汽车排气污染治理及催化转化器[M], 化学工业出版社, 2000.
    [13] Hosoya, M., Shimoda, M. The application of diesel oxidation catalysts to heavy duty diesel engines in Japan[J]. Applied Catalysis B-Environmental. 1996, 10(1-3):83-97.
    [14] Galisteo, F. C., Larese, C., Mariscal, R.et al. Deactivation on vehicle-aged diesel oxidation catalysts[J]. Topics in Catalysis. 2004, 30-31(1-4):451-456.
    [15] Stein, H. J. Diesel oxidation catalysts for commercial vehicle engines: Strategies on their application for controlling particulate emissions[J]. Applied Catalysis B-Environmental. 1996, 10(1-3):69-82.
    [16] Zelenka, P., Kriegler, W., Herzog, P. L.et al. Ways toward the clean heavy-duty diesel [J]. SAE (Society of Automotive Engineers) Transactions 1990, 99:1279-1291.
    [17] Zelenka, P., Ostgathe, K., Lox, E. Reduction of diesel exhaust emissions by using oxidation catalysts[J]. SAE (Society of Automotive Engineers) Transactions 1990, 99:703-713
    [18] Clerc, J. C. Catalytic diesel exhaust aftertreatment[J]. Applied Catalysis B-Environmental. 1996, 10(1-3):99-115.
    [19] 陈华鹏, 吴晓东, 万李等 柴油车排气微粒捕集用复合金属丝网的制备与性能研究[J]. 环境污染治理技术与设备. 2004, 5(10):80-83.
    [20] Law, M. C., Clarke, A., Garner, C. P. A diesel particulate filter regeneration model with a multi-step chemical reaction scheme[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering. 2005, 219(D2):215-226.
    [21] Kandylas, I. P., Stamatelos, A. M. Modeling catalytic regeneration of diesel particulate filters, taking into account adsorbed hydrocarbon oxidation[J]. Industrial & Engineering Chemistry Research. 1999, 38(5):1866-1876.
    [22] Cauda, E., Fino, D., Saracco, G.et al. Nanosized Pt-perovskite catalyst for the regeneration of a wall-flow filter for soot removal from diesel exhaust gases[J]. Topics in Catalysis. 2004, 30-31(1-4):299-303.
    [23] Gorsmann, C. Catalytic coatings for active and passive diesel particulate filter regeneration[J]. Monatshefte Fur Chemie. 2005, 136(1):91-105.
    [24] Johnson, T. V. Diesel Emission Control Technology[J]. SAE (Society of Automotive Engineers) Transactions. 2004-01-0070.
    [25] Kobayashi, T., Ikeue, T., Ito, T.et al. Short-term exposure to diesel exhaust induces nasal mucosal hyperresponsiveness to histamine in guinea pigs[J]. Fundamental and Applied Toxicology. 1997, 38(2):166-172.
    [26] Jung, S. M., Grange, P. Investigation of the promotional effect of V2O5 on the SCR reaction and its mechanism on hybrid catalyst with V2O5 and TiO2-SO42- catalysts[J]. Applied Catalysis B-Environmental. 2002, 36(3):207-215.
    [27] Ramis, G., Yi, L., Busca, G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study[J]. Catalysis Today. 1996, 28(4):373-380.
    [28] Gabrielsson, P. L. T. Urea-SCR in automotive applications[J]. Topics in Catalysis. 2004, 28(1-4):177-184.
    [29] Castoldi, L., Matarrese, R., Lietti, L.et al. Simultaneous removal of NOx and soot on Pt-Ba/Al2O3 NSR catalysts[J]. Applied Catalysis B-Environmental. 2006, 64(1-2):25-34.
    [30] Koebel, M., Elsener, M., Madia, G. SAE Paper, 2001-01-3625.
    [31] Mallat, T., Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts[J]. Chemical Reviews. 2004, 104(6):3037-3058.
    [32] Held, W., Konig, A., Thomas, R. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Transactions. 1990, (4):209-216.
    [33] Iwamoto, M., Yahiro, H., Shundo, S.et al. Influnce of sulfur dioxide on catalytic removal of nitric oxide over copper ion-exchanged ZSM-5[J]. Applied Catalysis. 1991, 69(2):L15-L19.
    [34] Miyadera, T. Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen-containing organic compounds [J]. Applied Catalysis B-Environmental. 1993, 2(2-3):199-205.
    [35] Yu, Y. B., He, H. Mechanistic study of lean NOx reduction with propene over Ag/Al2O3 by in situ DRIFTS[J]. Chinese Journal of Catalysis. 2003, 24(5):385-390.
    [36] He, H., Yu, Y. B., Liu, F. S.et al. Selective catalytic reduction of NOx in the presence of excess oxygen - II. SCR of NOx with oxo-organic compounds over Ag/Al2O3[J]. Chinese Journal of Catalysis. 2004, 25(6):460-466.
    [37] Yoshida, K., Makino, S., sumiya, S.et al. Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust[J]. SAE Paper no892046. 1989.
    [38] Yu, Y. B., He, H., Feng, Q. C.et al. Mechanism of the selective catalytic reduction of NOx by C2H5OH over Ag/Al2O3[J]. Applied Catalysis B-Environmental. 2004, 49(3):159-171.
    [39] Konig, U., Pollmann, H. Synthesis, properties and characterisation of manganeous Layered Double Hydroxides using in situ X-ray techniques[J]. European Powder Diffraction Epdic 8. 2004, 443-4:307-310.
    [40] Matsumoto, S., Ikeda, Y., Suzuki, H. NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning[J]. Applied Catalysis B: Environmental. 2000, 25(2-3):115-124.
    [41] Hoard, J. Plasma-Catalyst for Diesel Exhaust Treatment:Current State of the Art[J]. SAE paper 2001-01-0185.
    [42] Fino, D., Fino, P., Saracco, G.et al. Studies on kinetics and reactions mechanism of La2-xKxCu1-yVyO4 layered perovskites for the combined removal of diesel particulate and NOx[J]. Applied Catalysis B-Environmental. 2003, 43(3):243-259.
    [43] Page, D. L., MacDonald, R. J., Edgar, B. L. The Quad CAT/TM four-way catalytic converter:An integrated aftertreatment system for diesel engines [J]. SAE Paper No1999-01-2924
    [44] Chandler, G. R., Cooper, B. J., Harris, J. P.et al. An integrated SCR and continuously regenerating trap system to meet future NOx and PM legislation [J]. SAE Paper No2000-01-0188
    [45] Tsyganok, A. I., Inaba, M., Tsunoda, T.et al. Combined partial oxidation and dry reforming of methane to synthesis gas over noble metals supported on Mg-Al mixed oxide[J]. Applied Catalysis a-General. 2004, 275(1-2):149-155.
    [46] Shangguan, W. F., Teraoka, Y., Kagawa, S. Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate[J]. Applied Catalysis B-Environmental. 1998, 16(2):149-154.
    [47] Shangguan, W. F., Teraoka, Y., Kagawa, S. Kinetics of soot-O-2, soot-NO and soot-O-2-NO reactions over spinel-type CuFe2O4 catalyst[J]. Applied Catalysis B-Environmental. 1997, 12(2-3):237-247.
    [48] Teraoka, Y., Nakano, K., Kagawa, S.et al. Simultaneous Removal of Nitrogen-Oxides and Diesel Soot Particulates Catalyzed by Perovskite-Type Oxides[J]. Applied Catalysis B-Environmental. 1995, 5(3):L181-L185.
    [49] Teraoka, Y., Nakano, K., Shangguan, W.et al. Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides [J]. Catalysis Today. 1996, 27(1-2):107-113.
    [50] Teraoka, Y., Kagawa, S. Simultaneous catalytic removal of NOx and diesel soot particulates[J]. Catalysis Surveys from Japan. 1998, 2(2):155-164.
    [51] Teraoka, Y., Kanada, K., Kagawa, S. Synthesis of La-K-Mn-O perovskite-type oxides and theircatalytic property for simultaneous removal of NOx and diesel soot particulates[J]. Applied Catalysis B-Environmental. 2001, 34(1):73-78.
    [52] Shangguan, W. F., Teraoka, Y., Kagawa, S. Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB(2)O(4) spinel-type oxides[J]. Applied Catalysis B-Environmental. 1996, 8(2):217-227.
    [53] Teraoka, Y., Nakano, K., Shangguan, W.et al. Simultaneous catalytic romoval of nitrogen oxides and diesel soot particulate over perovskite-related oxides[J]. Catalysis Today. 1996, 27(1-2):107-113.
    [54] Shangguan, W. F., Teraoka, Y., Kagawa, S. Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB(2)O(4) spinel-type oxides[J]. Applied Catalysis B-Environmental. 1996, 8(2):220-223.
    [55] Kureti, S., Hizbullah, K., Weisweiler, W. Simultaneous catalytic removal of nitrogen oxides and soot from diesel exhaust gas over potassium modified iron oxide[J]. Chemical Engineering & Technology. 2003, 26(9):1003-1006.
    [56] Kureti, S., Weisweiler, W., Hizbullah, K. Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas[J]. Applied Catalysis B-Environmental. 2003, 43(3):281-291.
    [57] Hizbullah, K., Kureti, S., Weisweiler, W. Potassium promoted iron oxide catalysts for simultaneous catalytic removal of nitrogen oxides and soot from diesel exhaust gas[J]. Catalysis Today. 2004, 93-95:839-843.
    [58] Pisarello, M. L., Milt, V., Peralta, M. A.et al. Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts[J]. Catalysis Today. 2002, 75(1-4):465-470.
    [59] Milt, V. G., Pissarello, M. L., Miro, E. E.et al. Abatement of diesel-exhaust pollutants: NOx storage and soot combustion on K/La2O3 catalysts[J]. Applied Catalysis B-Environmental. 2003, 41(4):397-414.
    [60] Nejar, N., Garcia-Cortes, J. M., de Lecea, C. S. M.et al. Bimetallic catalysts for the simultaneous removal of NOx and soot from diesel engine exhaust: A preliminary study using intrinsic catalysts[J]. Catalysis Communications. 2005, 6(4):263-267.
    [61] Teraoka, Y., Kanada, K., Furukawa, H.et al. Simultaneous catalytic removal of nitrogen oxides and soot by copper-loaded MFI zeolites[J]. Chemistry Letters. 2001, (7):604-605.
    [62] Liu, G. H., Huang, Z., Shangguan, W. F.et al. Simultaneously catalytic removal of NOx and particulate matter on diesel particulate filter[J]. Chinese Science Bulletin. 2003, 48(3):305-308.
    [63] 刘光辉. 催化过滤器同时去除柴油机微粒和氮氧化物的基础研究. 上海交通大学[博士学位论文]. 2002.
    [64] Matsuoka, K., Orikasa, H., Itoh, Y.et al. Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen[J]. Applied Catalysis B-Environmental. 2000, 26(2):89-99.
    [65] Shibata, K., Oi, T., Otsuka, A.et al. Properties of DPF system using perovskite catalysts supported on ZrO2/SiC fibers[J]. Journal of the Ceramic Society of Japan. 2003, 111(11):852-856.
    [66] Teraoka, Y., Shangguan, W. F., Kagawa, S. Reaction mechanism of simultaneous catalytic removal of NOx and diesel soot particulates[J]. Research on Chemical Intermediates. 2000, 26(2):201-206.
    [67] Penetrante, B. M. Feasibility of Plasma Aftertreatment for Simultaneous Control of NOx and Particulate[J]. SAE paper 1999-01-3637.
    [68] Jamriska, M., Morawska, L., Thomas, S.et al. Diesel bus emissions measured in a tunnel study[J]. Environmental Science & Technology. 2004, 38(24):6701-6709.
    [69] Pei, M. X., Lin, H., Shangguan, W. F.et al. Simultaneous catalytic removal of NOx and diesel PM over La0.9K0.1CoO3 catalyst assisted by plasma[J]. Journal of Environmental Sciences-China. 2005, 17(2):220-223.
    [70] Pei, M. X., Lin, H., Shangguan, W. F.et al. The effects of plasma on simultaneously catalytic removal of NO (x) and soot[J]. Acta Physico-Chimica Sinica. 2005, 21(3):255-260.
    [71] Peng, X. S., Lin, H., Huang, Z.et al. Effect of catalysis on plasma assisted catalytic removal of nitrogen oxides and soot[J]. Chemical Engineering & Technology. 2006, 29(10):1262-1266.
    [72] Peng, X. S., Lin, H., Shangguan, W. F.et al. Physicochemical and catalytic properties of La0.8K0.2CuxMn1-xO3 for simultaneous removal of NOx and soot: Effect of Cu substitution amount and calcination temperature[J]. Industrial & Engineering Chemistry Research. 2006, 45(26):8822-8828.
    [73] Peng, X. S., Lin, H., Shangguan, W. F.et al. Surface properties and catalytic performance of La0.8K0.2CuxMn1-xO3 for simultaneous removal of NOx and soot[J]. Chemical Engineering & Technology. 2007, 30(1):99-104.
    [74] Peng, X. S., Lin, H., Shangguan, W. F.et al. A highly efficient and porous catalyst for simultaneous removal of NOx and diesel soot[J]. Catalysis Communications. 2007, 8(2):157-161.
    [75] 彭小圣. 催化与高频放电耦合催化同时去除氮氧化物和碳烟. 上海交通大学[博士学位论文]. 2006.
    [76] Vaccari, A. Preparation and catalytic properties of cationic and anionic clays[J]. Catalysis Today. 1998, 41(1-3):53-71.
    [77] Vaccari, A. Clays and catalysis: a promising future[J]. Applied Clay Science. 1999, 14(4):161-198.
    [78] Cavani, F., Trifiro, F., Vaccari, A. Hydrotalcite type anionic clays:Properties and application[J]. Catalysis Today. 1991, 11(2):173-301.
    [79] Tichit, D., Coq, B. Catalysis by hydrotalcites and related materials[J]. Cattech. 2003, 7(6):206-217.
    [80] Carja, G., Nakamura, R., Aida, T.et al. Mg-V-Al mixed oxides with mesoporous properties using layered double hydroxides as precursors: catalytic behavior for the process of ethylbenzene dehydrogenation to styrene under a carbon dioxide flow[J]. Journal of Catalysis. 2003, 218(1):104-110.
    [81] Saber, O., Tagaya, H. New layered double hydroxide, Zn-Ti LDH: Preparation and intercalation reactions[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2003, 45(1-2):109-116.
    [82] Wegrzyn, A., Rafalska-Lasocha, A., Dudek, B.et al. Nanostructured V-containing hydrotalcite-like materials obtained by non-stoichiometric anion exchange as precursors of catalysts for oxidative dehydrogenation of n-butane[J]. Catalysis Today. 2006, 116(1):74-81.
    [83] Velu, S., Suzuki, K., Okazaki, M.et al. Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation[J]. Journal of Catalysis. 2000, 194(2):373-384.
    [84] Brindley, G. W., Kikkawa, S. Themal behavior of hydrotalcite and of anion-exchanged form of hydrotalcite[J]. Clays and Clay Minerals. 1980, 28:87-91.
    [85] Reichle, W. T. Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite) [J]. Solid State Ionics 1986, 22(1):135-141
    [86] 杨锡尧, 伍韶玲, 何晖等 新型催化剂载体材料镁铝复合氧化物的制备及其物理化学性质[J]. 分子催化. 1996, 10(2):88-94.
    [87] 李大塘, 杨丽筠, 屠迈等 微量吸附量热法研究水滑石及其衍生复合氧化物的酸碱性质[J]. 南京大学学报(自然科学版). 1998, 34(1):114.
    [88] Kooli, F., Depege, C., Ennaqadi, A.et al. Rehydration of Zn-Al layered double hydroxides[J]. Clays and Clay Minerals. 1997, 45(1):92-98.
    [89] Hibino, T., Tsunashima, A. Characterization of repeatedly reconstructed Mg-Al hydrotalcite-like compounds: Gradual segregation of aluminum from the structure[J]. Chemistry of Materials. 1998, 10(12):4055-4061.
    [90] Kung, H. H., Ko, E. I. Preparation of oxide catalysts and catalyst supports - A review of recent advances[J]. Chemical Engineering Journal. 1996, 64(2):203-214.
    [91] Basile, F., Fornasari, G., Gazzano, M.et al. Synthesis and thermal evolution of hydrotalcite-type compounds containing noble metals[J]. Applied Clay Science. 2000, 16(3-4):185-200.
    [92] Serwicka, E. M., Bahranowski, K. Environmental catalysis by tailored materials derived from layered minerals[J]. Catalysis Today. 2004, 90(1-2):85-92.
    [93] Velu, S., Ramaswamy, V., Ramani, A.et al. New hydrotalcite-like anionic clays containing Zr4+ in the layers[J]. Chemical Communications. 1997, (21):2107-2108.
    [94] 杜以波, Evans, D. G., 孙鹏等 阴离子型层柱材料研究进展[J]. 化学通报. 2000, (5):20~24.
    [95] 郝吉明, 马广大. 大气污染控制工程[M], 高等教育出版社, 2002.
    [96] Kannan, S., Swamy, C. S. Catalytic decomposition of nitrous oxide on "in situ" generated thermally calcined hydrotalcites[J]. Applied Catalysis B: Environmental. 1994, 3( 2-3):109-116.
    [97] Lacaze, B., Chabert, M. Power spectra for laser-extinction measurements[J]. Optics Express. 2006, 14(13):6011-6019.
    [98] Teraoka, Y., Motoi, Y., Yamasaki, H.et al. Adsorption of sulfur dioxide on Y-type zeolites[J]. Progress in Zeolite and Microporous Materials, Pts a-C. 1997, 105:1787-1793.
    [99] 赵丹, 刘长厚, 王立秋等 含钴铜镍类水滑石焙烧产物催化分解 N2O 的研究[J]. 催化化学. 2003, 24(8):595-599.
    [100] 刘钰, 杨向光, 张忠良等 以水滑石为前体的 Mg-Al-M 复合氧化物对催化消除 NOx 的活性[J]. 催化学报. 1999, 20(4):450-454.
    [101] 肖轶, 马骏, 杨锡尧. 钴铝水滑石焙烧产物催化剂上 NO 的直接分解[J]. 催化学报. 1999, 20(5):495-498.
    [102] Corma, A., Palomares, A. E., Rey, F.et al. Simultaneous catalytic removal of SOx and NOx with hydrotalcite-derived mixed oxides containing copper, and their possibilities to be used in FCC units[J]. Journal of Catalysis. 1997, 170(1):140-149.
    [103] Chmielarz, L., Kustrowski, P., Rafalska-Lasocha, A.et al. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO withammonia[J]. Applied Catalysis B: Environmental. 2002, 35(3):195-210.
    [104] Carja, G., Delahay, G. Mesoporous mixed oxides derived from pillared oxovanadates layered double hydroxides as new catalysts for the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B-Environmental. 2004, 47(1):59-66.
    [105] 王学中, 刘玉敏, 吴越. 水滑石衍生复合氧化物的 CO 催化还原 NO 的性能[J]. 物理化学学报. 1999, 15(1):50-56.
    [106] 刘钰, 杨向光, 王学中等 以水滑石类化合物为前体的 Co-M-Al(M=过渡金属)复合氧化物对催化消除 NOx 的活性研究[J]. 化学学报. 1999, 57:782-789.
    [107] Centi, G., Arena, G. E., Perathoner, S. Nanostructured catalysts for NOx storage-reduction and N2O decomposition[J]. Journal of Catalysis. 2003, 216(1-2):443-454.
    [108] Basile, F., Fornasari, G., Livi, M.et al. Performance of New Pt and Pt-Cu on Hydrotalcite-Derived Materials for NOx Storage/Reduction[J]. Topics in Catalysis. 2004, 30-31(Special Issue: Proceedings of the 6th Congress on Catalysis and Automotive Pollution Control (CAPoC6)):223-227.
    [109] Andersson, P. O. F., Pirjamali, M., Jaras, S. G.et al. Cracking catalyst additives for sulfur removal from FCC gasoline[J]. Catalysis Today. 1999, 53(4):565-573.
    [110] 陈银飞, 葛忠华, 吕德伟. MgAlFe 复合氧化物吸收 SO2 后的再生[J]. 燃料化学学报. 2000, 28(560-563).
    [111] 陈银飞, 葛忠华, 吕德伟. MgAlFe 复合氧化物氧化吸附 SO2 的性质[J]. 环境科学学报. 2001, 21(3):307-311.
    [112] Palomares, A. E., Lopez-Nieto, J. M., Lazaro, F. J.et al. Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived from hydrotalcites[J]. Applied Catalysis B-Environmental. 1999, 20(4):257-266.
    [113] 温斌, 何鸣元, 宋家庆等 铜铈协同作用对 CuCe MgAl(O)催化活性的影响[J]. 物理化学学报 2000, 16(5):402-404.
    [114] 温斌, 何鸣元, 宋家庆等 流化催化裂化中 DeSO_x 催化剂的研究[J]. 环境化学. 2000, 19(3):197-203.
    [115] 温斌. 同时脱除 FCC 烟气中 NOx、SOx 和 CO 的催化材料及其作用原理的研究. 石油化工科学研究院[博士学位论文]. 2000.
    [116] 王军威, 田志坚, 徐金光等 甲烷高温燃烧催化剂研究进展[J]. 化学进展. 2003, 15(3):242-248.
    [117] Jiratova, K., Cuba, P., Kovanda, F.et al. Preparation and characterisation of activated Ni (Mn)/Mg/Al hydrotalcites for combustion catalysis[J]. Catalysis Today. 2002, 76(1):43-53.
    [118] Basile, F., Fornasari, G., Gazzano, M.et al. Thermal evolution and catalytic activity of Pd/Mg/Al mixed oxides obtained from a hydrotalcite-type precursor[J]. Applied Clay Science. 2001, 18(1-2):51-57.
    [119] 蒋政. 环境友好的天然气催化燃烧催化材料及其性能研究. 中国科学院研究生院[博士学位论文]. 2004.
    [120] Shishido, T., Sukenobu, M., Morioka, H.et al. CO2 reforming of CH4 over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotalcite-like precursors[J]. Catalysis Letters. 2001, 73(1):21-26.
    [121] Tsyganok, A. I., Inaba, M., Tsunoda, T.et al. Dry reforming of methane over supported noble metals: a novel approach to preparing catalysts [J]. Catalysis Communications. 2003, 4(9):493-498.
    [122] Shishido, T., Sukenobu, M., Morioka, H.et al. Partial oxidation of methane over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotalcite-like precursors[J]. Applied Catalysis A: General. 2002, 223(1-2):35-42.
    [123] 裴梅香. 等离子体/催化同时去除氮氧化物和微粒的基础研究. 上海交通大学[博士学位论文]. 2004.
    [124] Dumesic, J. A., Rudd, D. F., Aparicio, L. M.et al. The Microkinetics of Heterogeneous Catalysis[M], American Chemical Society, 1993.
    [125] 尹元根. 多相催化剂的研究方法[M], 化学工业出版社, 1988.
    [126] 辛勤. 固体催化剂研究方法[M], 科学出版社, 2004.
    [127] 张亦勍, 杜以波, 义建军等 窄分布醇醚合成用催化剂的筛选与催化作用分析[J]. 精细化工. 1999, 16(4):35~39.
    [128] 赵芸, 矫庆泽, Evans, D. G.等 介孔镁铝复合氧化物的成孔机理及其结构特征[J]. 中国科学(B辑). 2002, 32(1):67~73.
    [129] Pillai, U. R., Sahle-Demessie, E., Varma, R. S. Environmentally friendlier organic transformations on mineral supports under non-traditional conditions[J]. Journal of Materials Chemistry. 2002, 12(11):3199-3207.
    [130] 冯拥军, 李殿卿, 李春喜等 Cu-Ni-Mg-Al 四元水滑石的合成及结构分析[J]. 化学学报. 2003, 61(1):78-83.
    [131] Schneider, P. Adsorption isotherms of microporous-mesoporous solids revisited [J]. applied Catalysis A: General. 1995, 129(2):157-165.
    [132] del Arco, M., Trujillano, R., Rives, V. Cobalt-iron hydroxycarbonates and their evolution to mixed oxides with spinel structure[J]. Journal of Materials Chemistry. 1998, 8(3):761-767.
    [133] Kannan, S., Velu, S., Ramkumar, V.et al. Synthesis and physicochemical properties of Cobalt Aluminum hydrotalcites[J]. Journal of Materials Science. 1995, 30(6):1462-1468
    [134] Sisson, R. D., Smyser, B. M. Effects of ultrasonic agitation on microstructure and phase transformations in nanocrystalline ZrO2Al2O3[J]. Nanostructured Materials. 1998, 10(5):829~835.
    [135] Jiang, P., Hou, W. G., Han, S. H.et al. Studies on preparation and crystal structure of ultrafine particles Zn-Mg-Al-hydrotalcite-like compound[J]. Chemical Journal of Chinese Universities-Chinese. 2002, 23(1):78-82.
    [136] 许国志, 李蕾, 张春英等 双金属复合氧化物的结构与紫外阻隔性能[J]. 应用化学. 1999, 16(5):106-108.
    [137] de Boer, J. H. The Structure and Properties of Porous Materials[M], Butterworths, 1958.
    [138] Climent, M. J., Corma, A., Iborra, S.et al. Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures[J]. Journal of Catalysis. 2004, 225(2):316-326.
    [139] Liang, X. Y., Ma, Z., Bai, Z. C.et al. Properties and Sonochemical Preparation of Nanostructured LaNiO3[J]. Acta Phys -Chim Sin 2002, 18(6):567-571.
    [140] Makkee, M., Krijnsen, H. C., Bertin, S. S.et al. Bench-scale demonstration of an integrated deSoot-deNO(x) system[J]. Catalysis Today. 2002, 75(1-4):459-464.
    [141] Saracco, G., Russo, N., Ambrogio, M.et al. Diesel particulate abatement via catalytic traps[J]. Catalysis Today. 2000, 60(1-2):33-41.
    [142] Ciambelli, P., Palma, V., Russo, P.et al. Issues on soot removal from exhaust gases by means of radial flow ceramic traps[J]. Chemical Engineering Science. 2005, 60(6):1619-1627.
    [143] Su, D. S., Jentoft, R. E., Muller, J. O.et al. Microstructure and oxidation behaviour of Euro IV diesel engine soot: a comparative study with synthetic model soot substances[J]. Catalysis Today. 2004, 90(1-2):127-132.
    [144] Neeft, J. P. A., Makkee, M., Moulijn, J. A. Metal oxides as catalysts for the oxidation of soot[J]. Chemical Engineering Journal. 1996, 64(2):295-302.
    [145] Badini, C., Saracco, G., Specchia, V. Combustion of carbon particulate catalysed by mixed potassium vanadates and KI[J]. Catalysis Letters. 1998, 55(3-4):201-206.
    [146] Neeft, J. P. A., Schipper, W., Mul, G.et al. Feasibility study towards a Cu/K/Mo(Cl) soot oxidation catalyst for application in diesel exhaust gases[J]. Applied Catalysis B-Environmental. 1997, 11(3-4):365-382.
    [147] Neeft, J. P. A., Jelles, S. J., Makkee, M.et al. Copper catalysis for particulate removal from diesel exhaust gas. Copper fuel additives in combination with copper coatings.[J]. Catalysis and Automotive Pollution Control Iv. 1998, 116:655-666.
    [148] Serra, V., Saracco, G., Badini, C.et al. Combustion of carbonaceous materials by Cu-K-V based catalysts .2. Reaction mechanism[J]. Applied Catalysis B-Environmental. 1997, 11(3-4):329-346.
    [149] Oi-Uchisawa, J., Obuchi, A., Wang, S. D.et al. Performance of Pt catalysts supported on SiC-DPF[J]. Science and Technology in Catalysis 2002. 2003, 145:465-466.
    [150] Setiabudi, A., van Setten, B. A. A. L., Makkee, M.et al. The influence of NOx on soot oxidation rate: molten salt versus platinum[J]. Applied Catalysis B-Environmental. 2002, 35(3):159-166.
    [151] Liu, S. T., Obuchi, A., Oi-Uchisawa, J.et al. Synergistic catalysis of carbon black oxidation by Pt with MoO3 or V2O5[J]. Applied Catalysis B-Environmental. 2001, 30(3-4):259-265.
    [152] Liu, S. T., Obuchi, A., Uchisawa, J.et al. An exploratory study of diesel soot oxidation with NO2 and O-2 on supported metal oxide catalysts[J]. Applied Catalysis B-Environmental. 2002, 37(4):309-319.
    [153] Oi-Uchisawa, J., Wang, S. D., Nanba, T.et al. Improvement of Pt catalyst for soot oxidation using mixed oxide as a support[J]. Applied Catalysis B-Environmental. 2003, 44(3):207-215.
    [154] Oi-Uchisawa, J., Obuchi, A., Wang, S.et al. Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation[J]. Applied Catalysis B-Environmental. 2003, 43(2):117-129.
    [155] Uchisawa, J. O., Obuchi, A., Zhao, Z.et al. Carbon oxidation with platinum supported catalysts[J]. Applied Catalysis B-Environmental. 1998, 18(3-4):L183-L187.
    [156] Carrascull, A., Lick, I. D., Ponzi, E. N.et al. Catalytic combustion of soot with a O-2/NO mixture. KNO3/ZrO2 catalysts[J]. Catalysis Communications. 2003, 4(3):124-128.
    [157] Chmielarz, L., Kustrowski, P., Rafalska-Lasocha, A.et al. Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems[J]. Thermochimica Acta. 2003, 395(1-2):225-236.
    [158] Lwin, Y., Yarmo, M. A., Yaakob, Z.et al. Synthesis and characterization of Cu-Al layered doublehydroxides[J]. Materials Research Bulletin. 2001, 36(1-2):193-198.
    [159] Velu, S., Suzuki, K., Kapoor, M. P.et al. Effect of sn incorporation on the thermal transformation and reducibility of M(II)Al-layered double hydroxides [M(II) = Ni or Co][J]. Chemistry of Materials. 2000, 12(3):719-730.
    [160] Wang, Y., Han, X. W., Ji, A.et al. Basicity of potassium-salt modified hydrotalcite studied by H-1 MAS NMR using pyrrole as a probe molecule[J]. Microporous and Mesoporous Materials. 2005, 77(2-3):139-145.
    [161] 王仲鹏. 超高分散含铜混合氧化物的制备及表征研究. 山东大学[硕士学位论文]. 2004.
    [162] Segal, S. R., Anderson, K. B., Carrado, K. A.et al. Low temperature steam reforming of methanol over layered double hydroxide-derived catalysts[J]. Applied Catalysis a-General. 2002, 231(1-2):215-226.
    [163] Harrison, P. G., Ball, I. K., Daniell, W.et al. Cobalt catalysts for the oxidation of diesel soot particulate[J]. Chemical Engineering Journal. 2003, 95(1-3):47-55.
    [164] Velu, S., Suzuki, K., Osaki, T. A comparative study of reactions of methanol over catalysts derived from NiAl- and CoAl-layered double hydroxides and their Sn-containing analogues[J]. Catalysis Letters. 2000, 69(1-2):43-50.
    [165] Fornasari, G., Trifiro, F., Vaccari, A.et al. Novel low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds[J]. Catalysis Today. 2002, 75(1-4):421-429.
    [166] Yu, J. J., Jiang, Z., Zhu, L.et al. Adsorption/desorption studies of NOx on well-mixed oxides derived from Co-Mg/Al hydrotalcite-like compounds[J]. Journal of Physical Chemistry B. 2006, 110(9):4291-4300.
    [167] Li, F., Zhang, L. H., Evans, D. G.et al. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2004, 244(1-3):169-177.
    [168] Milt, V. G., Ulla, M. A., Miro, E. E. NOx trapping and soot combustion on BaCoO3-y perovskite: LRS and FTIR characterization[J]. Applied Catalysis B-Environmental. 2005, 57(1):13-21.
    [169] Chmielarz, L., Kustrowski, P., Rafalska-Lasocha, A.et al. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia[J]. Applied Catalysis B-Environmental. 2002, 35(3):195-210.
    [170] Aramendia, M. A., Aviles, Y., Benitez, J. A.et al. Comparative study of Mg Al and Mg Ga layered double hydroxides[J]. Microporous and Mesoporous Materials. 1999, 29(3):319-328.
    [171] Yuan, S., Meriaudeau, P., Perrichon, V. Catalytic combustion of diesel soot particles on copper catalysts supported on TiO2. Effect of potassium promoter on the activity [J]. Applied Catalysis B-Environmental. 1994, 3(4):319-333.
    [172] Mul, G., Neeft, J. P. A., Kapteijn, F.et al. Soot Oxidation Catalyzed by a Cu/K/Mo/Cl Catalyst - Evaluation of the Chemistry and Performance of the Catalyst[J]. Applied Catalysis B-Environmental. 1995, 6(4):339-352.
    [173] Mul, G., Kapteijn, F., Moulijn, J. A. Catalytic oxidation of model soot by metal chlorides[J]. Applied Catalysis B-Environmental. 1997, 12(1):33-47.
    [174] Mul, G., Zhu, W. D., Kapteijn, F.et al. The effect of NOx and CO on the rate of transition metal oxide catalyzed carbon black oxidation: An exploratory study[J]. Applied Catalysis B-Environmental. 1998, 17(3):205-220.
    [175] Yoshida, K., Makino, S., sumiya, S.et al. Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust [J]. SAE Paper, No892046. 1989.
    [176] Perez-Ramirez, J., Garcia-Cortes, J. M., Kapteijn, F.et al. Dual-bed catalytic system for NOx-N2O removal: a practical application for lean-burn deNO(x) HC-SCR[J]. Applied Catalysis B-Environmental. 2000, 25(2-3):191-203.
    [177] Yamamoto, K., Satake, S., Yamashita, H.et al. Lattice Boltzmann simulation on porous structure and soot accumulation[J]. Mathematics and Computers in Simulation. 2006, 72(2-6):257-263.
    [178] Xiao, S., Ma, K. W., Tang, X. Y.et al. The lean catalytic reduction of nitric oxide by solid carbonaceous materials[J]. Applied Catalysis B-Environmental. 2001, 32(1-2):107-122.
    [179] Weisweiler, W., Hizbullah, K., Kureti, S. Clean-up of diesel exhaust by catalysed simultaneous reaction of nitrogen oxides with soot to from nitrogen and carbon dioxide[J]. Chemie Ingenieur Technik. 2001, 73(5):557-561.
    [180] Weisweiler, W., Hizbullah, K., Kureti, S. Simultaneous catalytic conversion of NOx and soot from diesel engines exhaust into nitrogen and carbon dioxide[J]. Chemical Engineering & Technology. 2002, 25(2):140-143.
    [181] Teraoka, Y., Shangguan, W. F., Jansson, K.et al. Identification of active crystalline phase in La-K-Cu-V mixed oxide for the simultaneous removal of nitrogen oxides and diesel soot[J]. Bulletin of the Chemical Society of Japan. 1999, 72(1):133-137.
    [182] Yang, J. S., Lee, G. D., Ahn, B. H.et al. Simultaneous catalytic removal of NO and carbon particulates over perovskite-type oxides[J]. Journal of Industrial and Engineering Chemistry. 1998, 4(4):263-269.
    [183] Hong, S. S., Lee, G. D. Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts[J]. Catalysis Today. 2000, 63(2-4):397-404.
    [184] Kannan, S., Swamy, C. S. Catalytic decomposition of nitrous oxide over calcined cobalt aluminum hydrotalcites[J]. Catalysis Today. 1999, 53(4):725-737.
    [185] Liu, Y., Chen, C. L., Xu, N. P. Baeyer-Villiger oxidation of cyclohexanone to epsilon-caprolactone over hydrotalcite-supported Sb catalyst[J]. Chinese Journal of Catalysis. 2004, 25(10):801-804.
    [186] Trifiro, F., Vaccari, A., Clause, O. Nature and properties nickel-containing mixed oxides obtained from hydrotalcite-type anionic clays [J]. Catalysis Today 1994, 21(1):185-195.
    [187] Zsoldos, Z., Guczi, L. Structure and catalytic activity of alumina supported platinum-cobalt bimetallic catalysts. 3. Effect of treatment on the interface layer [J]. Journal of Physical Chemistry 1992, 96(23):9393-9400.
    [188] Fierro, G., Lo Jacono, M., Inversi, M.et al. TPR and XPS study of cobalt-copper mixed oxide catalysts: evidence of a strong Co-Cu interaction[J]. Topics in Catalysis. 2000, 10(1-2):39-48.
    [189] Khassin, A. A., Yurieva, T. M., Kaichev, V. V.et al. Metal-support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies[J]. Journal of Molecular Catalysis a-Chemical. 2001, 175(1-2):189-204.
    [190] Querini, C. A., Ulla, M. A., Requejo, F.et al. Catalytic combustion of diesel soot particles. Activity and characterization of Co/MgO and Co,K/MgO catalysts[J]. Applied Catalysis B-Environmental. 1998, 15(1-2):5-19.
    [191] Querini, C. A., Ravelli, F., Ulla, M.et al. Deactivation of Co,K catalysts during catalytic combustion of diesel soot: Influence of the support[J]. Catalyst Deactivation 1999. 1999, 126:257-264.
    [192] Miro, E. E., Ravelli, F., Ulla, M. A.et al. Catalytic combustion of diesel soot on Co, K supported catalysts[J]. Catalysis Today. 1999, 53(4):631-638.
    [193] Mul, G., Neeft, J. P. A., Makkee, M.et al. Catalytic oxidation of model soot by chlorine based catalysts[J]. Catalysis and Automotive Pollution Control Iv. 1998, 116:645-654.
    [194] Liu, J., Zhao, Z., Xu, C. M. Research progress in catalysts for removal of soot particulates from diesel engines[J]. Chinese Journal of Catalysis. 2004, 25(8):673-680.
    [195] Liu, J., Zhao, Z., Xu, C. M.et al. Simultaneous removal of NOx and diesel soot particulates over nanometric La2-xKxCuO4 complex oxide catalysts[J]. Catalysis Today. 2007, 119(1-4):267-272.
    [196] Yu, J. J., Jiang, Z., Kang, S. F.et al. Influence of Cu-substituted hydrotalcite precursors and derived oxides[J]. Chinese Journal of Chemical Physics. 2005, 18(2):251-256.
    [197] Kannan, S., Rives, V., Knozinger, H. High-temperature transformations of Cu-rich hydrotalcites[J]. Journal of Solid State Chemistry. 2004, 177(1):319-331.
    [198] Auer, S. M., Wandeler, R., Gobel, U.et al. Heterogeneous coupling of phenylethyne over Cu-Mg-Al mixed oxides - Influence of catalyst composition and calcination temperature on structural and catalytic properties[J]. Journal of Catalysis. 1997, 169(1):1-12.
    [199] 倪哲明, 俞卫华, 王力耕等 Cu-Co-Al 类水滑石的合成、表征及吸附 NO_x 性能的研究[J]. 高校化学工程学报. 2005, 19(2):223-227.
    [200] Perez-Ramirez, J., Overeijnder, J., Kapteijn, F.et al. Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite-like compounds[J]. Applied Catalysis B-Environmental. 1999, 23(1):59-72.
    [201] 李作骏. 多相催化反应动力学基础[M], 北京大学出版社, 1990.
    [202] Shangguan, W. F. Simultaneous catalytic removal of NOx and diesel soot particulates by mixed metal oxides. Nagasaki University[Doctor 学位论文]. 1995.
    [203] 彭小圣, 林赫, 黄震等 采用钙钛矿型催化剂(La(0.8)K(0.2)Cu(0.05)Mn(0.95)O3)同时催化去除NOx 和碳烟的研究[J]. 环境科学学报. 2006, 26(5):779-784.
    [204] Neeft, J. P. A., vanPruissen, O. P., Makkee, M.et al. Catalytic oxidation of diesel soot: Catalyst development[J]. Catalysis and Automotive Pollution Control Iii. 1995, 96:549-561.
    [205] Neeft, J. P. A., Makkee, M., Moulijn, J. A. Catalysts for the oxidation of soot from diesel exhaust gases .1. An exploratory study[J]. Applied Catalysis B-Environmental. 1996, 8(1):57-78.
    [206] Neeft, J. P. A., vanPruissen, O. P., Makkee, M.et al. Catalysts for the oxidation of soot from diesel exhaust gases .2. Contact between soot and catalyst under practical conditions[J]. Applied Catalysis B-Environmental. 1997, 12(1):21-31.
    [207] Jimenez, R., Garcia, X., Cellier, C.et al. Soot combustion with K/MgO as catalyst[J]. Applied Catalysis a-General. 2006, 297(2):125-134.
    [208] van Setten, B. A. A. L., Makkee, M., Moulijn, J. A. Science and technology of catalytic dieselparticulate filters[J]. Catalysis Reviews-Science and Engineering. 2001, 43(4):489-564.
    [209] 朱玲. Ce 基固溶体催化剂上碳颗粒物的催化氧化. 中国科学院研究生院[博士学位论文]. 2006.
    [210] Cheng, H., Chen, G. W., Wang, S. D.et al. NOx storage-reduction over Pt/Mg-Al-O catalysts with different Mg/Al atomic ratios[J]. Korean Journal of Chemical Engineering. 2004, 21(3):595-600.
    [211] Silletti, B. A., Adams, R. T., Sigmon, S. M.et al. A novel Pd/MgAlOx catalyst for NOx storage-reduction[J]. Catalysis Today. 2006, 114(1):64-71.
    [212] Yu, J. J., Tao, Y. X., Liu, C. C.et al. Novel NO trapping catalysts derived from Co-Mg/X-Al (X = Fe, Mn, Zr, La) hydrotalcite-like compounds[J]. Environmental Science & Technology. 2007, 41(4):1399-1404.
    [213] 康守方. 稀燃气氛下NOx储存材料和氧化催化剂的性能研究. 中国科学院研究生院[博士学位论文]. 2004.
    [214] Chu, X., Schmidt, L. D. Intrinsic rates of NOx-carbon reactions[J]. Industrial and Engineering Chemistry Research 1993, 32(7):1359-1366.
    [215] Perez-Ramirez, J., Mul, G., Moulijn, J. A. In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co-Al and Ni-Al hydrotalcites[J]. Vibrational Spectroscopy. 2001, 27(1):75-88.
    [216] Morandi, S., Prinetto, F., Ghiotti, G.et al. FT-IR investigation of NOx storage properties of Pt–Mg(Al)O and Pt/Cu-Mg(Al)O catalysts obtained from hydrotalcite compounds[J]. Microporous and Mesoporous Materials. 2007, in press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700