Mn/Fe-Mn改性HZSM-5在NH_3-SCR中的催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物(NO_x)因导致酸雨、光化学烟雾和温室效应等环境问题,已严重危害人类健康,且随着机动车量增加和工业发展,其排放量日趋增大,势必造成生态和环境的严重恶化。因此,消除NO_x污染问题迫在眉睫。目前,NO_x主导控制技术是NH_3选择性催化还原(SCR),此技术的关键是选择优良的催化剂。分子筛以及改性分子筛由于其出色的活性和选择性被认为是具有实际应用前景的SCR催化剂,而以ZSM-5分子筛为载体负载各种过渡金属的催化剂体系尤为受到关注。HZSM-5是ZSM-5的衍生物,因具有相对合适的孔结构和酸性质,常用作工业固体催化剂的载体。通过添加合适的活性组分或助剂对催化剂载体进行改性,从而提高其对NH_3选择性催化还原NO_x反应的催化性能。本文正是着重于研究此种负载型催化剂,选择合适的催化剂载体、活性组分或助剂,找出最为理想的催化剂载体、活性组分及助剂的复配方式,以期找到一种高效、经济、实用的负载型催化剂,为SCR催化剂的研究及工业化应用提供参考依据。
     本实验以HZSM-5为载体,在不同制备条件下制备改性分子筛作催化剂。首先采用离子交换法和等体积浸渍法制备Mn改性HZSM-5催化剂,在焙烧温度550℃条件下,制备了不同Mn负载量(0%~10%)的Mn/HZSM-5(550℃)催化剂,发现适量Mn的添加可以提高催化剂的NH_3选择性还原NO的催化性能;对比两种催化剂制备方法所得催化剂的脱硝效果,离子交换法较等体积浸渍法有很大的优越性,以离子交换法制备的5%Mn/HZSM-5催化效果最好。因此,在后续实验中均采用离子交换法制备催化剂。在5%Mn/HZSM-5(550℃)催化剂基础上,通过添加助剂Fe对催化剂进行复合改性,制备了Fe/Mn(摩尔比)为0.10、0.25、0.50、1.0的复合改性催化剂,考察其选择性催化还原NO性能。结果表明:复合改性较单独改性性能更为优越,适量Fe的加入,不仅提高了催化剂的催化活性,而且大大提高了催化剂的热稳定性。(0.25)Fe-Mn/HZSM-5(Fe/Mn摩尔比为0.25)的NO转化率于300℃时最高达到98.31%,在300~500℃范围内NO转化率均保持在90%以上。实验还研究了不同离子交换次序及不同焙烧温度下制备的Mn和Fe复合改性催化剂对NO转化率的影响。结果表明,交换次序先Mn后Fe催化性能最好,550℃为最佳焙烧温度。同时联合运用ESEM、BET和XRD等方法对催化剂进行了表征。研究了O_2、NH_3对(0.25)Fe-Mn/HZSM-5(550℃)催化剂活性的影响,并考察了其在300℃时催化活性与时间的关系。
Nitrogen oxides (NO_x) are responsible for causing acid rain, photochemical smog, the greenhouse effect and other environmental problems, that have been serious harmful to human health. With the motor vehicles increase and industrial development, the emissions will be increasing. That will inevitably cause serious ecological and environmental deterioration. Therefore, it is imminent to eliminate NO_x pollution problem. Currently, the technology of Ammonia selective catalytic reduction (SCR) is the dominant technology used to control the pollutants of NO_x, and the key to this technique is to choose an excellent catalyst. Zeolites and modified zeolites are considered to have practical application prospect because of their excellent activity and selectivity, and ZSM-5 zeolites loaded by transition metal have been paid more attention. HZSM-5 is a derivative of ZSM-5, commonly used for industrial solid catalyst carrier due to its relative right pore structure and acid property. The catalyst carrier can be modified by adding a suitable active component or accessory ingredient in order to enhance their catalytic performance of Ammonia selective catalytic reduction. This paper is focused on the study of such supported catalysts, choosing a suitable catalyst carrier, active component or additive and finding the ideal compounding method of them, with a view to finding an efficient, economical and practical supported catalyst to provide reference for the research and industrial applications of the SCR catalyst.
     In our experiment, HZSM-5 was modified under different preparation conditions. First, HZSM-5 modified by various Mn loadings (0~10wt%) in calcinations temperature of 550℃condition were prepared by ion-exchange method and the isometric incipient impregnation method. It was found: the catalytic performance of the catalysts for Ammonia selective catalytic reduction of NO could be improved by adding amount of Mn. We compared the denitration effects of catalysts which were prepared by ion-exchange method and the isometric incipient impregnation method, and found that ion-exchange method had great advantages. 5%Mn/HZSM-5(550℃) prepared by ion-exchange method was the best catalyst. Therefore, the catalysts in follow-up experiments were prepared by ion-exchange method. The complex modified catalysts were prepared based on 5%Mn/HZSM-5(550℃) by adding additives Fe, and the Fe/Mn(molar ratio) of 0.10, 0.25, 0.50 and 1.0. The performance of their Selective Catalytic Reduction of NO was examined. The results showed that the performance of composite-modified cataalysts was more superior than that of single-modified. Adding amount of Fe not only improved the catalytic activity of the catalysts, but also greatly enhanced the thermal-stability of the catalysts. The activity of (0.25)Fe- Mn/HZSM-5 (Fe/Mn molar ratio of 0.25) reached 98.31% at 300℃, and remained above 90% when the temperature was 300~500℃. The effect of Mn and Fe composite modification catalysts with different ion-exchange order and different calcinations temperature were also investigated. The results showed that the best ion-exchange order was adding Mn firstly and then adding Fe, and the optimal calcination temperature was 550℃. A combination of technigues such as ESEM, BET surface area and X-ray diffraction were used to characterize the catalysts. And through further analysis, the impact of O2, NH_3 on the catalytic activity of (0.25)Fe-Mn/HZSM-5(550℃) catalyst were studied. We also studied the relationship between the catalytic activity and the reaction time at 300℃.
引文
[1]杨飏.氮氧化物减排技术与烟气脱硝工程.北京:冶金工业出版社,2007,1-27
    [2]郝吉明,马广大.大气污染控制工程(第二版).北京:高等教育出版社,2002,354-376
    [3] Calvert J C,Martin L R.SO2,NO and NO_2 oxidation Mechanism:Atmospheric Considerations.Butterworth.Boston:Wiley Press,1984,63-100
    [4]杨忠灿,文军,徐党旗.燃煤锅炉的选择性催化还原烟气脱硝技术.广东电力.2006,19(2):13-17
    [5]刘孜.关于我国NO_x污染指标及控制措施等有关问题的探讨.中国环境科学研究院.北京城市大气污染防治学术研讨论文选集.北京:中国环境科学出版社,2000,18-21
    [6]李子君,陈淑芬.泰安市城区大气环境质量状况及其评价.山东师大学报(自然科学版),2001,16(1):63-67
    [7]段传和,夏怀祥.燃煤电站SCR烟气脱硝工程技术.北京:中国电力出版社,2009,2-15
    [8] Watson R T,Meira Filho L G,Sanhueza E,et al.The Supplementary Report to the IPCC Scientific Assessment.Cambridge:Cambridge University Press,1992,56-180
    [9]张强.燃煤电站SCR烟气脱硝技术及工程应用.北京:化学工业出版社,2007,2-13
    [10]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术.北京:化学工业出版社,2005,15-181
    [11]魏复盛,胡伟,滕恩江,等.空气污染与儿童呼吸系统患病率的相关分析.中国环境科学,2000,20(3):220-224
    [12]高俊枝,程鹰.安徽省宣州市大气环境质量的API评价.安徽师范大学学报(自然科学版),2000,23(2):64-66
    [13]黄少鹗.美国治理燃煤电厂氮氧化物排放的技术措施.电力环境保护,1999,15(4):34-37
    [14]宋卫东.美国火电厂排放控制技术综述.国际电力,2002,6(4):53-56
    [15]黄少鹗.日本降低电厂氮氧化物排放技术.环境技术,1999(2):33-44
    [16]贾双燕,路涛,李晓芸,等.选择性催化还原烟气脱硝技术及其在我国的应用研究.电力环境保护,2004,20(1):19-21
    [17]刘今.发电厂烟气脱硝技术-SCR法.江苏电机工程,1996,15(1):51-55
    [18] Anupam S,William E,Ellison C.Lessons learned from SCR experience of coal fired units in Japan,Europe and USA;are these enough?2002 Conference on SCR and Non-Catalytic Reduction for NO_x control.Pennsylvania,2002,1-34
    [19] GB13223—2003,火电厂大气污染物排放标准
    [20]郭兴明,郝吉明,田贺忠,等.固定源氮氧化物排放及控制技术应用.环境污染治理技术与设备,2006,7(12):116-121
    [21]刘孜,易斌,高晓晶,等.我国火电行业氮氧化物排放现状及减排建议.环境保护,2008,402(16):7-10
    [22]王长会.我国氮氧化物的污染现状和治理技术的发展及标准介绍.机械工业标准化与质量,2008,3:20-21
    [23]吴兵.燃煤电站锅炉运行中氮氧化物排放的控制.电力设备,2008,9(8):25-27
    [24] Hayhurst A N,Vince I M.Nitric oxide formation from N2 in flames:The importance of“prompt”NO.Prog En Comb SCI,1980,6(1):35-51
    [25]高志飞,陈建中,王盼盼.燃煤氮氧化物排放控制技术研究进展及相关思考.广州环境科学,2007,22(2):19-22
    [26]贺泓,李俊华,上官文峰,等.环境催化——原理及利用.北京:科学出版社,2008,191-192
    [27]韩慧,白敏冬,白希尧.脱硫脱硝技术展望.环境科学研究,2002,15(1):55-60
    [28]严艳丽,魏玺群.NO_x的脱除及回收技术.低温与特气,2000,18(4):24-30
    [29]新井纪男.燃烧生成物的发生与抑制技术.北京:科学出版社,2001,77-94
    [30]陈笃慧.SO2和NO_x对大气的污染及其净化处理.环境科学进展,1997,5(3):29-41
    [31]林赫.直流电晕放电诱导自由基簇射烟气脱硝试验和机理研究:[浙江大学博士学位论文].浙江:浙江大学热能工程研究所,2002,28-34
    [32]吴祖良,高翔,魏恩宗,等.等离子体气态污染物控制技术的研究进展.电站系统工程,2004,20(2):1-4
    [33]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996,12-28
    [34] Kawamura K,Aoki S,Kimura H,et al.On the removal of NO_x and SOx in exhaust gas from the sintering machine by eletron beam irradiation.Radiat Phys Chem,1980,16(2):133-138
    [35] Tomio F,Yukio A,Naoki Y,et al.Removal of NO_x by DC corona reactor with water.Journal of Electrostatics,2001,51-52(2):8-14
    [36] Keping Y,Hexing H,Mi C,et al.Corona induced non-thermal plasmas:Fundamental study and industrial applications.Journal of Electrostatics,1998,44(1):17-39
    [37]张强,顾蟠,余刚,等.氮氧化物在等离子体中的分解与转化.燃烧科学与技术,2002,8(6):512-514
    [38] Masuda S,Nakao H.Control of NO_x by positive and negative pulsed corona discharges.IEEE Trans IA,1990,26(2):374-382
    [39] Li R N,Miao J S.A phenomenon of oxidation in removal of SO2 from flue gas by positive pulsed streamer.The 2nd International Conference on Applied Electrostatics.Beijing:Beijing Institute of Technology Press,1993,32-38
    [40] Anderson C M , Billings J A.Simple calculation measures NH3 slip for cogeneration units.Power Engineerings,1991,95(4):42-44
    [41] Rittenhouse R C.Action builds on 1990 clean air act compliance. Power Engineerings,1992,96(5):21-28
    [42]李敏,仲兆平.氨选择性催化还原(SCR)脱除氮氧化物的研究.能源研究与利用,2004,(2):24-27
    [43]于世涛,刘福胜.固体酸与精细化工.北京:化学工业出版社,2006,27-81
    [44]吴忠标.环境催化原理及应用.北京:化学工业出版社,2006,128-139
    [45]王延吉,赵新强.绿色催化过程与工艺.北京:化学工业出版社,2002,188-197
    [46] Shelef M.Selective catalytic reduction of NO_x with N-Free reductants.Chemical Reviews,1995,95(1):209-225
    [47] Burch R.Knowledge and know-how in emission control for mobile applications.Catalysis Reviews:Science and Engineering,2004,46(3):271-334
    [48] Gilot P,Guyon M,Stanmore B R.A review of NO_x reduction on zeolitic catalysts under diesel exhaust conditions.Fuel,1997,76(6):507-515
    [49] Qi G S , Yang R T , Chang R.MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures.Applied Catalysis B:Environmental,2004,51(2):93-106
    [50] Qi G S,Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst.Journal of Catalysis,2003,217(2): 434-441
    [51] Machida M,Uto M,Kurogi D,et al.MnOx-CeO2 binary oxides for catalytic NO_x sorption at low temperatures.sorptive removal of NO_x.Chemistry of Materials,2000,12(10):158-164
    [52] Tikhomirov K,Kr?cher O,Elsener M,et al.MnOx-CeO2 mixed oxides for theLow-temperature oxidation of diesel soot.Applied Catalysis B:Environmental,2006,64(1-2):72-78
    [53] Kijlstra W S,Daamen J C M L,Graaf J M,et al. Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3.Applied Catalysis B:Environmental,1996,7(3-4):337-357
    [54] Qi G S,Yang R T.Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania.Applied Catalysis B:Environmental,2003,44(3):217-225
    [55] Richter M,Trunschke A,Bentrup U,et al.Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts.Journal of Catalysis,2002,206(1):98-113
    [56] Kumar M S,Schwidder M,Grünert W,et al.On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNO_x catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach.Journal of Catalysis,2004,227(2):384-397
    [57]寻洲,童华,黄妍,等.Mn-Ce-Fe/TiO2低温催化还原NO的性能.环境科学学报,2008,28(9):1733-1738
    [58] Li Z,Xie K C,Huang W,et al.Selective catalytic reduction of NO_x with ammonia over Fe-Mo/ZSM-5 catalysts.Chemical Engineering and Technology,2005,28(7):797-801
    [59] Salgado A L S M,Passos F B,Schmal M.NO reduction by ethanol on Pd and Mo catalysts supported on HZSM-5.Catalysis Today,2003,85(1):23-29
    [60] Ren L L,Zhang T,Liang D B,et al.Effect of addition of Zn on the catalytic activity of a Co/HZSM-5 catalyst for the SCR of NO_x with CH4.Applied Catalysis B:Environmental,2002,35(4):317-321
    [61]王尚弟,孙俊全.催化剂工程导论.北京:化学工业出版社,2006,31-50
    [62]吴立新,陈方玉.现代扫描电镜的发展及其在材料科学中的应用[J].武钢技术,2005,43(6):36-40
    [63]黄仲涛.工业催化剂手册[M].北京:化学工业出版社,2004,185-224
    [64]吉林大学化学系《催化作用基础》编写组.催化作用基础.北京:科学出版社,1980,43-44
    [65]侯岩峰,范国梁,宋崇林,等.La_(1-x)Ce_xCoO_3系钙钛矿型催化剂应用于柴油机尾气净化催化性能的研究.燃料化学学报,2006,34(1):85-90
    [66]郭锡坤,陈庆生,张俊豪,等.Cu/Al_2O_3催化剂的改性及其对NO选择性还原的催化性能.催化学报,2005,26(12):1104-1108
    [67]彭小圣,林赫,黄震,等.采用钙钛矿型催化剂(La_(0.8)K_(0.2)Cu_(0.05)Mn_(0.95)O_3)同时催化去除NO_x和碳烟的研究.环境科学学报,2006,26(5):779-784
    [68]许越,夏海涛,刘振琦,等.催化剂设计与制备工艺.北京:化学工业出版社,2003,53-56
    [69]李彩亭,路培,曾光明,等.活性炭纤维负载氧化镧催化净化NO的实验研究.环境科学,2008,29(11):3280-3284
    [70]范红梅,仲兆平,金保升,等.金属氧化物MoO_3(WO_3)和V_2O_5对烟气脱硝催化性能试验.环境化学,2007,26(4):439-443
    [71] Lin Q C,Hao J M,Li J H.Fe promotion effect in Mn/USY for low-temperature selective catalytic reduction of NO with NH3.Chinese Chemical Letters,2006,17(7):991-994
    [72] Tan P L,Leung Y L,Au C T,et al.The effect of calcinations temperature on the catalytic performance of 2 wt.% Mo/HZSM-5 in methane aromatization.Applied Catalysis A:General,2002,228(1-2):115-125
    [73] Hwang B J,Santhanam R,Hu S G.Synthesis and characterization of multidoped lithium manganese oxide spinel , Li1.02Co0.1Ni0.1Mn1.8O4 , for rechargeable lithium batteries.Journal of Power Sources,2002,108(2):250-255
    [74] Willey R J,Eldridge J W,Kittrell J R.Mechanistic model of the selective catalytic reduction of nitric oxide with ammonia.Industrial & Engineering Chemistry Product Research and Development,1985,24(2):226-233
    [75]林绮纯,林维明,郝吉明,等.反应条件对Cu/Al-Ce-PILC上丙烯选择性催化还原NO反应的影响.催化学报,2006,27(8):713-718
    [76] Stevenson S A,Vartuli J C.The Selective Catalytic Reduction of NO_2 by NH_3 over HZSM-5.J Catal,2002,208(1):100-105
    [77] Qi G S,Yang R T.Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3.J Phy Chem B,2004,108(40):15738-15747
    [78] Long R Q , Yang R T.Temperature-programed desorption/suface reaction (TPD/TPSR)study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia.J catal,2001,198(1):20-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700