铈铁基复合氧化物的制备及其催化碳烟燃烧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机凭借其良好的动力性、经济性、耐久性和低二氧化碳排放量等优点而日益受到重视。然而柴油机排放的碳烟对环境造成的污染也日益严重,它不仅对视觉和嗅觉产生不良影响,而且碳烟上常常粘附S02及致癌物质,对环境和人体的危害非常大。
     由于碳烟的热氧化温度高达600℃以上,而柴油车的正常排气温度为150~450℃,无法直接氧化而除去。使用与碳烟低温燃烧催化剂相结合的过滤器收集碳烟颗粒,同时使碳烟颗粒被催化氧化为CO2而除去,是减少碳烟污染最直接有效的方法。在过滤器中使用的催化剂要求具有良好的催化活性和热稳定性。
     本研究首先采用水热合成法和简单混合法制备了系列Ce1-xFexO2 (x=0,0.1,0.2, 0.3,0.4,0.5,0.6,0.7,0.8,0.9和1)复合氧化物碳烟燃烧催化剂,利用XRD、BET、Raman和H2-TPR等技术对催化剂进行了表征,采用程序升温氧化反应(TPO)技术评价了它们的碳烟燃烧催化活性,探讨了催化剂的表面状态和体相结构与催化性能的相关性,找出影响催化剂活性的关键因素。结果表明,部分Fe3+进入Ce02晶格中形成了铈铁固溶体,大量游离的Fe2O3高度分散在催化剂表面。固溶体形成而导致的氧空位能吸附活性氧,而表面高度分散的氧化铁既具有良好的氧化还原性能,且可以促进反应气氛中氧在催化剂表面的活化,还能促进Ce02晶格氧的活化,提高Ce02晶格氧的溢出速率,二者协同作用才能使催化剂显示出最好的催化活性。在系列Ce1-xFexO2复合氧化物中,Ce0.8Fe0.2O2和Ce0.4Fe0.6O2两个样品显示了最好的碳烟燃烧催化活性,其催化碳烟的起燃温度(Τi)和峰顶温度(Τp)较低,分别为262和314℃及255和314℃。历经长时间高温老化后,其催化活性均有所降低,其Τi和Τp分别增加为292和392℃及291和382℃。
     基于Ce1-XFeX02复合氧化物虽然具有较好的催化活性,但是其热稳定性有待进一步提高,本论文还研究了采用水热合成法制备的锆掺杂的Ce0.5Fe0.5-xZrxO2(X=0,0.05, 0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45)复合氧化物碳烟燃烧催化剂。其XRD、BET、Raman和H2-TPR等表征和TPO活性评价结果表明,Ce1-xFexO2复合氧化物中掺杂Zr02不仅能提高固溶体的形成量,从而进一步提高碳烟燃烧催化活性,而且还能提高材料的抗烧结能力,稳定材料的结构,可以抑制材料晶粒的增长和固溶体的消失。较Ce1-xFexO2二元复合氧化物而言,Ce0.5Fe0.5-xZrxO2三元复合氧化物显示了更高的催化活性和热稳定性,其中活性最好的Ce0.5Fe0.30Zr0.20O2样品,其催化碳烟的Τi和Τp降低为251℃和310℃,△Τ仅为59℃。长时间高温老化后,其仍表现出较高的催化活性,Τi和Τp分别为273和361℃。
     考虑到制备方法对催化剂结构和性能的影响很大,本研究最终以筛选出的活性最好的Ce0.5Fe0.30Zr0.20O2复合氧化物为研究目标,考虑了水热合成法、机械混合法、浸渍法、模板法、溶胶凝胶法及沉淀法等六种不同制备方法对其碳烟燃烧催化活性的影响,结果显示,采用水热合成法制备的催化剂具有最好的催化活性和热稳定性。
Nowadays, diesel engines have been paid more and more attention due to the strong power, high economy, good durability and low carbon dioxide emission. However, the soot emissions from diesel engins also lead to serious environmental problems. The small size of diesel soot particles may be linked to a number of health problems by its ability to penetrate the body through the respiratory system.
     The non-catalytic ignition temperature of soot oxidation generally exceeds 600℃, while the normal temperature of typical diesel exhaust temperatures is 150~450℃. The soot can not be removed by direct oxidation. The combination of diesel particulate filter (DPF) and oxidation catalysts appears to be the most plausible after-treatment technique to eliminate soot particles. The catalysts used in a catalytic DPF should display good activity in the temperature range of diesel exhaust, and good thermal stability under practical working conditions.
     In this paper, a series of Ce1-xFexO2(x=0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 and 1) mixed oxides with different Ce/Fe molar ratios were prepared via hydrothermal method. The prepared catalysts were characterized by X-ray diffraction (XRD), BET specific surface area (BET), Raman spectroscopy (Raman) and H2 temperature-programmed reduction (H2-TPR) techniques. The performances of the catalysts in the soot oxidation were evaluated by temperature-programmed oxidation (TPO). We also investigated the correlation of catalysts surface states and bulk structures with catalytic properties, and find out the key factors affecting catalytic activity. The results showed that the strong synergetic effect between the Ce-Fe solid solutions and some highly dispersed Fe2O3, made the catalysts more active. The oxygen vacancies from the formation of Ce-Fe olid solutions can absorbe and activate oxygen, while the well dispersed surface Fe2O3 not only had a good reduction behaviour, but also can promote the activation of CeO2 lattice oxygen to improve the release rate of the lattice oxygen in CeO2. Among the series of Ce1-xFexO2 mixed oxides, the Ce0.8Fe0.2O2 and Ce0.4Fe0.6O2 two samples showed the best catalytic activity for soot combustion, and had the lowest Ti(262℃and 255℃, respectively, ignition temperature of soot oxidation) and Tp (both 314℃, temperature of maximum evolution of C02). Even after aging for long periods at high temperature, the Ti and Tp values for Ce0.8Fe0.2O2 and Ce0.4Fe0.6O2 samples were still relatively low. The Ti were 292 and 291℃, and Tp were 392 and 382℃, respectively.
     Ce1-xFexO2 mixed oxides had good catalytic activity, but their thermal stability should be further improved. So, in this paper, a series of zirconium doped Ce0.5Fe0.5-xZrxO2(X=0, 0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40 and 0.45) mixed oxides were also prepared via hydrothermal method. The characterization of XRD, BET, Raman and H2-TPR, and the TPO results showed that introduction of ZrO2 into the Ce1-xFexO2 mixed oxides can promote the formation of solid solutions to improve the catalytic activity for soot combustion. Moreover, it also results in the ability to improve thermal stability of the materials. Remarkably, ZrO2 can inhibit the growth of CeO2 crystallite size and the disappearance of solid solutions. Totally, Ce0.5Fe0.5-xZrxO2 ternary mixed oxides showed higher catalytic activity than Ce1-xFexO2 binary mixed oxides. Among the series of Ce0.5Fe0.5-xZrxO2 mixed oxides, the Ce0.5Fe0.30Zr0.20O2 catalyst showed the best catalytic activity for soot combustion, and had the lowest Ti (251℃) and Tp (310℃). Even after aging for long periods at high temperature, the Ti and Tp values for Ce0.5Fe0.30Zr0.20O2 sample were still relatively low. The Ti was 273℃, and Tp was 361℃, indicating high thermal stability.
     In this study, we finally chose the Ce0.5Fe0.30Zr0.20O2 sample which has the best catalytic activity as the research object, and prepared it via hydrothermal, physical mixture, impregnation, template, citric acid sol-gel and co-precipitation methods. The results showed that catalysts preparation methods have a great influence on structure and properties of catalysts. The catalyst prepared by hydrothermal method displayed the best catalytic activity and thermal stability.
引文
[1]Garin F. Environmental catalysis [J]. Catal. Today,2004,89:255-268
    [2]王建听,傅立新,黎维彬.汽车排气污染治理及催化转化器[M].北京:化学工业出版社,2000
    [3]王亚军,冯长根,王丽琼等.汽车用催化剂技术——治理尾气污染的重要手段[J].化工进展,2000,5:32-35
    [4]Neeft J. P. A., Makkee M., Moulijn J. A. Diesel particulate emission control [J]. Fuel Processing Technology,1996,47:1-5
    [5]王虹,赵震,徐春明.同时消除柴油机尾气排放炭颗粒和NOX催化剂的研究进展[J].化工进展,2004,23(7):723-726
    [6]Stamatelos A. M. A review of the effect of particulate traps on the efficiency of vehicle diesel engines [J]. Energy Convers Mgmt.,1997,1:83-99
    [7]焦天民.柴油机排气后处理的研究现状及存在问题[J].拖拉机与农用运输车,2002,2:16-18
    [8]周泽兴,王学中,李凯等.柴油机排气净化技术研究的进展[J].中国稀土学报,2002,20(21):1-9
    [9]胡成南,郝郑平,沈迪新.柴油车排放净化技术[J].中国环保产业,2002,5:26-28
    [10]郝吉明,马广大.大气污染控制工程(第二版).北京:高等教育出版社,2002
    [11]田柳青,叶代启.柴油车排气颗粒物的后处理技术[J].环境污染治理技术与设备[J].2003,4(10):74-77
    [12]刘坚,赵震,徐春明.柴油车排放碳黑颗粒消除催化剂的研究进展[J].催化学报,2004,25(8):673-680
    [13]侯芙生.采取有效技术对策降低汽车排放污染[J].石油炼制与化工,1999,30(7):1-6
    [14]杜愎刚,朱会田,许力.车用柴油机排放控制现状与技术进展[J].内燃机工程,2004,25(3):71-74
    [15]刘杰.柴油机汽车尾气净化装置的研制[J].汽车技术,1999,3:14-15
    [16]朱玲,王学中,李凯等.Ce/Zr系列催化剂上碳颗粒物燃烧行为的研究[J].中国稀土学报,2004,22(4):5891-5902
    [17]张守臣,赵修仁,刘长厚等.二氧化氮消除柴油机排气中炭烟过程基础研究[J].燃烧科学与技术,2002,8(2):163-165
    [18]梁桂森,朱建国,花力平等.柴油机排气后处理技术[J].柴油机,2000,‘5:9-13
    [19]Van Gulijk C., Heiszwolf J. J., Makkee M., et al. Selection and development of a reactor for diesel particulate filtration [J]. Chemical Engineering Science,2001,56(4): 1705-1712
    [20]郭国胜.柴油汽车排放控制技术[J].内燃机,2006,2:33-36
    [21]Grigorios C., Koltsakis, Anastasios M. Stamatelos modes of catalytic regeneration in diesel particulate filters [J]. Ind. Eng. Chem. Res.,1997,36:4155-4165
    [22]Oi-Uchisawa J., Obuchi A., Enomoto R., et al. Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black [J]. Appl. Catal., B:Environ., 2000,26(1):17-24
    [23]Oi-Uchisawa J., Obuchi A., Enomoto R., et al. Oxidation of carbon black over various Pt/MOx/SiC catalysts [J]. Appl. Catal., B:Environ.,2001,32(4):257-268
    [24]Oi-Uchisawa J., Obuchi A., Wang S. D., et al. Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation [J]. Appl. Catal., B:Environ.,2003,43(2): 117-129
    [25]Matsuoka K., Orikasa H., Itoh Y., et al. Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen [J]. Appl. Catal., B:Environ.,2000,26(2):89-99
    [26]Setiabudi A., van Setten B. A. A. L., Makkee M., et al. The influence of NOx on soot oxidation rate:molten salt versus platinum [J]. Appl. Catal., B:Environ.,2002,35(3): 159-166
    [27]Setiabudi A., Makkee M., Moulijn J. A. An optimal NOx assisted abatement of diesel soot in an advanced catalytic filter design [J]. Appl. Catal., B:Environ.,2003,42(1): 35-45
    [28]Oi-Uchishawa J., Obuchi A., Zhao Z., et al. Carbon oxidation with platinum supported catalysts [J]. Appl. Catal., B:Environ.,1998,18(3-4):L183-L187
    [29]Oi-Uchishawa J., Wang S. D., Nanba T., et al. Improvement of Pt catalyst for soot oxidation using mixed oxide as a support [J]. Appl. Catal., B:Environ.,2003,44(31): 207-215
    [30]Oi-Uchishawa J., Obuchi A., Ohi A., et al. Activity of catalysts supported on heat-resistant ceramic cloth for diesel soot oxidation [J]. Powder Technol.,2008, 180(1-2):39-44
    [31]Van Craenenbroeck J., Andreeva D., Tabakova T., et al. Spectroscopic analysis of Au-V-Based catalysts and their activity in the catalytic removal of diesel soot particulates [J]. J. Catal.,2002,209(2):515-527
    [32]Zhang Z. L., Mou Z. G., Yu P. F., et al. Diesel soot combustion on potassium promoted hydrotalcite-based mixed oxide catalysts [J]. Catal. Commun.,2007,8(11): 1621-1624
    [33]Wang Z. P., Shangguan W. F., Su J. X., et al. Catalytic oxidation of diesel soot on mixed oxides derived from hydrotalcites [J]. Catal. Lett.,2006,112(3-4):149-154
    [34]Liu J., Zhao Z., Xu C. M., et al. Diesel soot oxidation over supported vanadium oxide and K-promoted vanadium oxide catalysts [J]. Appl. Catal., B:Environ.,2005,61(1-2): 36-46
    [35]Liu J., Zhao Z., Xu C. M, et al. The structures of VOx/MOx and alkali-VOx/MOx catalysts and their catalytic performances for soot combustion [J]. Catal. Today,2006, 118(3-4):315-321
    [36]An H. M., Kilroy C., McGinn P. J. Combinatorial synthesis and characterization of alkali metal doped oxides for diesel soot combustion [J]. Catal. Today,2004,98(3): 423-429
    [37]朱玲,王学中,於俊杰,郝郑平.K-Ce0.5Zr0.5O2催化碳颗粒物燃烧性能[J].物理化学学报,2005,21(8):840-845
    [38]Wu X. D., Liu D. X., Li K., et al. Role of CeO2-ZrO2 in diesel soot oxidation and thermal stability of potassium catalyst [J]. Catal. Commun.,2007,8(8):1274-1278
    [39]Wu X. D., Liang Q., Weng D., et al. The catalytic activity of CuO-CeO2 mixed oxides for diesel soot oxidation with a NO/O2 mixture [J]. Catal. Commun.,2007,8(8): 2110-2114
    [40]Krishna K., Bueno-Lopez A., Makkee M., et al. Potential rare-earth modified CeO2 catalysts for soot oxidation part Ⅱ:Characterisation and catalytic activity with NO+O2 [J]. Appl. Catal., B:Environ.,2007,75(3-4):201-209
    [41]Aneggi E., de Leitenburg C., Dolcetti G., et al. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2 [J]. Catal Today,2006,114(1):40-47
    [42]Liang Q., Wu X. D., Weng D., et al. Selective oxidation of soot over Cu doped ceria/ceria-zirconia catalysts [J]. Catal. Commun.,2008,9:202-206
    [43]孔德良,白玉兰,叶庆国等.汽车尾气催化剂的研究进展[J].青岛科技大学学报,2003,4:132-137
    [44]Zhang X. W., Shen S. C., Hidajat K., et al. Naphthalene oxidation over 1% Pt and 5% Co/γ-Al2O3catalysts:reaction intermediates and possible pathways [J]. Catalysis Letters,2004,96(1-2):87-96
    [45]Wang H., Zhu Y. F., Tan R. Q., et al. Study on the poisoning mechanism of sulfur dioxide for perovskite La0.9Sr0.1CoO3 model catalysts [J]. Catalysis Letters,2002, 82(3-4):199-204
    [46]李金洪,鲁安怀,宋庭兵等.新型环境矿物材料——堇青石质泡沫陶瓷的研制[J].矿物学报,2001,9:481-484
    [47]汪文栋,林培琰,伏义路等.含铈镧低贵金属含量三效催化剂的结构与性能[J].催化学报,1999,20(5):525-529
    [48]储伟.催化剂工程(第一版)[M].四川:四川大学出版社,2006
    [49]Davis M. E. New Vistas in Zeolite and Molecular Sieve Catalyst [J]. Accounts of Chemical Research,1993,26(3):111-116
    [50]Phillips J., Dumesic J. A. Production of supported Metal Catalysts by the Decomposition of Metal Carbonyls [J]. Appl. Catal.,1984,9(1):1-30
    [51]黄仲涛,耿建铭.工业催化(第二版)[M].北京:化学工业出版社,2006
    [52]Cauqui M. A., Rodriguez-Izquierdo J. M. Application of sol-gel methods to catalyst preparation [J]. Journal of Non-Crystalline Solids,1992,147:724-729
    [53]冉锐,吴晓东,翁端.稀土钙钛矿催化剂制备方法的研究进展[J].稀土,2004,25(5):46-50
    [54]臧树良,李俊.汽车尾气净化催化剂[J].当代化工,2001,30(4):187-192
    [55]许越,夏海涛,刘振琦.催化剂设计与制备工艺(第一版)[M]].北京:化学工业出版社,2003
    [56]Sugiura M. Oxygen storage materials for automotive catalysts:ceria-zirconia solid solutions [J]. Catalysis Surveys from Asia,2003,7(1):77-86
    [57]Jelles S. J., Makkee M., Moulijn J. A., et al. Diesel particulate control. Application of an activated particulate trap in combination with fuel additives at an ultra low dose rate [J].SAE,1999,1:113-119
    [58]马林才,刘颖.有机金属化合物降低柴油机炭烟排放及其机理的研究[J].燃料化学学报,2006,34(2):230-233
    [59]Setiabudi A., Chen J. L., Mul G., et al. CeO2 catalyzed soot oxidation:The role of active oxygen to accelerate the oxidation conversion [J]. Appl. Catal., B:Environ., 2004,51(1):9-19
    [60]Liang Q., Wu X. D., Weng D., et al. Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation [J]. Catal. Today,2008,139(1-2):113-118
    [61]俞守耕.贵金属催化净化汽车尾气中稀土氧化物的助催化和稳定化[J].贵金属,2002,23(2):66-70
    [62]Schmieg S. J., Belton D. N. Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst [J]. Appl. Catal., B:Environ.,1995,6: 127-144
    [63]Krishna K., Bueno-Lopez A., Makkee M., et al. Potential rare earth modified CeO2 catalysts for soot oxidation Ⅰ. Characterisation and catalytic activity with O2 [J]. Appl. Catal., B:Environ.,2007,75(3-4):189-200
    [64]Simonsen S. B., Dahl S., Johnson E., et al. Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy [J]. J Catal,2008,255(1):1-5
    [65]Vidmar P., Fornasiero P., Kaspar J., et al. Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide [J]. J. Catal.,1997,171:160-168
    [66]Hori, C.E.; Permana, H.; Simon Ng. K.Y., et al. Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system [J]. Appl. Catal., B:Environ.,1998,16(2): 105-117
    [67]Lambrou P. S., Efstathiou A. M. The effects of Fe on the oxygen storage and release properties of model Pd-Rh/CeO2-Al2O3 three-way catalyst [J]. J Catal,2006,240(2): 182-193
    [68]Singh P., Hegde M. S. Controlled synthesis of nanocrystalline CeO2 and Ce1-xMxO2-delta (M=Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method: Structure and oxygen storage capacity [J]. J. Solid State Chem.,2008,181(12): 3248-3256
    [69]Sirijaruphan A., Goodman J. G., Rice R. W. Effect of Fe promotion on the surface reaction parameters of Pt/gamma-Al2O3 for the selective oxidation of CO [J]. J. Catal., 2004,224(2):304-313
    [70]Liu C. W., Luo, L. T., Lu, X. Preparation of Mesoporous Ce1-xFexO2 Mixed Oxides and Their Catalytic Properties in Methane Combustion [J]. Kinet. Catal.,2008,49(5): 676-681
    [71]Lv H., Yang D. J., Pan X. M., et al. Performance of Ce/Fe oxide anodes for SOFC operating on methane fuel [J]. Mater. Res. Bull.,2009,44 (6):1244-1248
    [72]Luo, J. Y.; Meng, M.; Yao, J. S., et al. One-step synthesis of nanostructured Pd-doped mixed oxides MOx-CeO2 (M=Mn, Fe, Co, Ni, Cu) for efficient CO and C3H8 total oxidation [J]. Appl. Catal., B:Environ.,2009,87(1-2):92-103
    [73]Mul G., Kapteijn F., Doornkamp C., Moulijn J. A. Transition Metal Oxide Catalyzed Carbon Black Oxidation:A Study with 18O2 [J]. J. Catal.,1998,179:258-266
    [74]Zhang, T. S.; Hing, P.; Huang, H. T., et al. Densification, microstructure and grain growth in the CeO2-Fe2O3 system(0≤Fe/Ce≤20%) [J]. J. Eur. Ceram. Soc.,2001, 21(12):2221-2228
    [75]Perez-Alonso F J, Lopez Granados, M.; Ojeda, M., et al. Chemical structures of coprecipitated Fe-Ce mixed oxides [J]. Chemistry of Materials,2005,17(9): 2329-2339
    [76]Lv H., Tu H. Y., Zhao B. Y., et al. Synthesis and electrochemical behavior of Ce1-xFexO2-δ as a possible SOFC anode materials [J]. Solid State Ionics,177,2007: 3467-3472
    [77]Li G. S., Smith R. L., Inomata H. Synthesis of nanoscale Ce1-xFexO2 solid solutions via a low-temperature approach [J]. J. Am. Chem. Soc.,2001,123:11091-11092
    [78]Lin H. Y., Ma Z. Q., Ding, L., et al. Preparation of Nanoscale CexFe1-xO2 Solid Solution Catalyst by the Template Method and Its Catalytic Properties for Ethanol Steam Reforming [J]. Chin. J. Catal.,2008,29(5):418-420
    [79]Knozinger H., Mestl G. Laser Raman spectroscopy-a powerful tool for in situ studies of catalytic materials [J]. Top. Catal.,1999,8:45-55
    [80]Lin X. M., Li L. P., Li G. S., et al. Transport property and Raman spectra of nanocrystalline solid solutions Ce0.8Nd0.2O2-δ with different particle size [J]. Materials Chemistry and Physics,2001,69:236-240
    [81]Mcbride, J. R.; Hass, K. C.; Poindexter, B. D.; et al. Raman and x-ray studies of Ce1-xRExO2-y, where RE=La, Pr, Nd, Eu, Gd and Tb [J]. J. Appl. Phys.,1994,76(4): 2435-2441
    [82]De Faria, D. L. A.; Venaii ncio Silva S; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides [J]. J. Raman Spectrosc.,1997,28:873-878
    [83]Spanier J. E., Robinson R. D., Zheng F., et al. Size dependent properties of CeO2-y nanoparticles as studied by Raman scattering [J]. Phys. Rev. B,2001,64 (24): 245407-245413
    [84]Shan W. J., Feng Z. C., Li Z. L., et al. Oxidative team reforming of methanol on Ce0.9Cu0.1Oy catalysts prepared by deposition precipitation, co-precipitation and complexation combustion methods [J]. J Catal,2004,228(1):206-217
    [85]Luo M. F., Yan Z.. L, Jin L. Y. Structure and redox properties of CexPr1-xO2-δ mixed oxides and their catalytic activities for CO, CH3OH and CH4 combustion [J]. J. Mol. Catal. A:Chem.,2006,260:157-16
    [86]Yao H. C., Yu Yao Y. F. Ceria in automotive exhaust catalysts:Ⅰ.Oxygen storage [J]. J Catal.,1984,86(2):254-265
    [87]Luo M.F., Lu G. L., Zheng X. M., et al. Redox Properties of CexZr1-xO2 Mixed Oxides Prepared by the Sol-gel Method [J]. J. Mater. Sci. Lett.,1998,17(18):1553-1557
    [88]Apostolescu N., Geiger B., Hizbullah K., et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts [J]. Appl. Catal., B:Environ.,2006, 62(1-2):104-114
    [89]Alessandro T. Catalytic Properties of Ceria and CeO2-Containing Materials [J]. Catal Rev-Sci Eng,1996,38(4):439-520
    [90]Shan W. J., Luo M. F., Ying P. L., et al. Reduction property and catalytic activity of Ce1-XNiXO2 mixed oxide catalysts for CH4 oxidation [J]. Appl. Catal., A,2003,246: 1-9
    [91]Atribak I., Bueno-Lopez A., Garcia- Garcia A. Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides [J]. J Catal.,2008,259(1): 123-132
    [92]Bueno-Lopez A., Krishna K., Makkee M., et al. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2 [J]. J. Catal.,2005,230(1):237-248
    [93]Machida M., Murata Y., Kishikawa K., et al. On the reasons for high activity of CeO2 catalyst for soot oxidation [J]. Chem. Mater.,2008,20(13):4489-4494
    [94]Ozawa M., Kimura M., Isogai A. The application of Ce-Zr oxide solid solution to oxygen storage promoters in automotive catalysts [J]. J. Alloys Compd.,1993, 193(1-2):73-75
    [95]Murota T., Hasegawa T., Aozasa S., et al. Production method of cerium oxide with high storage capacity of oxygen and its mechanism [J]. J. Alloys Compd.,1993, 193(1-2):298-299
    [96]Vidal H., Kaspar J., Pijolat M., et al. Redox behavior of CeO2-ZrO2 mixed oxides:Ⅰ. Influence of redox treatments on high surface area catalysts. Appl. Catal., B:Environ., 2000,27:49-63
    [97]Jose I. Gutierrez-Ortiz, De Rivas B., Ruben Lopez-Fonseca, et al. Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions [J]. Appl. Catal., B:Environ.,2006,65:191-200
    [98]Gonzalez-Velasco J. R., Gutierrez-Ortiz M. A., Marc J.L., et al. Contribution of cerium/zirconium mixed oxides to the activity of a new generation of TWC [J]. Appl. Catal., B:Environ.,1999,22:167-178
    [99]Trovarelli A. Catalysis by Ceria and Related Materials [M]. London Imperial College Press,2002.269
    [100]Fornasiero P., Monte R. D., Ranga-Rao G., et al. Rh-Loaded CeO2-ZrO2 solid solutions as Highly Efficient Oxygen Exchangers:Dependence of the reduction behavior and the oxygen storage capacity on the structural properties [J]. J. Catal., 1995,151(1):168-177
    [101]罗孟飞,林瑞,陈敏等,Ce-Zr-O固溶体的制备和表征[J].中国稀土学报,2000,18(1):35-37
    [102]Trovarelli A. Boaro M. Some recent developments in the characterization of ceria-based catalysts [J]. J. Alloys Comp.,2001,323-324:584-294
    [103]Loong C.-K., Ozawa M. The role of rare earth dopants in nanophase zirconia catalysts for automotive emission control [J]. Journal of Alloys and Compounds, 2000,303-304:60-65
    [104]Gabriele Balducci, Saiful Islam M., Jan Kaspar, et al. Bulk Reduction and Oxygen Migration in the Ceria-Based Oxides [J]. Chem. Mater.,2000,12:677-681
    [105]Yue B. H., Zhou R. X., Wang Y. J. Influence of transition metals (Cr, Mn, Fe, Co and Ni) on the methane combustion over Pd/Ce-Zr/Al2O3 catalyst [J]. Appl. Surf. Sci., 2006,252:5820-5828
    [106]Atribak I., Bueno-Lopez A., Garcia-Garcia A. Thermally stable ceria-zirconia catalysts for soot oxidation by O2 [J]. Catal. Commun.,2008,9:250-255
    [107]Dong X. F., Zou H. B., Lin W. F. Effect of preparation conditions of CuO-CeO2-ZrO2 catalyst on CO removal from hydrogen-rich gas [J]. International Journal of Hydrogen Energy,2006,31:2337-2344
    [108]Letichevsky S., Tellez C. A., De Avilleza R. R., et al. Obtaining CeO2-ZrO2 mixed oxides by coprecipitation:role of preparation conditions [J]. Appl. Catal., B:Environ., 2005,58:203-210
    [109]Apostolescu N., Geiger B., Hizbullah K., et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts [J]. Appl. Catal., B:Environ., 2006,62(1-2):104-114
    [110]Alessandro T. Structural and Oxygen Storage/Release Properties of CeO2-Based Solid Solutions [J]. Comments on Inorganic Chemistry,1996,20(4):263-284
    [111]Komarneni S., Roy R., Li Q. H. Microwave-hydrothermal synthesis of ceramic powders [J]. Ma.Res.Bull.,1992,27:1393-1396
    [112]Roy R., Tuttle O.F. Investigation Under Hydrothermal Condition [J]. Physics and Chemistry of the Earth,1956,1:138-142
    [113]古映莹,冯圣生,张丽娟等,铈锆复合氧化物的制备及表征[J].稀有金属,2006,30(4):466-468
    [114]Marinsek M., Zupan K., Maeek J. Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis [J]. Journal of power sources,2002,106(1-2):178-188
    [115]Laosiripojana N., Assabumrungrat S. Catalytic dry reforming of methane over high surface area ceria [J]. Appl. Catal., B:Environ.,2005,60 (1-2):107-116
    [116]Shigapov A. N., Graham G.W. The preparation of high-surface area, thermally-stable, metal-oxide catalysts and supports by a cellulose templating approach [J]. Appl. Catal., A:General,2001,210:287-289
    [117]] Liang Q., Wu X. D., Wu X.D., et al. Role of Surface Area in Oxygen Storage Capacity of Ceria-Zirconia as Soot Combustion Catalyst [J]. Catal. Lett.,2007,119: 265-270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700