超细煤粉分级燃烧NO_x还原过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球化石燃料使用量的持续增长,NO_x的排放控制问题已引起世界各国的普遍关注。长期以来,我国的能源结构一直以煤炭为主,因而燃煤是造成我国NOx排放污染的主要原因。在现有的脱氮技术中,燃料分级燃烧是最经济、有效的方法之一。对于众多的燃煤锅炉,采用煤粉分级燃烧不仅具有明显的NO_x还原效果,而且由于再燃燃料种类可与一次燃料相同,无需考虑双重燃料燃烧和输送的问题,因此更加容易实施,运行费用明显降低。
     本课题针对超细煤粉分级燃烧NO_x还原过程中的具体问题,借助于热态试验、数值模拟和理论分析的方法展开研究,深入揭示了NO_x的还原机理,获得再燃条件下超细煤粉的燃烧特性以及不同燃烧工况下超细煤粉分级燃烧NO_x还原效果的基础数据,力求在保证良好的燃烧效率的前提下,最大限度地提高NO_x的还原效果。
     文中首先根据NO_x的生成与破坏机理探讨了超细煤粉分级燃烧NO_x的均相与异相还原机理,利用敏感性分析建立了简化的超细煤粉分级燃烧NO_x还原化学动力学反应模型,发现了超细煤粉分级燃烧过程中NO_x还原的主要反应机理。
     分别利用热重分析仪研究了煤粉在还原性气氛下热解时,挥发分的析出特性;创新性地借助于气相色谱仪与管式加热炉,研究了再燃条件下煤粉热解时碳氢组份的析出特性,首次获得了再燃区中热解温度、燃料特性、煤粉粒度对煤粉热解特性的影响规律,发现了以超细煤粉作为再燃燃料时NO_x还原效果提高的根本原因。
     首次在热态煤粉炉的快速热解条件下,研究了再燃条件下超细煤粉的着火特性及燃料的燃尽特性,并通过理论计算进一步分析了煤粉着火及燃尽时间与煤粉粒度、煤种、氧浓度等因素的关系,为合理地分配主燃区、再燃区、燃尽区内的停留时间提供了重要的设计依据。
     针对热态煤粉炉内超细煤粉分级燃烧NO_x的还原过程,建立了相应的物理模型及边界条件,并运用多相流动、传热、湍流燃烧、NO_x生成和还原等数学模型以及相应的数值计算方法,对炉内的热态速度场、温度场、主要燃烧产物及燃烧污染物NO_x的浓度场进行了数值模拟,研究了超细煤粉分级燃烧中,运行工况对NO_x还原效果的影响,计算结果对试验研究起到了很好的定性指导作用。
     采用热态试验方法,研究了煤粉燃烧NO_x的释放特性以及超细煤粉分级燃烧过程中燃烧工况对NO_x还原效果的影响规律。通过试验研究与模拟计算结果的比
With the global continued increase of fossil fuel consumption, the problem of NO_x emission control has caused widespread concern of the world. As most energy needed in China has been coal for a long period, and the energy structure will last in the future, coal burning is the main cause of NO_x emissions, which pollutes the environment heavily in our country. To control NO_x emission, one of the most valid methods is reburning technology, which reduces the NO_x formed in primary burning zone by the deoxidized atmosphere in reburning zone. The technology is a promising method for its lower cost, easier realization and higher NO_x reduction efficiency, due to the reburning fuel being able the same as the primary one.
    Though investigating the specific problems about NO_x reduction in superfine pulverized coal reburning process by means of thermal tests, simulations and theoretical analyses, the thesis is to reveal the mechanism of NO_x reduction, get the basic data of burning characteristics of superfine pulverized coal in reburning process and the effects of NO_x reduction for superfine pulverized coal reburning under various burning conditions, and farthest improve the reduction efficiency of NO_x with good combustion efficiency.
    Firstly, based on the formation and reduction mechanism of NO_x, the reduction mechanism of homogenous phrase and heterogeneous phrase is discussed. A simplified chemical dynamic reaction model of NO_x reduction process of superfine pulverized coal reburning is established by means of sensitive analysis, and the main reaction mechanism is found for the process.
    By using thermogravimetry, the volatile releasing behavior is investigated separately when pulverized coal pyrolyzed in the deoxidized atmosphere. The releasing behavior of CmHn component of pulverized coal pyrolyzed under reburning condition is investigated innovatively by means of gas chromatography and tube heater. The effects of pyrogenation temperature, fuel characteristics and coal particulate size on pyrogenation behavior of pulverized coal in reburning zone are obtained for the first time. The fundamental reasons are found for increase reduction efficiency of NO_x when superfine pulverized coal used as reburning fuel.
    The ignition and burnout characteristics of superfine pulverized coal reburning are experimentally studied firstly under the condition of rapid pyrogenation in a thermal pulverized coal furnace. And in order to provide design basis for reasonably distributing
引文
[1].中华人民共和国国家统计局.中国统计年鉴2002[M].北京:中国统计出版社,2002.
    [2] 曾汉才.大型锅炉高效低NO_x燃烧技术的研究[J].锅炉制造,2001,50(1):1-11.
    [3] 毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,1998.
    [4] 刘文荧编译.低NO_x排放控制新技术[J].国际电力,2001,5(1):59-62.
    [5] 任建兴,翟晓敏,傅坚刚等.火电厂氮氧化物的生成和控制[J].上海电力学院学报,2002,18(3):19-23.
    [6] 韩才元,徐明厚,周怀春等.煤粉燃烧[M].北京:科学出版社,2001.
    [7] Smoot L D, Hill S C, Xu H. NO_x control through reburning [J]. Progress in Energy and Combustion Science, 1998, 24(5): 385-408.
    [8] 岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002.
    [9] 新井纪男.燃烧生成物的发生与抑制技术[M].北京:科学出版社,2001.
    [10] Parry M., Engel G.. Formation of HCN by the action of nitric oxide on methane at atmospheric pressure [J]. General conditions of formation. Compt. Rend, 1950, 231 (6): 1302-1304.
    [11] Wendt, J O. Reduction of Sulfur Trioxide and Nitrogen Oxides by Secondary Fuel Injection[C]. Paper presented at the Fourteenth Symposium (International) on Combustion, 1973, 151-160.
    [12] Takahashi Y, Sakai M, Kunimoto T, et al. In Proceedings of the 1982 Joint Symposium on Stationary NO_x Control. EPRI Report NO. CS-3128, 1, July, 1983.
    [13] Babcock & Wilcox Company, Demonstration of coal reburning for cyclone boiler NO_x control [R], Comprehensive Report to Congress Clean Coal Technology Program, DOE/FE-0157, Febrary, 1990.
    [14] John Pratapas, Joel Bluestein. Natural gas reburn: cost effective NO_x control [J]. Power Engineering, 1994, 98(5): 47-50.
    [15] Folsom B A, Sommer T M, Payne R. Demonstration of combined NOx and SO_2 emission control technologies involving gas reburning [C]. International Conference on Environmental Control of Combustion Processes. Honolulu, HI, Octoberl991, 7-10.
    [16] Folsom B A, Payne R, Moyeda D, et al. Advanced Reburning with new process enhancements [C]. in EPRI/EPA 1995 Joint Symposium on Stationary Combustion NO_x Control, Kansas City, MO, May, 19, 1995.
    [17] Tree D R, Clark A W. Advanced rebuming measurements of temperature and species in a pulverized coal flame[J]. Fuel, 2000, 79(13): 1687-1695.
    [18] Chen W Y, Ma Long. Effect of heterogeneous mechanism during rebuming of nitrogen oxide[J]. AIChE Joumal, 1996, 42(7): 1968-1975.
    [19] Smart J P, Morgen D J, The Effectiveness of multi-fuel reburning in an internally fuel-staged burner for NO_x reduction[J]. Fuel, 1994, 73(9): 1437-1442.
    [20] Kichener A, Splieechoff H, et al. The effect of different rebuming fuels on NO_x reduction, Fuel[J]. 1994, 73(9): 1443-1446.
    [21] Mereb J, Wendt J O L. Rebuming mechanisms in a pulverized coal combustor [C]. Twenty-third Symposium (International) on Combustion. The Combustion Institute, 1990,1273-1279.
    [22] Overmoe, B J, et al. Pilot Scale Evaluation of NO_x Control From Pulverized Coal Combustion by Rebuming[C]. Paper Presented at the 1985 EPR/fEPA Joint Symposium on Stationary NO_x Control, Boston, MA.
    [23] National Energy Technology Laboratory.Micronized coal rebuming demonstration for NO_x control: A DOE Assessment[R]. PA 15236-0940, Washington: U.S. Department of Energy, August 2001.
    [24] Gerry J Hesselmann. Optimization of combustion by fuel testing in a NO_x reduction test facility [J]. Fuel, 1997, 76(13): 1269-275.
    [25] 钟北京,傅维标.气体燃料再燃对NO_x还原的影响[J].热能动力工程,1999,14(6):419-423.
    [26] Hartmut Spliethoff, Ulrich Greul, Helmut Rudiger et al. Basic effects on NO_x emissions in air staging and reburning at a bench-scale test facility[J]. Fuel, 1996, 75(5): 560-564.
    [27] Waseem A Nazeer, Robert E Jackson, Jacob A Pearl et al. Detailed measurements in a pulverized coal flame with natural gas rebuming[J]. Fuel, 1999, 78(6): 689-699.
    [28] Robert Ashworth, Rafik Beshai, Donald Engelhardt, et al. Evaluation of gas reburning and low NO_x burners on a wall fired boiler[R]. Energy and Environmental Research Corporation, 1998.
    [29] Micronized Coal Reburn Demonstration Project for NO_x Control at the New york State Electric & Gas Tangentially-Fired Milloken Unit 1 [R]. PA 15129-9566, July 14, 1999.
    [30] 高正阳,阎维平,刘忠.再燃过程再燃煤粉燃料N释放规律的试验研究[J].中国电机工程学报,2004,24(8):238-242.
    [31] 肖理生,程俊峰,曾汉才,等.分级燃烧及煤粉细度对NO_x排放浓度的影响.华中理工大学学报.1998,Vol26(11):81-84.
    [32] 姜秀民,李巨斌,邱健荣.超细化煤粉燃烧特性的研究[J].中国电机工程学报,2000,20(6):71-74.
    [33] 徐璋,超细煤粉再燃降低NO_x排放的热态实验研究与数值模拟(D).浙江学博士学位论文,导师:岑可法,池作和,2003.7.
    [34] Pels J R, Wojtowicz M A, Moulijin J A. Rank dependence of N_2O emission in fluidized-bed combustion of coal [J]. Fuel, 1993, 72 (3) : 373-379.
    [35] Houser T J, Hull M, Alway R, et al. Int. Journal of Chem. Kinet., 198012 (3): 579-683。
    [36] 赵科,谭厚章,周屈兰,等.煤的模型化合物热解过程中HCN、NH3的逸出规律[J].热能动力工程,2004,19(3):246-248。
    [37] Baulch D C, Cobos C J, Cox R A et al. Evaluated kinetic data for combustion modeling[J]. JPhys Chem Ref Data, 1992, 21 (1): 411-737.
    [38] Burch T E, Tillman F R, Chen W Yet al. Partitioning of nitrogenous species in the fuel-rich stage of reburnin[J]. Energy and Fuels, 1991, 12 (5): 231-237.
    [39] Thorne L R, Branch M C, Chandler D W et al. Hydrocarbon/nitric oxide interactions in low-pressure flames[C]. In Twenty-first Symposium (international) on Combustion. The Combustion Institute, Pittsburgh, PA, 1986: 965-977.
    [40] Hao Liu, Edward Hampartsournian and Bernard M Gibbs. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning [J]. Fuel, 1997, 76(11): 985-993.
    [41] Wendt J O L. Mechanisms governing the formation and destruction of NO and other nitrogenous species in low NO coal combustion system [J]. Combustio Science and Technology, 1995, 108(4): 323-344.
    [42] Mereb, J B, Wendt J O L. In Twenty-third Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 1991, 1273-1279.
    [43] Mereb J B, Wendt J O L. Fuel, 1994, 73 (4): 1020-1027.
    [44] Kilpinen P, Glarborg P,Hupa M. Industrial & Engineering Chemistry Research. 1992, 31 (5): 1477-1482.
    [45] Etzkom T E, Muris S, Wolfrum J, et al. Atta-Shahin A., Wamatz J. Destrution and formation of NOx in low pressure stoichiometric CH4/O2 flames[C]. Twenty-Fourth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1996:2083-2090.
    [46] Rudiger H, gruel U, Spliethoff H, et al. Distribution of fuel nitrogen in pyrolysis products used for rebuming [J]. Fuel, 1997, 76(3): 201-205.
    [47] Wendt J O L, Sternling C V, Matovich M A. Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection[C]. In Fourteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1973:897-904.
    [48] Abbas T, Costen P, Lockwood F C, et al. The Effect of particle size on NO formation in a large-scale pulverized coal-fired laboratory furnace: measurements and modeling[J]. Combustion and Flame, 1993,93(2): 316-326.
    [49] Gerry J, Hesselmann. Optimization of combustion by fuel testing in a NO_x reduction test facility[J]. Fuel, 1997, 76(13): 1269-1275.
    [50] Mafia U Alzueta, Peter Glarborg, Kim Dam Johansen. Low temperature interactions between hydrocarbons and nitric oxide: an experimental study[J]. Combustion and Flame, 1997, 109(1):25-36.
    [51] 钟北京,施卫伟,傅维标.煤和煤焦还原NO的实验研究[J].工程热物理学报,2000,21(3):383-387、
    [52] 钟北京,张怀山.贫煤焦催化还原NO的实验研究[J].工程热物理学报,2002,23(2):249-252.
    [53] 钟北京,张怀山,傅维标.煤焦燃烧NO释放规律研究[J].燃烧科学与技术,2000,6(1):28-31.
    [54] 钟北京,傅维标.再燃燃料中HCN对NO_x还原的影响[J].热能动力工程,2000,15(1):4-8、
    [55] 钟北京,傅维标.再燃过程中HCN对NO_x还原的重要性[J].燃烧科学与技术,2000,6(1):77-84.
    [56] 沈伯雄,姚强.再燃脱硝的动力学模拟和组分影响分析[J].环境科学学报,2002,22(5):677-682.
    [57] 范耀国,姚洪,徐明厚等.分级燃烧时NO_x排放特性的数值研究[J].工程热物理学报,1997,18(5):649-652.
    [58] Miller J A, Bowman C T.Mechanism and modeling of nitrogen chemistry in combustion[J].Progress in energy and combustion science, 1989, 15 (2): 287-338.
    [59] Gear C W.常微分方程初始问题的数值解法[M].费景高等译。北京:科学出版社,1978.
    [60] http://www.me.berkeley.edu/gri-mech/version3.0/[EB/OL].
    [61] 姜秀民,李巨斌,邱建荣.煤粉颗粒粒度对煤质分析特性与燃烧特性的影响[J].煤炭学报,1999,24(6):43-47.
    [62] 陈鸿,孙学信.煤粉空隙结构的作用及其模化[M].煤燃烧特性专辑,北京:科学出版社,1993.6.
    [63] 陈鸿,孙学信,韩才元等.煤粉空隙结构对燃烧过程的影响[J].化工学报,1994,45(3):327-333.
    [64] 赵冰翠,张荣曾.关于煤空隙的最新研究[J].煤质技术与科学管理,1998,(28)2:25-32.
    [65] 王乃宁等.颗粒粒径的光学测量技术及应用[M].北京:原子能出版社,2000.6.
    [66] Dryden I G C. chemistry of coaland its relation to coal carbonisation[J].Inst fuel, 1957, 30 (2): 193-198.
    [67] Therssen E, GouRichon L and DelFosse L. Devolatilization of coal particles in a flat flame-experiment and modeling study[J]. Combustion and Flame, 1995, 103 (5):115-128.
    [68] Blair D W, Went J O L and Bartok W. Evolution of nitrogen and other species during controlled pyrolysis of coal[C]. 16th Symp. combustion, combustion institute, Pittxburgh, 1977, 475-479.
    [69] Wendt J O L. Devolatilization of Solid Fuels 4th Flame Research Course-Fuels Utilizationand Enviroment, Prague, Czechoslovaleia,1991.
    [70] La Nauze R D. fuel, 1982, 61 (3): 71-76.
    [71] Ubhayakar S K, Sticker, Von D B, RosenberyC W, et al. Devolatilization of Puverized Coal in Hot Combustion Gases[C]. 16th Symposium onCombustions,The combustion Institute, Pittsburgh, 1977, 427-436.
    [72] Badzoich S, et al. Ind.Eng.Chem, 1970, 9(2):521-527.
    [73] Anthony D B, Howaral J B. Coal Devolatilization andHydrogasification[J]. Aiche J, 1976, 22 (2): 625-656.
    [74] Steven P. Heat and Mass Transfer in the Vicinity of a Devolatilizing Coal Particle[J]. Combustion Science and Tecnology, 1986, 45(5): 289-308.
    [75] Gururajan V S. Mechanisms for the Ignition of Pulverized Coal Particles[J]. Combustion and Flame, 1990, 81(2): 119-132.
    [76] J. Howard B, and Essenhigh R H. Combustion & Flame, 1965, 9(5):337-342.
    [77] Howard J B and Essenhigh R H. Mechanism of Solid-particle Combustion with Stimulanous Gas Phase Volatiles Combustion[C]. Eleventh Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1967,399-408.
    [78] Howard J B and Essenhigh R H. Pyrolosis of Coal Particles in Pulverized Fuel Flames[J]. Ind. Eng. Chem. Process Design and Development 1967,28(6):74-78.
    [79] Thomas G R, Harris J J and Evans D G.. The Ignition of Pulverized Brown Coal[J], Combust. Flame1968, 36(12): 391-393.
    [80] Supriya Bandyopadngay. Prediction of Ignition Temperature of a Single Coal Particle[J]. Combustion and Flame, 1972, 26(6): 411-415.
    [81] Hertzberg, M. Auto Ignition temperatures forcoal particles dispersed in air[J]. Fuel, 1991, 70(3): 1115-1123.
    [82] 阎维平,徐通模,许晋原.煤粉气流看火存在租最佳煤粉浓度的机理分析[J].华北电力学院学报,1995,22(2):28-32.
    [83] Essenhigh R H.and Caaba J.Procedding of 9th Symp.(Int.) on combustion, 1963,111-125.
    [84] 李永兴,陈春元,孙家庆.电站锅炉炉膛出口温度计算方法的研究与改进[J].动力工程,1992,12(5):19-25.
    [85] 何佩螯、赵仲琥、秦裕琨.煤粉燃烧器设计及运行[M].北京:机械工业出版社,1987,12-18.
    [86] Field M A, Gill D W, Morgan B B, et al. Combustion of pulverized coal[M]. English: Institute of energy 1983.
    [87] 陶文铨.数值传热学[M].西安:西安交通大学出版社,1988,12.
    [88] Shuen J S, Solomon A S P, Faeth G M. Structure of particle Laden Jets: Measurement and Predictions, AIAA 22nd Aerospace Sciences Meeting Reno Nevada Jan,9-12, 1984.
    [89] Xu M H, Yuan J M, Ding S F and Cao H D. Simulation of the Gas Temperature Deviation in Large-scale Tangential Coal Fired Utility Boilers [J]. Comput. Methods Appl. Mech. Engrg, 1998,155(3-4): 369-380.
    [90] Smoot L D and Smith P J. Coal Combustion And Flame, 1975, 24:109-115.
    [91] 周向阳,郑楚光,马毓义.大型炉膛燃烧过程的模型预示[J],华中理工大学学报,1994,23(3):11-15.
    [92] 孙保民.火焰炉内流动传热与燃烧数值计算和流动的实验研究[D].清华大学博士学位论文,1994.
    [93] 王应时,范维澄,周力行,徐旭常.燃烧过程数值计算[M].北京:科学出版社,1986.
    [94] 周向阳,郑楚光,马毓义.四角切圆炉膛等温流场的数值模拟[J].燃烧科学与技术,1995,1(2):135-139.
    [95] 许慧斌,周向阳,曾汉才.湖北汉川电厂1,2号贫煤锅炉燃烧器反切改造方案的研究[J].热力发电,1995.6:17-21.
    [96] 徐明厚,韩才元.正交射流燃烧器气固两相流动的数值计算[J].华中理工大学学报,1994.22(3):69-73.
    [97] 徐明厚,韩才元.正交射流燃烧器冷态空气动力场的数值模拟[J].空气动力学学报,1994.12(1):82-88.
    [98] Smish I W and Watts A. Heat exchenge between a particle and its surroundings, CSIRO Division of Mineral Chemistry. Coal Research Laboratary. Investigation Report 75,1968.
    [99] Bamu M M and Street P J. Predicting the combustion behavior of coal particlec[J]. Combustion Science and Technology, 1971, 3 (4):231-237.
    [100] P. Cheng. Two-Dimensional Radiating Gas Flow by a Moment Method [J]. AIAA Journal, No.2, pp1662-1664, 1964.
    [101] G. G. De Soete. Overall Reaction Rates of NO and N_2 Formation from Fuel Nitrogen[C]. 15th Symp. (Int'l.) on Combustion, The Combustion Institute, 1975, 1093-1099.
    [102] Smoot L D and Smith P J. NO_x Pollutant Formation in a Turbulent Coal System[C]. In Coal Combustion and Gasification. Plenum, Plenum, NY, 1985, 373-378.
    [103] J. M. Levy, L. K. Chen, A. F. Sarofim, and J. M. Beer. NO/Char Reactions at Pulverized Coal Flame Conditions[C]. 18th Syrup. (Int'l.) on Combustion. The Combustion Institute, 1981, 252-261.
    [104] C. T. Bowman. Chemistry of Gaseous Pollutant Formation and Destruction[M]. Fossil Fuel Combustion. Canada, In W. Bartok and A. E Sarofim, editors, Wiley and Sons, 1991.
    [105] Carvalho M G and Lockwood F C.Predicition of the combustion of an end walled fired glass furnaee[C].Internal Report, Mech.Eng.Part, Imperial College, 1981, 331-336.
    [106] Patankar S.V,郭宽良译,葛新石校.传热和流体流动的数值方法[M].安徽:安徽科学技术出版社,1984.
    [107] Fortsch Dieter, Kluger Frank, Schnell Uwe, Spliethoff Hartmut. A kinetic model for the prediction of NO emission from staged combustion of pulverized coal[C]. In 27th Syrup. (Int'l.) on Combustion. Japan, Tokyo,1998, 3037-3044.
    [108] 金晶,李瑞阳等.煤粉粒度对煤粉燃烧NO_x释放特性影响的试验研究[J].热力发电,2004,33(9) 16-18.
    [109] 谭厚章,廖晓伟,赵科,徐通模等.傅立叶红外光谱法对煤中吡咯型氮的热解规律研究[J].动力工程,2004,24(1):121-124。
    [110] 金晶,李瑞阳,张忠孝.超细煤粉还原NO_x的试验研究[J].热能动力工程,2004,19(6):582-585
    [111] 金晶,张忠孝,钟海卿,李瑞阳.超细煤粉分级燃烧降低NO_x排放的试验[J].山东大学学报,2004,34(5):26-29.
    [112] 金晶,李瑞阳,张忠孝.煤粉粒度对煤粉燃烧NO_x排放的影响[J].环境科学学报,2005,(4):
    [113] Myerson A.L., Taylor F.R., Faunce B.G.. Ignition Limits and Products of Multistage Flames of Propane-Nitrogen Dioxide Mixtures [C]. Paper Presented at the Sixth Symposium (International) on Combustion, Yale University, USA, 1956.
    [114] A.L. Myerson. The Reduction of Nitric Oxide in Simulated Combustion Effluents by Hydrocarbon-Oxygen Mixtures [C]. Paper presented at the Fourteenth Symposium (International) on Combustion, The Pennsylvania State University, USA, 1972.
    [115] Van der Lans R P, Dam-Hohansen K. Influence of Process Parameters on Nitrogen Oxode Formation in Pulverized Coal Burners[J]. Progress in Energy and Combustion Science, 1997, 23(4): 349-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700