用户名: 密码: 验证码:
特殊结构铜系单质及复合物纳米材料的液相制备与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们从简单Cu纳米粒子入手,系统的研究了包括Cu单质、Cu及其氧化物复合物、二元金属复合物等多个体系的简单液相合成及相应的反应机理。在室温还原制备Cu单质的反应中,通过采用引入痕量Ni以稳定Cu的方法制备出了纯度高、稳定性好的Cu微纳米粉体。并且通过提高Ni加入量得到了均相的Cu-Ni双金纳米粒子。在研究了金属粒子的稳定性之后,具有特殊方形笼状结构的Cu纳米材料则被用一种简单快速的水相合成方法所制备出来。同时,通过对反应机理的深入研究可知该特殊结构得于其自模板形貌遗传过程,并受动力学控制。在对Cu系复合材料的研究中,首先利用原位沉积方法合成得到了Cu_2O/SiO_2八面体核壳纳米材料,并且该材料在其核壳界面处形成了新的化学键Cu-O-Si键。在对其反应机理进行研究之后,我们准确的描述出该核壳结构形成过程。并且利用Cu_2O自身的歧化反应,也得到了具有可动多核核壳结构的Cu/SiO_2复合材料。对Cu_2O/SiO_2体系进行扩展,采用液相水解沉积的方法,经历预水解及主体水解过程,又合成出厚度可控的Cu_2O/TiO_2八面体核壳材料。作为对Cu金属纳米材料的补充,双金复合材料的合成工作也被扩展。除了前面的Cu-Ni双金纳米粒子,又尝试利用金属间置换反应对方形Cu纳米笼进行处理来制备Cu-Ag二元金属纳米复合材料。
In the work of this paper, we synthesized a series of copper and cuprous composites nanomaterials by using a simple solution chemical method. The reaction systems we studied include Ni stabilized Cu micro-nanoparticles, cubic Cu nanocages, Cu_2O/SiO_2 and Cu/SiO_2 octahedral core-shell nanocomposites, Cu_2O/TiO_2 and Cu/TiO_2 core-shell materials and Cu-Ag bimetallic nanocomposites. And on the basis of experiment and characterization, we also did an in-depth study on the mechanism of each reaction system.
     First, High purity Cu micro-nano powders have been synthesized by addition of trace Ni in aqueous-phase at room temperature. On the basis of electrode reactions, this trace Ni used as seeds to accelerate the reduction of Cu and as anodic protection agent to keep Cu products pure and stable. The obtained Ni stabilized Cu particles were about 300 nm in size with a high purity and stability. Moreover, Cu-Ni alloy nanoparticles with a size of about 50 nm have been synthesized under the similar reaction system and it was found that the formation of alloy nanoparticles was affected much by the adding order of agents.
     Second, we show a fast approach to the synthesis of cubic Cu nanocages in higher yield through a wet chemical reductive procedure. The performing reductive reactions from Cu (II) to Cu (0) in the aqueous phase can be finished in few minutes at the low temperature of 80°C. The resultant cubic Cu cages are aggregates of Cu nanoparticles with 200 nm in edge lengths and the inclusive nanoparticles are about 20 nm in size. According to the inspection of the Cu nanostructure-forming mechanism, we suggest that the reduction intermediate of roughly solid Cu_2O cubes formed in this strategy served as a spontaneous shape-controlled template and the cubic structure of the Cu nanostructures was evolved by morphology heredity from them. And this process is kinetically controlled growth, as the collaborated performance of Kirkendall effect and Ostwald ripening. In our work, we suggest that cubic Cu nanocages transform to hollow spheres if the reaction time is long enough, and the result of long time experiment has also support our viewpoint. Though, the cubic Cu cage is a structure metastable toward hollow spherical materials, the rapidly formed Cu products are stable in morphology both in solution and as powders in restrained reaction time.
     Third, Cu_2O/SiO_2 core–shell nanocomposites have been synthesized in water solution. During an in situ deposition process, a compact SiO_2 shell 9 nm in thickness is located at the surfaces of Cu_2O octahedral. On the basis of zeta potential study and IR character we presumed, dynamic absorbing and disengaging of Na+ at the interface of Cu_2O octahedra and the solution made it possible for the deposition of SiO_2 and dehydration of molecules made the formation of Cu–O–Si bonds between core and shell in the composites. This is the reason why the SiO_2 shell is so compact and uniform. As a result of reaction time-dependent and concentration-dependent experiments, it can be said that the thickness of the SiO_2 shell in our strategy is controllable in a determined range by adjusting the reaction time or the concentration of Na2SiO3. Moreover, these Cu_2O/SiO_2 core–shell octahedra were further used as precursors, depending on a simple disproportionation reaction of Cu_2O in acid, to easily achieve Cu/SiO_2 movable multicore–shell octahedral nanocomposites. The reaction was also controlled Kirkendall effect, and the thin SiO_2 octahedral shell was held in the final Cu/SiO_2 core–shell composite, inside of which formed several free Cu nanoparticles 50–80 nm in size.
     As an extension of Cu_2O/SiO_2 core-shell composites system, we also synthesized Cu_2O/TiO_2 octahedral core-shell composites in ethanol phase. In this system, fresh synthesized Cu_2O octahedra were used as precursors and the deposited process composed two hydrolyzing step: the primary hydrolyzing by surface absorbed water on the surface of Cu_2O octahedra and the follow main hydrolyzing by adding water/ethanol solution. This method is favor for formation of uniform integrated TiO_2 shells and their thickness can be controlled by adjusting the ratio of water/ethanol (W/E). According to the surface photovoltage spectroscopy of the Cu_2O/TiO_2 composites, we think the material would have a potential application in photocatalysis and photoelectric transition. Furthermore, Cu/TiO_2 composites have also been obtained by us.
     Last, we studied the system of Cu-Ag metallic nanocomposites. Cubic Cu nanocages were used here as precursor, and we synthesized Cu-Ag nanocomposites with uniform unit structure by simple replacement reaction between metals. We also studied the effect of method used on morphology of products. Inside, we showed a new method of using spontaneous separation process, instead of centrifuge or leaching, which can avoid the congregate of particles and make the resultants more uniform during the further displacement reaction.
     It can be said the 5 systems contracted with each other, which consummated the study of copper and cuprous composites nanomaterials. Beside the products were obtained, our work also showed a theoretical significance on the solution synthesis of nanomaterials. The synthesized methods used here were simple and the obtained copper and cuprous composites nanomaterials can be potential applied in areas as electronic devices, molecular catalysis and energy conversion.
引文
[1] Klabunde K J. Nanoscale Materials in Chemistry [M]. New York: John Wiley & Sons Inc. 2001.
    [2] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev., 1989, 89: 1861-1873.
    [3] Masuda H, Fukuda K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina [J]. Science, 1995, 268: 1466-1468.
    [4] Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire [J]. Nature, 1998, 391: 775-778.
    [5]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [6]陈晓亮,易学华,邓春花.纳米金属材料的研究进展及战略地位[J].现代物理知识, 2005, 6: 24-29.
    [7] Xia Y, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures [J]. MRS Bull., 2005, 30: 338-348.
    [8] Murphy C J, Gole A M, Hunyadi S E, et al. Orendorff One-Dimensional Colloidal Gold and Silver Nanostructures [J]. Inorg. Chem., 2006, 45: 7544-7554.
    [9] Wiley B, Sun Y, Mayers B, et al. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver [J]. Chem. Eur. J., 2005, 11: 454-463.
    [10] Zong R L, Zhou J, Li Q, et al. Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane [J]. J. Phys. Chem. B, 2004, 108: 16713-16716.
    [11] Sanders P G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Mater., 1997, 45: 4019-4025.
    [12] Cai W P, Zhang L D. Characterization and the optical switching phenomenon of porous silica dispersed with silver nano-particles within its pores [J]. J. Phys.: Condens. Matter., 1996, 8: L591-L596.
    [13] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen Storage in MicroporousMetal-Organic Frameworks [J]. Science, 2003, 300: 1127-1129.
    [14] Kimoto K, Kamiya Y, Nonoyama M, et al. An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure [J]. Jpn. J. Appl. Phys., 1963, 2: 702-713.
    [15] Epifani M, Giannini C, Tapfer L, et al. Sol–Gel Synthesis and Characterization of Ag and Au Nanoparticles in SiO2, TiO2, and ZrO2 Thin Films [J]. J. Am. Ceram. Soc., 2000, 83: 2385-2393.
    [16] Boutonnet M, Kizling J, Stenius P. The preparation of monodisperse colloidal metal particles from micro-emulsions [J]. Colloids Surf., 1982, 5: 209-225.
    [17] Zhou Y, Yu S H, Wang C Y, et al. A novel ultraviolet irradiation photo-reduction technique for preparation of single crystal Ag nanorods and Ag dendrites [J]. Adv. Mater., 1999, 11: 850-852.
    [18] Chen H, Gao Y, Zhang H, et al. Transmission-Electron-Microscopy Study on Fivefold Twinned Silver Nanorods [J]. J. Phys. Chem. B, 2004, 108: 12038-12043.
    [19] Jiang L P, Shu X, Zhu J M, et al. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings [J]. Inorg. Chem., 2004, 43: 5877-5883.
    [20] Mu C, Yu Y X, Wang R M, et al. Uniform metal nanotube arrays by multi-step template replication and electrodeposition [J]. Adv. Mater., 2004, 16: 1550-1553.
    [21]尾屿文治等.纳米材料导论[M].湖北:武汉工业大学出版社, 1991.
    [22]王世敏等.纳米材料制备技术[M].北京:化学工业出版社, 2002.
    [23] Zein El Abedin S, Saad A Y, Farag H K, et al. Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures [J]. Electrochim. Acta, 2007, 52: 2746-2754.
    [24] Yi Q, Huang W, Yu W, et al. Hydrothermal Synthesis of Titanium-Supported Nickel Nanoflakes for Electrochemical Oxidation of Glucose [J]. Electroanalysis, 2008, 20: 2016-2022.
    [25] Liz-Marzn L M, Mulvaney P. The Assembly of Coated Nanocrystals [J]. J.Phys. Chem. B, 2003, 107: 7312-7326.
    [26] Piao Y, Jang Y, Shokouhimehr M, et al. Facile Aqueous-Phase Synthesis of Uniform Palladium Nanoparticles of Various Shapes and Sizes [J]. Small, 2007, 3: 255-260.
    [27] Wiley B J, Xiong Y, Li Z Y, et al. Right Bipyramids of Silver: A New Shape Derived from Single Twinned Seeds [J]. Nano Lett., 2006, 6: 765-768.
    [28] Siekkinen A R, McLellan J M, Chen J, et al. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide [J]. Chem. Phys. Lett., 2006, 432: 491-496.
    [29] Sun Y, Mayers B, Xia Y. Metal nanostructures with hollow interiors [J]. Adv. Mater., 2003, 15: 641-646.
    [30] Huang X, Zheng N. One-Pot, High-Yield Synthesis of 5-Fold Twinned Pd Nanowires and Nanorods [J]. J. Am. Chem. Soc., ASAP DOI: 10.1021/ja9009343.
    [31] Wu Y, Livneh T, Zhang Y X, et al. Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays [J]. Nano Lett., 2004, 4: 2337-2342.
    [32] Yan Y, Liu P, Wen J G, et al. In-Situ Formation of ZnO Nanobelts and Metallic Zn Nanobelts and Nanodisks [J]. J. Phys. Chem. B, 2003, 107: 9701-9704.
    [33] Ah C S, Yun Y J, Park H J, et al. Size-Controlled Synthesis of Machinable Single Crystalline Gold Nanoplates [J]. Chem. Mater., 2005, 17: 5558-5561.
    [34] Yang J H, Qi L M, Lu C H, et al. Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating [J]. Angew. Chem., Int. Ed., 2005, 44: 598-603.
    [35] Kim S, Fisher B, Eisler H J, et al. Type-II quantum dots: type-II quantum dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe (Core/Shell) heterostructures [J]. J. Am. Chem. Soc., 2003, 125(38): 11466-11467.
    [36] Kamata K, Lu Y, Xia Y N. Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores [J]. J. Am. Chem. Soc., 2003, 125: 2384-2385.
    [37]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002.
    [38] Xu L, Huang X F, Zhu J M, et al. Reduced photo-instability of luminescence spectrum of core-shell CdSe/CdS nanocrystals [J]. J. Mater. Sci., 2000, 35: 1375-1378.
    [39] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev., 2005, 104: 293-346.
    [40] Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration [J]. J J. Am. Chem. Soc., 2004, 126: 4943-4950.
    [41] Chen Z M, Chen X, Zheng L L, et al. The mechanism study of the preparation of Ag nanoparticles on Tollens-soaked silica microspheres [J]. J. Colloid Interf. Sci. 2005, 285: 146-151.
    [42] Stoeva S I, Huo F, Lee J S. Three-Layer Composite Magnetic Nanoparticle Probes for DNA [J]. J. Am. Chem. Soc., 2005, 127: 15362-15363.
    [43] Fleming M S, Mandal T K, Walt D R. Nanosphere-micro- sphere assembly: methods for core-shell materials preparation [J]. Chem. Mater., 2001, 13: 2210-2246.
    [44] Niu Z, Yang Z, Hu Z, et al. Polyaniline/silica composite capsules and hollow spheres [J]. Adv. Funct. Mater., 2003, 13: 949-954.
    [45] Park M K, Xia C, Advincula R C. Cross-linked, luminescent spherical colloidal and hollow-shell particles [J]. Langmuir, 2001, 17: 7670-7674.
    [46] Monteiro O C, Esteves A C C, Trindade T. The synthesis of SiO2/CdS nanocomposites using single-molecule precursors [J]. Chem. Mater., 2002, 14: 2900-2904.
    [47] Micic O I, Smith B B, Nozik A J, Core-Shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: experiment and theory [J]. J. Phys. Chem. B, 2000, 104: 12149-12156.
    [48] Ohmori M, Matijevic E. Preparation and Properties of Uniform Coated Inorganic Colloidal Particles: 8. Silica on Iron [J]. J. Colloid Interf. Sci., 1993, 160: 288-292.
    [49] Radtchenko I L, Sukhorukov G B, Gaponik N, et al. Core-shell structuresformed by the solvent-controlled precipitation of luminescent CdTe nanocrystals on latex sphere[J]. Adv. Mater., 2001, 13: 1684-1687.
    [50] Kim H W, Shim S H. Study of ZnO-coated SnO2 nanostructures synthesized by a two-step process [J]. Appl. Sur. Sci., 2006, 253: 510-514.
    [51] Nikolic L, Radonjic L. Alumina strengthening by silica sol-gel coating [J]. Thin Solid Films, 1997, 295: 101-103.
    [52] Liu G X, Hong G Y. Synthesis of SiO2/Y2O3: Eu core-shell materials and hollow spheres [J]. J. Solid State Chem., 2005, 178: 1647-1651.
    [53] Martin S T, Herrmann H, Choi W, et al. Time-resolved microwave conductivity. Part 1.—TiO2 photoreactivity and size quantization [J]. J. Chem. Soc. Faraday Trans., 1994, 90: 3315-3322.
    [54] Yang Y, Kim D S, Knez M, et al. Influence of Temperature on Evolution of Coaxial ZnO/Al2O3 One-Dimensional Heterostructures: From Core?Shell Nanowires to Spinel Nanotubes and Porous Nanowires [J]. J. Phys. Chem. C, 2008, 112: 4068-4074.
    [55] Li Y, Xu X, Qi D, et al. Novel Fe3O4/TiO2 Core/Shell Microspheres for Selective Enrichment of Phosphopeptides in Phosphoproteome Analysis [J]. J. Proteome Res., 2008, 7: 2526-2538.
    [56] Chen W J, Tsai P J, Chen Y C. Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria [J]. Small, 2008, 4: 485-491.
    [57] Shanmugam S, Gedanken A. MnO Octahedral Nanocrystals and MnO/C Core?Shell Composites: Synthesis, Characterization, and Electrocatalytic Properties [J]. J. Phys. Chem. B, 2006, 110: 24486-24491.
    [58] Demirors A F, Blaaderen A V, Imhof A. Synthesis of Eccentric Titania/Silica Core/Shell and Composite Particles [J]. Chem. Mater., 2009, 21: 979-984.
    [59] Tachikawa T, Fujitsuka M, Majima T. Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts [J]. J. Phys. Chem. C, 2007, 111: 5259-5275.
    [60] Liz-Marzn L M, Giersig M, Mulvaney P. Synthesis of Nanosized Gold?Silica Core?Shell Particles [J]. Langmuir, 1996, 12: 4329-4335.
    [61] Moreau F, Bond G C. Preparation and reactivation of Au/TiO2 catalysts [J]. Catal. Today, 2007, 122: 260-265.
    [62] Yang Y, Hori M, Hayakawa T, et al. Self-assembled 3-dimensional arrays of Au/SiO2 core-shell nanoparticles for enhanced optical nonlinearities [J]. Surface Science, 2005, 579: 215-224.
    [63] Du J, Zhang J, Liu Z, et al. Controlled Synthesis of Ag/TiO2 Core-Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route [J]. Langmuir, 2006, 22: 1307-1312.
    [64] Li J, Zeng H C. Size Tuning, Functionalization, and Reactivation of Au in TiO2 Nanoreactors [J]. Angew. Chem. Int. Ed., 2005, 44: 4342-4345.
    [65] Lou X W, Yuan C, Rhoades E, et al. Encapsulation and Ostwald Ripening of Au and Au–Cl Complex Nanostructures in Silica Shells [J]. Adv. Funct. Mater., 2006, 16: 1679-1684.
    [66] Pastoriza-Santos I, Perez-Juste J, Carregal-Romero S, et al. Metallodielectric Hollow Shells: Optical and Catalytic Properties [J]. Chem. Asian J., 2006, 1: 730-736.
    [67] Lou X W, Yuan C, Zhang Q, et al. Platinum-Functionalized Octahedral Silica Nanocages: Synthesis and Characterization [J]. Angew. Chem. Int. Ed., 2006, 45: 3825-3829.
    [68] Ghosh S K, Mandal M, Kundu S, et al. Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution [J]. Appl. Catal.A, 2004, 268: 61-66.
    [69] Caruso F. Nano-engineering of Particle Surfaces [J]. Adv. Mater., 2001, 13: 11-22.
    [70] Regan M R, Banerjee I A. Preparation of Au–Pd bimetallic nanoparticles in porous germania nanospheres: A study of their morphology and catalytic activity [J]. Scr. Mater., 2006, 54: 909-914.
    [71] Son S U, Jang Y, Park J, et al. Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions [J]. J. Am. Chem. Soc., 2004, 126: 5026-5027.
    [72] Harpeness R, Gedanken A. Microwave Synthesis of Core?Shell Gold/Palladium Bimetallic Nanoparticles [J]. Langmuir, 2004, 20: 3431-3434.
    [73] Mallik K, Mandal M, Pradhan N, et al. Seed Mediated Formation of Bimetallic Nanoparticles by UV Irradiation: A Photochemical Approach for the Preparation of“Core?Shell”Type Structures [J]. Nano Lett., 2001, 1: 319-322.
    [74] Sobal N S, Hilgendorff M, Mhwald H, et al. Synthesis and Structure of Colloidal Bimetallic Nanocrystals: The Non-Alloying System Ag/Co [J]. Nano Lett., 2002, 2: 621-624.
    [75] Camargo P H C, Xiong Y, Ji L, et al. Facile Synthesis of Tadpole-like Nanostructures Consisting of Au Heads and Pd Tails [J]. J. Am. Chem. Soc., 2007, 129: 15452-15453.
    [76] Ferrer D, Torres-Castro A, Gao X, et al. Three-Layer Core/Shell Structure in Au?Pd Bimetallic Nanoparticles [J]. Nano Lett., 2007, 7: 1701-1705.
    [77] Alayoglu S, Eichhorn B. Rh/Pt Bimetallic Catalysts: Synthesis, Characterization, and Catalysis of Core/Shell, Alloy, and Monometallic Nanoparticles [J]. J. Am. Chem. Soc., 2008, 130: 17479-17486.
    [78]田荣璋等.金属材料知识手册[M].湖南:湖南科学技术出版社, 1993.
    [79]谭树松.有色金属材料学[M].北京:冶金工业出版社, 1993.
    [80] Liu Z P, Yang Y, Liang J B, et al. Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process [J]. J. Phys. Chem. B, 2003, 107: 12658-12661.
    [81] Cong H L, Zhang M F, Cao W X. Hollow Cu-NP Spheres Made from Electroless Cu Deposition with Colloidal Particles as Templates [J]. Macromol. Rapid. Commun., 2005, 26: 734-737.
    [82] Huang H H, Yan F Q, Kek Y M, et al. Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles [J]. Langmuir, 1997, 13: 172-175.
    [83] Lisiecki I, Filankembo A, Sack-Kongehl H, et al. Structural investigations of copper nanorods by high-resolution TEM [J]. Phys. Rev. B, 1999, 61: 4968-4974.
    [84] Stem E A, Siegel R W, Newville M, et al. Are Nanophase Grain Boundaries Anomalous? [J]. Phys. Rev. Lett., 1995, 75: 3874-3877.
    [85] Thein M A, Gupta M. Microstructural, physical, and mechanical characteristics of bulk nanocrystalline copper synthesised using powder metallurgy [J]. Materials Science and Technology, 2003, 19: 1473-1477.
    [86]林鸿溢.纳米材料与纳米技术[J].材料导报, 1993, 6: 42-45.
    [87]马丽果,杨秀华,谢继丹等.微乳液法制备纳米铜粉及其在润滑油中的应用研究[J].润滑与密封, 2004, 4: 87- 88.
    [88] Heino P, Ristolainen E. Dislocation initiation in copper-Amoleculer dynamics study [J]. Nanostruct. Mater., 1999, 11: 587-592.
    [89] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature [J]. Science, 2000, 2: 1463-1466.
    [90] Sanders P G. Elastic and tensile behavior of nanocrysta coper and palladium [J]. Acta Mater., 1997, 45: 4019-4023.
    [91]朱屯等.国外纳米材料技术进展与应用[M].北京:化学工业出版社, 2002.
    [92] Ding J, Tsuzuki T, McCormick P G, et al. Ultrafine Cu particles prepared by mechanochemical process [J]. J. Alloys Compd., 1996, 234: L1-L3.
    [93] Raveendra P, Fu J, Wallen S L. Completely "Green" Synthesis and Stabilization of Metal Nanoparticles [J]. J. Am. Chem. Soc., 2003, 125:13940-13941.
    [94] Liaffa D, Dragos T. Electrochemical preparation of standard-quality copper powders [J]. Rev. Chim., 2000, 518: 600-606.
    [95] Chen Z, Chen B, Qian Y. Preparation of ulltrafine metal partectes by combined methodγ-ray radoation by drothermal crystallization [J]. Acta Metallargica Sinica, 1992, 5: 407-410.
    [96] Wu C, Mosher B P, Zeng T. One-step green route to narrowly dispersed copper nanocrystals [J]. J. Nanopart. Res., 2006, 8: 965-969.
    [97] Bi Y, Lu G. Nano-Cu catalyze hydrogen production from formaldehydesolution at room temperature [J]. Int. J. Hydrogen Energy, 2008, 33: 2225-2232.
    [98] Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors [J]. J. Am. Chem. Soc., 1993, 115: 3887-3896.
    [99] Zhu H T, Zhang CY, Yin Y S. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation [J]. J. Cryst. Growth, 2004, 270: 722-728.
    [100] Suryanarayanan R, Frey C A, Sastry S M L, et al. Mechanical poperties of nanocraystalline copper produced by solution phase synthesis [J]. J. Mater. Res., 1996, 11: 439-448.
    [101]张志琨等.纳米技术与纳米材料[M].北京:国防工业出版社, 2000
    [102] Xu R, Xie T, Zhao Y, et al. Single-Crystal Metal Nanoplatelets: Cobalt, Nickel, Copper, and Silver [J]. Cryst. Growth Des., 2007, 7: 1904-1911.
    [103] Jiang C, Zhang W, Liu Y, et al. Self-Assembled Copper Nanowalls into Microstructures with Different Shapes: A Facile Aqueous Approach [J]. Cryst. Growth Des., 2006, 6: 2603-2606.
    [104] Ren X, Chen D, Tang F. Shape-Controlled Synthesis of Copper Colloids with a Simple Chemical Route [J]. J. Phys. Chem. B, 2005, 109: 15803-15807.
    [105] Chang Y, Lye M L, Zeng H C. Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires [J]. Langmuir, 2005, 21: 3746-3748.
    [106] Ko W Y, Chen W H, Tzeng S D, et al. Synthesis of Pyramidal Copper Nanoparticles on Gold Substrate [J]. Chem. Mater., 2006, 18: 6097-6099.
    [107] Chang Y, Teo J J, Zeng H C. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres [J]. Langmuir, 2005, 21: 1074-1079.
    [108] Lu C H, Qi L M, Yang J H, et al. One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route [J]. Adv. Mater., 2005, 17: 2562-2567.
    [109] Chang Y, Zeng H C. Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals [J]. Cryst. Growth Des., 2004, 4: 273-278.
    [110] Patil A N, Andres R P, Otsuka N. Synthesis and minimum energy structureof novel metal/silica clusters [J]. J. Phys. Chem., 1994, 98: 9247-9251.
    [111] Tan Y, Xue X, Peng Q, et al. Controllable Fabrication and Electrical Performance of Single Crystalline Cu2O Nanowires with High Aspect Ratios [J]. Nano Lett., 2007, 7: 3723-3728.
    [112] Liu D, Yang S, Lee S T. Preparation of Novel Cuprous Oxide/Fullerene[60] Core/Shell Nanowires and Nanoparticles via a Copper(I)-Assisted Fullerene-Polymerization Reaction [J]. J. Phys. Chem. C, 2008, 112: 7110-7118.
    [113] Yang X, Yuan R, Chai Y, et al. Porous redox-active Cu2O–SiO2 nanostructured film: Preparation, characterization and application for a label-free amperometric ferritin immunosensor [J]. Talanta, 2009, 78: 596-601.
    [114] Maye M M, Zhong C J. Manipulating core–shell reactivities for processing nanoparticle sizes and shapes [J]. J. Mater. Chem., 2000, 10: 1895-1901.
    [115] Chen C S, Linb J H, Laia T W. Low-temperature water gas shift reaction on Cu/SiO2 prepared by an atomic layer epitaxy technique [J]. Chem. Commun., 2008, 8: 4983-4985.
    [116] Hah H J, Um J I, Han S H, et al. New synthetic route for preparing rattle-type silica particles with metal cores [J]. Chem. Commun., 2004, 8: 1012-1013.
    [117] Jacob D S, Genish I, Klein L, et al. Carbon-Coated Core Shell Structured Copper and Nickel Nanoparticles Synthesized in an Ionic Liquid [J]. J. Phys. Chem. B, 2006, 110: 17711-17714.
    [118] Kalidindi S B, Jagirdar B R. Synthesis of Cu/ZnO Core?Shell Nanocomposite through Digestive Ripening of Cu and Zn Nanoparticles [J]. J. Phys. Chem. C, 2008, 112: 4042-4048.
    [119] Hikov T, Schroeter M K, Khodeir L, et al. Selective photo-deposition of Cu onto the surface of monodisperse oleic acid capped TiO2 nanorods probed by FT-IR CO-adsorption studies [J]. Phys. Chem. Chem. Phys., 2006, 8: 1550-1555.
    [120] Hambrock J, Schrter M K, Birkner A, et al. Nano-Brass: Bimetallic Copper/Zinc Colloids by a Nonaqueous Organometallic Route Using [Cu(OCH(Me)CH2NMe2)2] and Et2Zn as Precursors [J]. Chem. Mater., 2003, 15: 4217-4222.
    [121] Wang Q, Wang G, Han X, et al. Controllable Template Synthesis of Ni/Cu Nanocable and Ni Nanotube Arrays: A One-Step Coelectrodeposition and Electrochemical Etching Method [J]. J. Phys. Chem. B, 2005, 109: 23326-23329.
    [122] Molera P, Sanz-Soro F, Sunol J J. The corrosion resistance of a Fe/Cu composite [J]. Mater. Corros., 2006, 57: 568-572.
    [123] Zhou S, Varughese B, Eichhorn B, Pt–Cu Core–Shell and Alloy Nanoparticles for Heterogeneous NOx Reduction: Anomalous Stability and Reactivity of a Core–Shell Nanostructure [J]. Angew. Chem. Int. Ed., 2005, 44: 4539-4543.
    [124] Agrawal V V, Mahalakshmi P, Kulkarni G U, et al. Nanocrystalline Films of Au?Ag, Au?Cu, and Au?Ag?Cu Alloys Formed at the Organic?Aqueous Interface [J]. Langmuir, 2006, 22: 1846-1851.
    [125] Hu X, Wang Z, Zhang T, et al. Manipulation of optical properties of Ag/Cu alloy nanowire arrays embedded in anodic alumina membranes [J]. Appl. Surf. Sci., 2008, 254: 3845-3848.
    [1]谭树松.有色金属材料学[M].北京:冶金工业出版社,1993.
    [2]张志琨等.纳米技术与纳米材料[M].北京:国防工业出版社, 2000.
    [3] Liu Z P, Yang Y, Liang J B, et al. Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process [J]. J. Phys. Chem. B., 2003, 107: 12658-12661.
    [4] Ding J, Tsuzuki T, McCormick P G, et al. Ultrafine Cu particles prepared by mechanochemical process [J]. J. Alloys Compd., 1996, 234: L1-L3.
    [5] Raveendra P, Fu J, Wallen S L. Completely "Green" Synthesis and Stabilization of Metal Nanoparticles [J]. J. Am. Chem. Soc., 2003, 125:13940-13941.
    [6] Liaffa D, Dragos T. Electrochemical preparation of standard-quality copper powders [J]. Rev Chim, 2000, 518: 600-606.
    [7] Chen Z, Chen B, Qian Y. Preparation of ulltrafine metal partectes by combined methodγ-ray radoation by drothermal crystallization [J]. Aeta Metallargica Sinica, 1992, 5: 407-410.
    [8] Suryanarayanan R, Frey C A, Sastry S M L, et al. Mechanical poperties of nanocraystalline copper produced by solution phase synthesis [J]. J. Mater. Res., 1996, 11: 439-448.
    [9] Suryanara R, Frey C A. Mechanical poperties of nanocraystalline copper produced by solution phase synthesis [J]. J. Mater. Res., 1996, 11: 439-448.
    [10] Zhao B, Liu Z, Zhang Z. Improvement of oxidation resistance of ultrfine copper powders by phosphating treatment [J]. J. Solid Chem., 1997, 30: 157-160.
    [11] Guo L, Huang Q J, Li X Y, et al. PVP-Coated Iron Nanocrystals: Anhydrous Synthesis, Characterization, and Electrocatalysis for Two Species [J]. Langmuir, 2006, 22: 7867-7872.
    [12] Liu Q, Liu H J, Han M, et al. Nanometer-Sized Nickel Hollow Spheres [J]. Adv. Mater., 2005, 17: 1995-1999.
    [13] Lisicecki I, Billoudet F, Pilemi M P. Synthesis of copper nanoparticles in gelified micromulsion and in reverse micelles [J]. J. Mol. Liq., 1997, 72: 251-261.
    [14] Huber D L, Venturini E L, Martin J E, et al. Synthesis of highly magnetic iron nanoparticles suitable for field structuring using aβ-diketone surfactant [J]. J. Magn. Magn. Mater., 2004, 278: 311-316.
    [15] Wu S H, Chen D H. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions [J]. J. Colloid. Interf. Sci., 2004, 273: 165-169.
    [16] Lisiecki I, Billoudet F, Pileni M P. Control of the Shape and the Size of Copper Metallic Particles [J]. J. Phys. Chem. B, 1996, 100: 4160-4166.
    [17] Zhou G J, Lu M K, Yang Z S. Aqueous Synthesis of Copper Nanocubes and Bimetallic Copper/Palladium Core-Shell Nanostructures [J]. Langmuir, 2006, 22: 5900-5903.
    [18] Sun J, Jing Y, Jia Y, et al. Mechanism of preparing ultrafine copper powder by polyol process [J]. Mater. Lett., 2005, 59: 3933-3936.
    [19] He J, Ichinose I, Kunikate T, et al. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-Gel films: Nanoparticle morphology and catalytic activity [J]. J. Am. Chem. Soc., 2003, 125: 11034-11040.
    [20] Lu D, Domen K, Tanaka K. Electrodeposited Au? Fe, Au? Ni, and Au? Co Alloy Nanoparticles from Aqueous Electrolytes [J]. Langmuir, 2002, 18: 3226-3232.
    [21] Sano M, Adaniya T, Fujitani T, et al. Formation Process of a Cu?Zn Surface Alloy on Cu(111) Investigated by Scanning Tunneling Microscopy [J]. J. Phys. Chem. B, 2002, 106: 7627-7633.
    [22] Liu L, Zhou W, Xie S, et al. Highly Efficient Direct Electrodeposition of Co?Cu Alloy Nanotubes in an Anodic Alumina Template [J]. J. Phys. Chem. C, 2008, 112: 2256-2261.
    [23] De G, Rao C N R. Two-Dimensional Au and Au?Cu Alloy Nanocrystals with Orientation in (111) Plane Embedded in Glassy Silica Films [J]. J. Phys. Chem. B, 2003, 107: 13597-13600.
    [24] Fernndez-Garca M, Anderson J A, Haller G L. Alloy Formation and Stability in Pd?Cu Bimetallic Catalysts [J]. J. Phys. Chem., 1996, 100: 16247-16254.
    [25] Zhou M, Myung N, Chen X, et al. Electrochemical deposition and stripping of copper, nickel and copper nickel alloy thin films at a polycrystalline gold surface: acombined voltammetry-coulometry-electrochemical quartz crystal microgravimetry study [J]. J. Electroanal.Chem., 1995, 398: 5-12.
    [26] Toth-Kadar E, Peter L, Becsei T, et al. Preparation and magnetoresistance characteristics of electrodeposited Ni-Cu alloys and multilayers [J]. J. Electrochem. Soc., 2000, 147: 3311-3318.
    [27] Li Y, Li L, Liao H, et al. Preparation of pure nickel, cobalt, nickel–cobalt and nickel–copper alloys by hydrothermal reduction [J]. J. Mater. Chem., 1999, 9: 2675-2677.
    [1] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes [J]. Acc. Chem. Res., 2001, 34: 257-264.
    [2] Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe nanocrystallitesinto three-dimensional quantum dot superlattice [J]. Science, 1995, 270: 1335-1338.
    [3] Shenton W S, Pum D, Sleytr U B, et al. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers [J]. Nature, 1997, 389: 585-587.
    [4] Firestone M A, Williams D E, Seifert S, et al. Nanoparticle Arrays Formed by Spatial Compartmentalization in a Complex Fluid [J]. Nano Lett., 2001, 1: 129-135.
    [5] Jin R, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science, 2001, 294: 1901-1903.
    [6] Jana N R, Gearheart L A, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem. B, 2001, 105: 4065-4067.
    [7] Lu Q L, Gao F, Zhao D Y. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process [J]. Nano Lett., 2002, 2: 725-728.
    [8] Yin M, Wu C K, Lou Y B, et al. Copper Oxide Nanocrystals [J]. J. Am. Chem. Soc., 2005, 127: 9506-9511.
    [9] Guo L F, Murphy C J. Solution-phase synthesis of Cu2O nanocubes [J]. Nano Lett., 2003, 3: 231-234.
    [10] Chang Y, Teo J J, Zeng H C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu O nanospheres [J]. 2Langmuir, 2005, 21: 1074-1079.
    [11] Park S, Lim J H, Chung S W, et al. Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles [J]. Science, 2004, 303: 348-351.
    [12] Kim S W, Kim M, Lee W Y, et al. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J]. J. Am. Chem. Soc., 2002, 124: 7642-7643.
    [13] Liang Z, Susha A, Caruso F. Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof [J]. Chem. Mater., 2003, 15: 3176-3183.
    [14] Liang H P, Wan L J, Bai C L, et al. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior cavity sizes [J]. J. Phys. Chem. B, 2005, 109: 7795-7800.
    [15] Liu J B, Dong W, Zhan P, et al. Synthesis of bimetallic nanoshells by an improved electroless plating method [J]. Langmuir, 2005, 21: 1683-1686.
    [16] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science, 1998, 282: 1111-1114.
    [17] Filankembo A, Pileni M P. Is the template of self-colloidal assembhes the only factor that controls nanocrystal shapes? [J]. J. Phys. Chem. B, 2000, 104: 5865-5868.
    [18] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: Formation of "dandelions" [J]. J. Am. Chem. Soc., 2004, 126: 8124-8125.
    [19] Sun Y G, Xia Y N. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction [J]. Nano Lett., 2003, 3: 1569-1572.
    [20] Yang Z, Niu Z, Lu Y, et al. Templated synthesis of inorganic hollow spheres with tunable cavity size onto core/shell gel particles [J]. Angew. Chem., Int. Ed., 2003, 42: 1943-1945.
    [21] Choi W S, Park J H, Koo H Y, et al. Grafting-from”polymerization inside a polyelectrolyte hollow-capsule microreactor [J]. Angew. Chem., Int. Ed., 2005, 44: 1096-1101.
    [22] Yang H G, Zeng H C. Self-Construction of Hollow SnO2 Octahedra Based on Two Dimensional Aggregation of nanocrystallites [J]. Angew. Chem., Int. Ed., 2004, 43: 5930-5933.
    [23] He T, Chen D R, Jiao X L, et al. Co3O4 Nanoboxes: Surfactant-Templated Fabrication and Microstructure Characterization Communication [J]. Adv. Mater., 2006, 18: 1078-1082.
    [24] Lou X W, Yuan C L, Zhang Q, et al. Platinum-functionalized octahedralsilica nanocages: Synthesis and characterization [J]. Angew. Chem., Int. Ed., 2006, 45: 3825-3829.
    [25] Xiong Y J, Wiley B, Chen J Y, et al. Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties [J]. Angew. Chem., Int. Ed., 2005, 44: 7913-7917.
    [26] Yang J H, Qi L M, Lu C H, et al. Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating [J]. Angew. Chem., Int. Ed., 2005, 44: 598-603.
    [27] Chen J, Saeki F, Wiley B J, et al. Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy [J]. Nano Lett., 2005, 5: 473-477.
    [28] Halder A, Ravishankar N. Gold Nanostructures from Cube-Shaped Crystalline Intermediates [J]. J. Phys. Chem. B, 2006, 110: 6595-6600.
    [29] Zhou G, Lu M, Yang Z. Aqueous Synthesis of Copper Nanocubes and Bimetallic Copper/Palladium Core?Shell Nanostructures [J]. Langmuir, 2006, 22 : 5900-5903.
    [30] Cong H L, Zhang M F, Cao W X. Hollow Cu-NP Spheres Made from Electroless Cu Deposition with Colloidal Particles as Templates [J]. Macromol. Rapid. Commun., 2005, 26: 734-737.
    [31] Liu Z P, Yang Y, Liang J B, et al. Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process [J]. J. Phys. Chem. B., 2003, 107: 12658-12661.
    [32] Liu Y, Chu Y, Zhuo Y, et al. Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route [J]. Adv. Funct. Mater., 2007, 17: 933-938.
    [33] Teo J J, Chang Y, Zeng H C. Fabrications of Hollow Nanocubes of Cu2O and Cu via Reductive Self-Assembly of CuO Nanocrystals [J]. Langmuir, 2006, 22: 7369-7377.
    [34] Lu C, Qi L, Yang J, et al. One-pot synthesis of octahedral Cu O nanocages by a catalytic solution route [J]. 2Adv. Mater., 2005, 17: 2562-2567.
    [35] Cao H L, Qian X F, Wang C, et al. High Symmetric 18-Facet Polyhedron Nanocrystals of Cu7S4 with a Hollow nanocage [J]. J. Am. Chem. Soc., 2005, 127: 16024-16025.
    [36] Jiao S H, Xu L F, Jiang K, et al. Well-defined Non-spherical Copper Sulfide Mesocages with Single-crystalline Shells by Shape-controlled Cu2O Crystal Templating [J]. Adv. Mater., 2006, 18: 1174-1177.
    [37] Caruso F, Spasova M, Susha A, et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach [J]. Chem. Mater., 2001, 13: 109-116.
    [38] Kamata K, Lu Y, Xia Y. Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores [J]. J. Am. Chem. Soc., 2003, 125: 2384-2385.
    [39] Yang H G, Zeng H C. Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening [J]. J. Phys. Chem. B, 2004, 108: 3492-3495.
    [40] 2007年全国高分子学术论文报告会论文摘要集[C].成都. 2007.
    [41]陈志刚,陈建清,陈杨等.二氧化铈前驱体煅烧过程中的遗传性研究[J].江苏大学学报(自然科学版), 2004, 25: 536-540.
    [42] Smigelskas A D, Kirkendall E O. Zinc diffusion in alpha brass [J]. Trans.Am. Inst. Min., Metall. Pet. Eng. 1947, 171: 130-134.
    [43] Paul A. The Kirkendall Effect in Solid State Diffusion [D]. Netherlands: Eindhoven University of Technology, 2004.
    [44] Ostwald W. Studies on formation and transformation of solid materials [J]. Z. Phys. Chem., 1897, 22: 289-330.
    [45] Ostwald W. Uber die vermeintliche Isomerie des roten und gelben Quecksilberoxyd und die Oberflachenspannung fester Korper [J]. Z. Phys. Chem., 1900, 34: 495-503.
    [1] Caruso F. Nanoengineering of Particle Surfaces [J]. Adv. Mater., 2001, 13: 11-22.
    [2] Skumryev V, Stoyanov S, Zhang Y, et al. Beating the superparamagnetic limit with exchange bias [J]. Nature, 2003, 423: 850-853.
    [3] Peng X, Schlamp M C, Kadavanich A V, et al. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility [J]. J. Am. Chem. Soc., 1997, 119: 7019-7029.
    [4] Yarin A L, Zussman E, Wendorff J H, et al. Material encapsulation and transport in core–shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels [J]. J. Mater. Chem., 2007, 17: 2585-2599.
    [5] Liu S, Wong Y, Wang Y, et al. Controlled Release and Absorption Resonance of Fluorescent Silica-Coated Platinum Nanoparticles [J]. Adv. Funct. Mater., 2007, 17: 3147-3152.
    [6] Yan Q Y, Purkayastha A, Kim T, et al. Synthesis and Assembly of Monodisperse High-Coercivity Silica-Capped FePt Nanomagnets of Tunable Size, Composition, and Thermal Stability from Microemulsions [J]. Adv. Mater., 2006, 18: 2569-2573.
    [7] Kim H, Achermann M, Balet L P, et al. Synthesis and Characterization of Co/CdSe Core/Shell Nanocomposites: Bifunctional Magnetic-Optical Nanocrystals [J]. J. Am. Chem. Soc., 2005, 127: 544-546.
    [8] Jiang X M, Brinker C J. Aerosol-Assisted Self-Assembly of Single-Crystal Core/Nanoporous Shell Particles as Model Controlled Release Capsules [J]. J. Am. Chem. Soc., 2006, 128: 4512-4513.
    [9] Lu Y, Mclellan J, Xia Y N. Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells [J]. Langmuir, 2004, 20: 3464-3470.
    [10] Sch?rtl W. Crosslinked Spherical Nanoparticles with Core-Shell Topology [J]. Adv. Mater., 2000, 12: 1899-1908.
    [11] Kamata K, Lu Y, Xia Y N. Synthesis and Characterization of Monodispersed Core?Shell Spherical Colloids with Movable Cores [J]. J. Am. Chem. Soc., 2003, 125: 2384-2385.
    [12] Fuertes A B, Sevilla M, Valdes-Solis T, et al. Synthetic Route to Nanocomposites Made Up of Inorganic Nanoparticles Confined within a Hollow Mesoporous Carbon Shell [J]. Chem. Mater., 2007, 19: 5418-5423.
    [13] Choi W S, Koo H Y, Kim D Y. Scalable Synthesis of Chestnut- Bur-like Magnetic Capsules Loaded with Size-Controlled Mono- or Bimetallic Cores [J]. Adv. Mater., 2007, 19: 451-455.
    [14] Lou X W, Yuan C L, Archer L A. Shell-by-Shell Synthesis of Tin Oxide Hollow Colloids with Nanoarchitectured Walls: Cavity Size Tuning and Functionalization [J]. Small, 2007, 3: 261-265.
    [15] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    [16] Bunker B C, Rieke P C, Tarasevich B J, et al. Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing [J]. Science, 1994, 264: 48-55.
    [17] Tsang S C, Yu C H, Gao X, et al. Silica-Encapsulated Nanomagnetic Particle as a New Recoverable Biocatalyst Carrier [J]. J. Phys. Chem. B, 2006, 110: 16914-16922.
    [18] Schierhorn M, Lee S J, Boettcher S W, et al. Metal-Silica Hybrid Nanostructures for Surface-Enhanced Raman Spectroscopy [J]. Adv. Mater., 2006, 18: 2829-2832.
    [19] Kim S W, Kim M, Lee W Y, et al. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J]. J. Am. Chem. Soc., 2002, 124: 7642-7643.
    [20] Cong H L, Zhang M F, Cao W X. Hollow Cu-NP Spheres Made from Electroless Cu Deposition with Colloidal Particles as Templates [J]. Macromol. Rapid Commun., 2005, 26: 734-737.
    [21] Lin K, Chen L, Prasad M R, et al. Core-Shell Synthesis of a Novel, Spherical, Mesoporous Silica/Platinum Nanocomposite: Pt/PVP@MCM-41 [J]. Adv. Mater., 2004, 16: 1845-1849.
    [22] Tovmachenko O G, Graf C, van den Heuvel D J, et al. Fluorescence Enhancement by Metal-Core/Silica-Shell Nanoparticles [J]. Adv. Mater., 2006, 18: 91-95.
    [23] Kim K, Kim H S, Park H K. Facile Method To Prepare Surface-Enhanced-Raman-Scattering-Active Ag Nanostructures on Silica Spheres [J]. Langmuir, 2006, 22: 8083-8088.
    [24] Salgueirino-Maceira V, Spasova M, Farle M. Water-Stable, Magnetic Silica-Cobalt/Cobalt Oxide-Silica Multishell Submicrometer Spheres [J]. Adv. Funct. Mater., 2005, 15: 1036-1040.
    [25] Wang Z Y, Lu Q F, Kong M G, et al. Manipulation of the Morphology of Semiconductor-Based Nanostructures from Core-Shell Nanoparticles to Nanocables: The Case of CdSe/SiO2 [J]. Chem. Eur. J., 2007, 13: 1463-1470.
    [26] Li Y, Zhang X L, Qiu R, et al. Chemical Synthesis and Silica Encapsulation of NiPt Nanoparticles [J]. J. Phys. Chem. C, 2007, 111: 10747-10750.
    [27] Meng Y D, Chen D R, Jiao X L. Fabrication and Characterization of Mesoporous Co3O4 Core/Mesoporous Silica Shell Nanocomposites [J]. J. Phys. Chem. B, 2006, 110: 15212-15217.
    [28] Jiao S, Xu L, Jiang K, et al. Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating [J]. Adv. Mater., 2006, 18: 1174-1177.
    [29] Cao H L, Qian X F, Wang C, et al. High Symmetric 18-Facet Polyhedron Nanocrystals of Cu7S4 with a Hollow Nanocage [J]. J. Am. Chem. Soc., 2005, 127: 16024-16025.
    [30] Gou L F, Murphy C J. Solution-Phase Synthesis of Cu2O Nanocubes [J]. Nano Lett., 2003, 3: 231-234.
    [31] Lu C H, Qi L M, Yang J H, et al. One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route [J]. Adv. Mater., 2005, 17: 2562-2567.
    [32] Chang Y, Teo J J, Zeng H C. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres [J]. Langmuir, 2005, 21: 1074-1079.
    [33] Hah H J, Um J I, Han S H, et al. New synthetic route for preparing rattle-type silica particles with metal cores [J]. Chem. Commun., 2004, 8: 1012-1013.
    [34] Lou X W, Yuan C L, Zhang Q, et al. Platinum-Functionalized Octahedral Silica Nanocages: Synthesis and Characterization [J]. Angew. Chem. Int. Edn, 2006, 45: 3825-3829.
    [35] Lou X W, Yuan C L, Rhoades E, et al. Encapsulation and Ostwald Ripening of Au and Au-Cl Complex Nanostructures in Silica Shells [J]. Adv. Funct. Mater., 2006, 16: 1679-1684.
    [36] Innocenzi P. Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview [J]. J. Non-Cryst. Solids, 2003, 316: 309-319.
    [37] Kirk C T. Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica [J]. Phys. Rev. B, 1988, 38: 1255-1273.
    [38] Hiemenz PC (周祖康,马季铭译).胶体与表面化学原理[M].北京:北京大学出版社, 1986.
    [39] Peula J M, Santos R, Forcada J, et al. Study on the Colloidal Stability Mechanisms of Acetal-Functionalized Latexes [J]. Langmuir, 1998, 14: 6377-6384.
    [40] Abgrall P. Nguyen N T. Nanofluidic Devices and Their Applications [J]. Anal. Chem., 2008, 80: 2326-2341.
    [41] Duval J F L. Metal Speciation Dynamics in Soft Colloidal Ligand Suspensions. Electrostatic and Site Distribution Aspects [J]. J. Phys. Chem. A, 2009, 113: 2275-2293.
    [42] Yang J H, Qi L M, Lu C H, et al. Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating [J]. Angew. Chem. Int. Edn, 2005, 44: 598-603.
    [1] Lei Y, Chim W K. Highly Ordered Arrays of Metal/Semiconductor Core?Shell Nanoparticles with Tunable Nanostructures and Photoluminescence [J]. J. Am. Chem. Soc., 2005, 127: 1487-1492.
    [2] Wang Z Y, Lu Q F, Kong M G, et al. Manipulation of the morphology of semiconductor-based nanostructures from core-shell nanoparticles to nanocables: The case of CdSe/SiO2 [J]. Chem. Eur. J., 2007, 13: 1463-1470.
    [3] Kobayashi Y, Horie M, Konno M, et al. Preparation and Properties of Silica-Coated Cobalt Nanoparticles [J]. J. Phys. Chem. B, 2003, 107: 7420-7425.
    [4] Liao M H, Hsu C H, Chen D H. Preparation and properties of amorphous titania-coated zinc oxide nanoparticles [J]. J. Solid State Chem., 2006, 179: 2020-2026.
    [5] Peng X G, Schlamp M C, Kadavanich A V, et al. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility [J]. J. Am. Chem. Soc., 1997, 119: 7019-7029.
    [6] Bruchez J M, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels [J]. Science, 1998, 281: 2013-2015.
    [7] Liu R, Kulp E A, Oba F E, et al. Epitaxial Electrodeposition of High-Aspect-Ratio Cu2O (110) Nanostructures on InP (111) [J]. Chem. Mater., 2005, 17: 725-729.
    [8] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407: 496-499.
    [9] Li J, Shi Y, Cai Q, et al. Patterning of nanostructured cuprous oxide by surfactant-assisted electrochemical deposition [J]. Cryst. Growth Des., 2008, 8: 2652-2659.
    [10] Kuo C H, Huang M H. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching [J]. J. Am. Chem. Soc., 2008, 130: 12815-12820.
    [11] Guo S, Fang Y, Dong S, et al. Templateless, surfactantless, electrochemicalroute to a cuprous oxide microcrystal: From octahedra to monodisperse colloid spheres [J]. Inorg. Chem., 2007, 46: 9537-9539.
    [12] Liu D, Yang S, Lee S T. Preparation of novel cuprous oxide-fullerene[60] core-shell nanowires and nanoparticles via a copper(I)-assisted fullerene -polymerization reaction [J]. J. Phys. Chem. C, 2008, 112: 7110-7118.
    [13] Lin Y, Wang D, Zhao Q, et al. A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy [J]. J. Phys. Chem. B, 2004, 108: 3202-3206.
    [14] Durand S P, Rouviere J, Guizard C. Sol-gel processing of titania using reverse micellar systems as reaction media [J]. Colloids Surf. A: Physicochem. Eng. Aspects, 1995, 98: 251-270.
    [15] Samuneva B, Kozhukharqv V, Trapalis C, et al. Sol-gel processing of titanium-containing thin coatings [J]. J. Mater. Sci., 1993, 28: 2353-2360.
    [16] Qian Y, Chen Q, Chen Z, et al. Preparation of ultrafine powders of TiO by hydrothermal H O oxidation starting from metallic Ti [J]. 22 2 J. Mater. Chem., 1993, 3: 203-205.
    [17] Cheng H, Ma J, Qi L. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles [J]. Chem. Mater., 1995, 7: 663-671.
    [18] O'Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.
    [19] Hansel H, Zettl H, Krausch G, et al. Optical and electronic contributions in double-heterojunction organic thin-film solar cells [J]. AdV. Mater., 2003, 15: 2056-2060.
    [20] Bosc F, Ayral A, Albouy P A, et al. A Simple Route for Low-Temperature Synthesis of Mesoporous and Nanocrystalline Anatase Thin Films [J]. Chem. Mater., 2003, 15: 2463-2468.
    [21] Sung Y M, Lee J K, Chae W S. Controlled Crystallization of Nanoporous and Core/Shell Structure Titania Photocatalyst Particles [J]. Cryst. Growth Des., 2006, 6: 805-808.
    [22] Lo S C, Lin C F, Wu C H, et al. Capability of coupled CdSe/TiO2 forphotocatalytic degradation of 4-chlorophenol [J]. J. Hazard. Mater., 2004, 114: 183-190.
    [23] Du J, Zhang J, Liu Z, et al. Controlled Synthesis of Ag/TiO Core?Shell Nanowires with Smooth and Bristled Surfaces via a One-Step Solution Route[J]. Langmuir, 2006, 22: 1307-1312.
    [24] Vaezi M R. Two-step solochemical synthesis of ZnO/TiO2 nano-composite materials [J]. J. Mater. Process Tech., 2008, 205: 332-337.
    [25] Ranaa S, Srivastava R S, Sorensson M M, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2–NiFe2O4 system [J]. Mater. Sci. Eng. B, 2005, 119: 144-151.
    [26] Yang X L, Dai W L, Guo C, et al. Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2 [J]. J. Catal., 2005, 234: 438-450.
    [27] Zhang Y, Ma L, Li J, et al. In situ Fenton reagent generated from TiO2/Cu2O composite film: A new way to utilize TiO2 under visible light irradiation [J]. Environ. Sci. Technol., 2007, 41: 6264-6269.
    [28] Yasomanee J P, Bandara J. Multi-electron storage of photoenergy using Cu2O–TiO2 thin film photocatalyst [J]. Sol. Energy Mater. Sol. Cells, 2008, 92: 348-352.
    [29] McFarland W A. Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis [J]. Sol. Energy Mater. Sol. Cells, 2003, 77: 229-237.
    [30] Li Z, Wang D, Shi Y, et al. The research on the surface photovoltaic properties of porphyrin affected by nano-TiO2 [J]. Mater. Chem. Phys., 2005, 90: 203-206.
    [31] Lerous J J, Harold M P, Ryley J, et al. Microfabricated minichemical systems: Technical feasibility. Microsystem Technology for Chemical and Biological Microreactors [M]. 1996, 132: 51-69.
    [32] Boutonnet M, Kizling J, Stenius P, et al. The preparation of monodisperse colloidal metal particles from microemulsions [J].Colloids Surf., 1982, 5: 209-225.
    [33] Holladay J D, Jones E O, Dagle R A, et al. High Efficiency and Low CarbonMonoxide Micro-scale Methanol Processors [J]. J. Power Sources, 2004, 131: 69-72.
    [34] Su X, Zhao J, Zhao X, et al. A facile synthesis of Cu2O/SiO2 and Cu/SiO2 core-shell octahedral nanocomposites [J]. Nanotechnology, 2008, 19: 365610-365617.
    [35] Xin B, Wang P, Ding D, et al. Effect of surface species on Cu-TiO2 photocatalytic activity [J]. Appl. Surf. Sci., 2008, 254: 2569-2574.
    [1] De G, Mattei G, Mazzoldi P, et al. Au?Cu Alloy Nanocluster Doped SiO2 Films by Sol?Gel Processing [J]. Chem. Mater., 2000, 12: 2157-2160.
    [2] Kim C W, Kim Y H, Cha H G, et al. Synthesis and Characterization of Highly Magnetized Nanocrystalline Co30Fe70 Alloy by Chemical Reduction [J]. J. Phys. Chem. B, 2006, 110: 24418-24423.
    [3] Devarajan S, Bera P, Sampath S. Bimetallic nanoparticles: A single step synthesis, stabilization, and characterization of Au–Ag, Au–Pd, and Au–Pt in sol–gel derived silicates [J]. J. Colloid Interf. Sci., 2005, 290: 117-129.
    [4] Caruso F. Nano-engineering of Particle Surfaces [J]. Adv. Mater., 2001, 13: 11-22.
    [5] Toshima N, Yonezawa T. Bimetallic nanoparticles novel materials for chemical and physical applications [J]. New J. Chem., 1998, 22: 1179-1201.
    [6] Regan M R, Banerjee I A. Preparation of Au–Pd bimetallic nanoparticles in porous germania nanospheres: A study of their morphology and catalytic activity [J]. Scr. Mater., 2006, 54: 909-914.
    [7] Ghosh S K, Mandal M, Kundu S, et al. Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution [J]. Appl. Catal. A, 2004, 268: 61-66.
    [8] Wang L Y, Shi X, Kariuki N N, et al. Array of Molecularly-Mediated Thin Film Assemblies of Nanoparticles: Correlation of Vapor Sensing with Interparticle Spatial Properties [J]. J. Am. Chem. Soc., 2007, 129: 2161-2170.
    [9] Chen P Y, Lin M C, Sun I W. Electrodeposition of Cu-Zn alloy from a Lewis acidic ZnCl2-EMIC molten salt [J]. J. Electroanal. Soc., 2000, 147: 3350-3355.
    [10] Gong J, Podlaha E J. Electrodeposition of Fe-Tb Alloys from an Aqueous Electrolyte [J]. Electrochem. Solid-State Lett., 2000, 3: 422-425.
    [11] Lee Y W, Kim N H, Lee K Y, et al. Synthesis and Characterization of Flower-Shaped Porous Au?Pd Alloy Nanoparticles [J]. J. Phys. Chem. C, 2008, 112: 6717-6722.
    [12] Li G R, Zhang Z S, Su C Y, et al. Electrochemical Synthesis of Tb/Co Alloy Nanoparticle Aggregates and Their Magnetic Properties [J]. J. Phys. Chem. C, 2009, 113: 1227-1234.
    [13] Knudsen J, Nilekar A U, Vang R T, et al. A Cu/Pt Near-Surface Alloy for Water?Gas Shift Catalysis [J]. J. Am. Chem. Soc., 2007, 129: 6485-6490.
    [14] Chung K H, Hsiao L Y, Lin Y S, et al. Morphology and electrochemical behavior of Ag–Cu nanoparticle-doped amalgams [J]. Acta Biomater., 2008, 4: 717-724.
    [15] Gao B J, Gao J F, Jiang H M, et al. Plating structure and anti oxygenation of micron Cu-Ag bimetallic powder [J]. Acta Physico-Chimica Sinica, 2000, 16: 366-369.
    [16] Hu X, Wang Z, Zhang T, et al. Manipulation of optical properties of Ag/Cu alloy nanowire arrays embedded in anodic alumina membranes [J]. Appl. Surf. Sci., 2008, 254: 3845-3848.
    [17] Bokshits Y V, Shevchenko G P, Gurin V S, et al. Formation of Ag–Cu bimetallic hydrosols by the reduction of the solid precursors [J]. Mat. Sci. Eng. C, 2007, 27: 1149-1153.
    [18] Liao H, Li X, Peng R, et al. Study on Ag Coating Cu Nano Bimetallic Powders [J]. Journal of Inorganic Chemistry, 2003, 19: 1327-1330.
    [19] Mallik K, Mandal M, Pradhan N, et al. Seed Mediated Formation of Bimetallic Nanoparticles by UV Irradiation: A Photochemical Approach for the Preparation of“Core?Shell”Type Structures [J]. Nano Lett., 2001, 1: 319-322.
    [20] Mu G, Zhao B. Preparation Characterization of Core-shell Cu-Sn Bimetallic Nanoparticles [J]. Journal of Inorganic Chemistry, 2004, 20: 1055-1060.
    [21] Selvakannan P R, Swami A, Srisathiyanarayanan D, et al. Synthesis of Aqueous Au Core-Ag Shell Nano- particles Using Tyrosine as a pH-dependent Reducing Agent and Assembling Phase-transferred Silver Nanoparticles at the Air-Water Interface [J]. Langmuir, 2004, 20: 7825-7836.
    [22] Liu B,Guan J,Wang Q, et al. Preparation and Microwave Characterization of Fe/Co Composites with Core-Shell Structure [J]. Journal of Functional Materials,2005, 36: 133-135.
    [23] Son S U, Jang Y, Park J, et al. Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions [J]. J. Am. Chem. Soc., 2004, 126: 5026-5027.
    [24] Sobal N S, Hilgendorff M, Mhwald H, et al. Synthesis and Structure of Colloidal Bimetallic Nanocrystals: The Non-Alloying System Ag/Co [J]. Nano Lett., 2002, 2: 621-624.
    [25] Lu D, Domen K, Tanaka K. Electrodeposited Au?Fe, Au?Ni, and Au?Co Alloy Nanoparticles from Aqueous Electrolytes [J]. Langmuir, 2002, 18: 3226-3232.
    [26] Cheng Z, Yang Y, Liu X, et al. Advances in Prepa-ration of Nano-Sized Core-Shell Bimetallic Particles [J]. Modern Chemical Industry, 2006, 26: 18-21.
    [27] Liu Z, Zhao B, Zhang Z, et al. Prepation of Ultra-fine Core-Shell Cu-Ag Bimetallic Powders [J]. Journal of Inorganic Chemistry, 1996, 12: 30-34.
    [28] Luo J, Liu W, Li J, et al. Study on Synthesis of Ag Coating Cu Bimetallic Nano-powders by Direct Substitution Reaction [J]. High Power Laser and Particle Beams, 2006, 18: 591-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700