溶质转运蛋白11第三和第六跨膜区的结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Slc11(溶质转运蛋白11)家族是在进化过程中高度保留的一类二价金属离子传输蛋白,和许多疾病有着密切的联系。Slc11a1和Slc11a2都是Slc11家族的成员。Slc11a2第三跨膜区E154A、第六跨膜区的H267A或H272A突变都导致Slc11a2功能缺失。这表明Slc11家族第三跨膜区和第六跨膜区与其功能有密切的联系。本论文通过核磁共振波谱法和圆二色谱法对Slc11a1第三跨膜区野生型肽和E139A突变型肽、Slc11a2第六跨膜区野生型肽和H267A及H272A突变型肽在HFIP水溶液、TFE水溶液和SDS胶束中的结构、聚集状态和定位进行了研究,比较了突变带来的影响。Slc11a1第三跨膜区野生型肽主要以α螺旋形式存在,E139A突变对结构几乎没有影响,但是对其聚集状态以及在膜中的定位有一定的影响。Slc11a2第六跨膜区野生型肽形成一种“α-helix-extended segment-α-helix”的特殊结构,以三聚体存在,整段肽都插入到膜内,H267A和H272A突变对肽的定位影响不大,但是改变了肽的结构和聚集体中分子间作用力的大小。以上变化可能引起蛋白质在膜中的定位和取向发生变化,对蛋白质的功能产生影响。
The Slc11 family defines a family of membrane proteins highly conserved throughout evolution. Slc11a1 (also known as Nramp1) and Slc11a2 (also know as Nramp2, DMT1, DCT1) are two members of this family. Slc11a1 is expressed exclusively in late endosomal/lysosomal compartment of macrophages and polymorphonuclear leukocytes. It is crucial for normal functioning of cells. Defective Slc11a1 causes susceptibility to infection by several intracellular pathogens including Mycobacterium, Leishmania, and Salmonella and is implicated in a number of diseases known as autoimmune or inflammatory diseases. Slc11a2 is ubiquitously expressed. It shares 64% amino acid sequence identity and 78% similarity with Slc11a1 and has a broad substrate range including Fe2+, Zn2+, Co2+, Mn2+, Cu2+, Cd2+, Ni2+ and Pb2+, the driving force for the metal-ion transport is proton gradient. Slc11a2 has been postulated to play important roles in intestinal iron absorption, erythroid iron utilization, hepatic iron accumulation, placental iron transfer, and other processes. Bacterial Slc11 homologs MntH is a proton-dependent manganese transporter. It has demonstrated that the Slc11 family possesses a common topological TM organization, including 10-12 transmembrane domains (TMD), a glycosylated extracellular loop, and several phosphorylation sites. Research on the structures of Slc11 proteins is expected to be helpful to understand the functions of the proteins at a molecular level and may provide important clues for uncovering nosogenesis of intracellular pathogens infections and ion imbalance.
     In the transmembrane domains of Slc11 proteins, TMD3 and TMD6 were found to be important for specific aspects of transport. The mutation from a Glu to an Ala (E154A) within the putative transmembrane domain 3 of Slc11a2 caused complete loss of function. Similar results were also found in MntH, the conservative mutations of Glu102 (analogous to Glu154 in Slc11a2 and Glu139 in Slc11a1) resulted in a complete loss of transport activity. The conservative mutations of D109E, D109N, E112D, and E112Q in TMD3 of MntH showed partial loss of transport function. Two highly conserved histidine residues located in the sixth transmembrane domain (TMD6) of Slc11 homologs were also found to play an important role in proton-dependent metal ion transport of the proteins. Both smf1/smf2 complementation results in yeast and transport data in mammalian cells demonstrated that this histidine pair are mutation sensitive, with Ala substitution at either or both sites causing deficiency of function and shifting the pH required to achieve maximal transport to a more acidic value, suggesting that the two histidines in TMD6 may have a unique and crucial role in pH regulation of metal ion transport by Slc11 proteins. In this work, we investigated the structures, self-assembly and topologies of Slc11a1-TMD3 peptide and its E139A mutant, Slc11a2-TMD6 peptide and its H267A and H272A mutant in HFIP aqueous solution, TFE aqueous solution and SDS micelles by CD and NMR spectra.
     The study reveals that TMD3 of Slc11a1 adopts predominantly anα-helical structure in both 60% HFIP-d_2 aqueous solution and SDS micelles. The helix length of the peptide in SDS-d_(25) micelles at acidic pH conditions is similar to that in HFIP-d_2 aqueous solution, while the helix has a shorter extension to the C-terminus at alkalescent pH value
     The peptide exists as a monomer in HFIP aqueous solution, but severely assembles in SDS micelles at acidic pH values. The association is destabilized when the pH of solution is close to neutral or higher or by addition a small amount of HFIP to the solution. The structure of the E139A mutant is very similar to that of the WT peptide in 60% HFIP-d2 aqueous solution. However, the E139A mutation makes the peptide more hydrophobic and more tendentious to aggregate than the wildtype peptide. The pH dependence of the aggregate in the WT peptide is largely eliminated by the mutation. The topologies of the two peptides in SDS micelles mixed with a little amount of HFIP are similar in general: both peptides are inserted in SDS micelles with most residues from the beginning of the N-termini locating in the interior of the micelles and C-termini close to the surface of the micelles. However, a small but significant difference in the topology of the peptides is observed in the results of the spin label experiments. The resonances of the C-terminal residues of the E139A mutant are less broadened by Mn2+ ions than those of the WT peptide in the SDS micelles mixed with HFIP, whereas the resonances of the N-terminal residues (Arg4-Leu6) and C-terminal residues (Val23 and Ile24) are more affected by 16-DSA. This indicates that the N- and C- termini of the E139A mutant are embedded more deeply than those of the WT peptide. Our study indicates that the ionizable Glu139 is a crucial residue for assembly and topology of the transmembrane domain 3 of Slc11a1 in membranes, the increase in hydrophobicity of the membrane-spanning peptide and/or change in the location and orientation of TMD3 induced by E139A mutation may affect the metal ion transport of the protein.
     In this study, we verify in the first time that TMD6 of Slc11a2 adopts an“α-helix-extended segment-α-helix”structure in SDS micelles, His267 locates near the central part of the extended segment, while the His272 is involved in theα-helical folding. The structure of the wildtype peptide is evidently changed by the mutations of H267A and H272A. The H267A mutant forms an ordered structure consisting of anα-helix from the C-terminus to the central part and continuous turns in the residual part. The H272A mutation mainly induces unfolding of the short helix in the N-terminal side, while the short helix in the C-terminal side and unordered conformation in the central part remain. The pH value has little effect on theα-helical contents of the three peptides. All the three peptides are embedded in SDS micelles, and the H267A mutant is inserted more deeply due to increasing hydrophobicity in the central part of the peptide. We obtain similar results in TFE aqueous solution, we observe more helical content induced by H267A mutation making the central part of the peptide more rigid, and less helical content by H272A mutation making peptide structure less rigid, as compared with the wildtype peptide. DOSY experiments demonstrated that each of the three peptides assembles as a trimer in 30% TFE-d2 aqueous solution. In trimers, each monomer may be structurally heterogeneous for the wildtype peptide, but homogeneous for the H267A and H272A mutants. The intermolecular interactions decrease according to the order H267A>WT>H272A, obtained by dilution experiments.
     The particular“α-helix-extended segment-α-helix”structure of TMD6 would have important implication for the functions of the protein. Compared toα-helix, the flexible central segment could create a space for accommodation of charged metal ions in a tightly packedα-helical environment. In addition, the protonation at acidic pH or deprotonation at neutral pH of histidine imidazole protons may lead to breaking or building of compensatory electrostatic interactions and/or disruption or formation of salt bridges between adjacent residues, inducing overall conformational changes in response to pH through the bending and twisting of the associated helical elements, controlling the active and inactive state of the channel. The structure and the strength of the intermolecular interactions are changed due to H267A and H272A mutation, these changes may affect the metal ion transport of the protein.
     The findings in this article may be meaningful for understanding the structure and function of the entire membrane protein.
引文
[1]马静,葛熙,昌增益.蛋白质功能研究:历史、现状和将来[J].生命科学,2007,19(3):294-300.
    [2]阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999.
    [3] Feder J N, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis [J]. Nat. Genet., 1996, 13: 399-408.
    [4] Hirsch E C. Biochemistry of Parkinson’s disease with special reference to the dopaminergic systems [J]. Mol. Neurobiol., 1994, 9: 135-142.
    [5] Gruenheid S, Cellier M, Vidal S, et al. Identification and characterization of a second mouse Nramp gene [J]. Genomics, 1995, 25: 514-525.
    [6] Andrews N C. Iron homeostasis :insights from genetics and animal models [J]. Nat. Rev. Genet., 2000, 1: 208-217.
    [7] Yang Y S, Kim S J, Kim J W, et al. NRAMP1 gene polymorphisms in patients with rheumatoid arthritis in Koreans [J]. J. Korean Med. Sci., 2000, 15: 83-87.
    [8] Hunter K, Rainbow D, Plagnol V, et al. Interactions between Idd5.1/Ctla4 and other type 1 diabetes genes [J]. J. Immunol., 2007, 179: 8341-8349.
    [9] Vidal S M, Malo D, Vogan K, et al. Natural resistance to infection with intracellular parasites: isolation of a candidate gene for Bcg [J]. Cell, 1993, 73: 469-485.
    [10] Vidal S, Tremblay M L, Govoni G, et al. The Ity/Lsh /Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene [J]. J. Exp. Med., 1995, 182: 655-666.
    [11] Cellier M, Govoni G, Vital S, et al. Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression [J]. J. Exp. Med., 1994, 180: 1741-1752.
    [12] Blackwell J M, Howard Barton C, White J K, et al. Genomic organization and sequence of the human NRAMP gene: identification and mapping of a promoter region polymorphism [J]. Mol. Med., 1995, 1: 194-205.
    [13] Gunshin H, Mackenzie B, Berger U V, et al. Cloning and characterization of a proton-coupled mammalian metal-ion transporter [J]. Nature, 1997, 388: 482-488.
    [14]周理红,许梓荣.二价金属离子转运蛋白的功能和表达调控[J].黑龙江畜牧兽医,2004,2:59-60.
    [15] Eisenstein R S. Iron regulatory proteins and the molecular control of mammalian iron metabolism [J]. Annu. Rev. Nutr., 2000, 20: 627-662.
    [16]柯亚,钱忠明.二价金属离子转运蛋白1—一个新发现的重要铁转运蛋白[J].生物化学与生物物理进展,2002,29:184-188.
    [17] Hubert N, Hentze M W. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function [J]. Proc. Natl. Acad. Sci. U.S.A., 2002, 99: 12345-12350.
    [18] Lee P L, Gelbart T, West C, et al. The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms [J]. Blood Cells Mol. Dis., 1998, 24: 199-215.
    [19] Ke Y, Chang Y Z, Duan X L, et al. Age-dependent and iron-independent expression of two mRNA isoforms of divalent metal transporter 1 in rat brain [J]. Neurobiol. Aging, 2005, 26: 739-748.
    [20] Tabuchi M, Tanaka N, Nishida-Kitayama J, et al. Alternative splicing regulates the subcellular localization of divalent metal transporter 1 isoforms [J]. Mol. Biol. Cell, 2002, 13: 4371-4387.
    [21] Govoni G, Gauthier S, Billia F, et al. Cell-specific and inducible Nramp1 gene expression in mouse macrophages in vitro and in vivo [J]. J. Leukoc. Biol., 1997, 62: 277-286.
    [22] Gruenheid S, Pinner E, Desjardins M, et al. Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome [J]. J. Exp. Med., 1997, 185: 717-730.
    [23] Wyllie S, Seu P, Goss J A. The natural resistance-associated macrophage protein 1 Slc11a1 (formerly Nramp1) and iron metabolism in macrophages [J]. Microbes Infect., 2002, 4: 351-359.
    [24] Jabado N, Jankowski A, Dougaparsad S, et al. Natural resistance to intracellular infections: Natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane [J]. J. Exp. Med., 2000, 192: 1237-1248.
    [25] Govoni G, Canonne-Hergaux F, Pfeifer C G, et al. Functional expression of Nramp1 in vitro in the murine macrophage line RAW264.7 [J]. Infect. Immun., 1999, 67: 2225-2232.
    [26] Searle S, Bright N A, Roach T I, et al. Localisation of Nramp1 in macrophages: modulation with activation and infection [J]. J. Cell Sci., 1998, 111: 2855-2866.
    [27] Cellier M, Shustik C, Dalton W, et al. Expression of the human NRAMP1 gene in professional primary phagocytes: studies in blood cells and in HL-60 promyelocytic leukemia [J]. J. Leukoc. Biol., 1997, 61: 96-105.
    [28] Canonne-Hergaux F, Levy J E, Fleming M D, et al. Expression of the DMT1 (NRAMP2/DCT1) iron transporter in mice with genetic iron overload disorders [J]. Blood, 2001, 97: 1138-1140.
    [29] D’Souza J, Cheah P Y, Gros P, et al. Fuctional complementation of the malvolio mutation in the taste pathway of drosophila melanogaster by the human natural resistance-associated macrophage protein 1 (Nramp-1) [J]. J. Exp. Biol., 1999, 202: 1909-1915.
    [30] Saeij J P, Wiegertjes G F, Stet R J. Identification and characterization of a fish natural resistance-associated macrophage protein (NRAMP) cDNA [J]. Immunogenetics, 1999, 50: 60-66.
    [31] Dorschner M O, Phillips R B. Comparative analysis of two nramp loci from rainbow trout [J]. DNA Cell Biol., 1999, 18: 573-583.
    [32] Kehres D G, Zaharik M L, Finlay B B, et al. The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen [J]. Mol. Microbiol., 2000, 36: 1085-1100.
    [33] Agranoff D, Monahan I M, Mangan J A, et al. Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family [J]. J. Exp. Med., 1999, 190: 717-724.
    [34] Belouchi A, Cellier M, Kwan T, et al. The macrophage-specific membrane protein Nramp controlling natural resistance to infections in mice has homologues expressed in the root system of plants [J]. Plant Mol. Biol., 1995, 29: 1181-1196.
    [35] Hu J, Bumstead N, Burke D, et al. Genetic and physical mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) in chicken [J]. Mamm.Genome, 1995, 6: 809-815.
    [36] Pinner E, Gruenheid S, Raymond M, et al. Functional complementation of the yeast divalent cation transporter family SMF by NRAMP2, a member of the mammalian natural resistance-associated macrophage protein family [J]. J. Biol. Chem., 1997, 272: 28933-28938.
    [37] Trinder D, Oates P S, Thomas C, et al. Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload [J]. Gut, 2000, 46: 270-276.
    [38] Fleming R E, Migas M C, Zhou X, et al. Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: increased duodenal expression of the iron transporter DMT1 [J]. Proc. Natl. Acad. Sci. U.S.A., 1999, 96: 3143-3148.
    [39] Oates P S, Thomas C, Freitas E, et al. Gene expression of divalent metal transporter 1 and transferrin receptor in duodenum of Belgrade rats [J]. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278: G930-936.
    [40] Canonne-Hergaux F, Fleming M D, Levy J E, et al. The Nramp2/DMT1 iron transporter is induced in the duodenum of microcytic anemia mk mice but is not properly targeted to the intestinal brush border [J]. Blood, 2000, 96: 3964-3970.
    [41] Canonne-Hergaux F, Gros P. Expression of the iron transporter DMT1 in kidney from normal and anemic mk mice [J]. Kidney Int., 2002, 62: 147-156.
    [42] Ferguson C J, Wareing M, Ward D T, et al. Cellular localization of divalent metal transporter DMT-1 in rat kidney [J]. Am. J. Physiol. Renal. Physiol., 2001, 280: F803-814.
    [43] Cellier M, Gros P. The Nramp family [M]. Kluwer Academic/Plenum Publishers, New York, U.S.A., 2004.
    [44] Vidal S M, Pinner E, Lepage P, et al. Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible ( Nramp1D169) mouse strains [J]. J. Immunol., 1996, 157: 3559-3568.
    [45] Govoni G, Gros P. Macrophage NRAMP1 and its role in resistance to microbialinfections [J]. Inflamm. Res., 1998, 47: 277-284.
    [46] Courville P, Urbankova E, Rensing C, et al. Solute carrier 11 cation symport requires distinct residues in transmembrane helices 1 and 6 [J]. J. Biol. Chem., 2008, 283: 9651-9658.
    [47] Czachorowski M, Lam-Yuk-Tseung S, Cellier M, et al. Transmembrane topology of the mammalian Slc11a2 iron transporter [J]. Biochemistry, 2009, 48: 8422-8434.
    [48] Cellier M, PrivéG, Belouchi A, et al. Nramp defines a family of membrane proteins [J]. Proc. Natl. Acad. Sci. U.S.A., 1995, 92: 10089-10093.
    [49] Heijne G V. Membrane proteins: from sequence to structure [J]. Annu Rev Biophys Biomol Struct., 1994, 23: 167-192.
    [50] Green W N, Andersen O S. Surface charges and ion channel function [J]. Annu. Rev. Physiol., 1991, 53: 341-359.
    [51] Canonne-Hergaux F, Gruenheid S, Govoni G, et al. The Nramp1 protein and its role in resistance to infection and macrophage function [J]. Proc. Assoc. Am. Physicians, 1999, 111: 283-289.
    [52] Orgad S, Nelson H, Segal D, et al. Metal ions suppress the abnormal taste behavior of the Drosophila mutant malvolio [J]. J. Exp. Biol., 1998, 201: 115-120.
    [53] Bullen J J. The significance of iron in infection [J]. Rev. Infect. Dis., 1981, 3: 1127-1138.
    [54] Payne S M. Iron acquisition in microbial pathogenesis [J]. Trends Microbiol., 1993, 1: 66-69.
    [55] Forbes J R, Gros P. Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions [J]. Trends Microbiol., 2001, 9: 397-403.
    [56] Supek F, Supekova L, Nelson H, et al. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria [J]. Proc. Natl. Acad. Sci. U.S.A., 1996, 93: 5105-5110.
    [57] Nevo Y, Nelson N. The NRAMP family of metal-ion transporters [J]. Biochim. Biophys. Acta, 2006, 1763: 609-620.
    [58] Kuhn D E, Lafuse W P, Zwilling B S. Iron transport into Mycobacterium avium-containing phagosomes from an Nramp1Gly169-transfected RAW264.7 macrophage cell line [J]. J. Leukoc. Biol., 2001, 69: 43-49.
    [59] Zwilling B S, Kuhn D E, Wikoff L, et al. Role of iron in Nramp1-mediated inhibition of mycobacterial growth [J]. Infect. Immun., 1999, 67: 1386-1392.
    [60] Kuhn D E, Baker B D, Lafuse W P, et al. Differential iron transport into phagosomes isolated from the RAW264.7 macrophage cell lines transfected with Nramp1Gly169 or Nramp1Asp169 [J]. J. Leukoc. Biol., 1999, 66: 113-119.
    [61] Goswami T, Bhattacharjee A, Babal P, et al. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter [J]. Biochem. J., 2001, 354: 511-519.
    [62] Haemig H A, Brooker R J. Importance of conserved acidic residues in MntH, the Nramp homolog of Escherichia coli [J]. J. Membr. Biol., 2004, 201: 97-107.
    [63] Rodrigues V, Cheah P Y, Ray K, et al. The Drosophila homologue of mouse NRAMP-1 (Bcg), is expressed in macrophages and in the nervous system and is required for normal taste behaviour [J]. EMBO J., 1995, 14: 3007-3020.
    [64] Garrick M D, Dolan K G, Horbinski C, et al. DMT1: A mammalian transporter for multiple metals [J]. BioMetals, 2003, 16: 41-54.
    [65] Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism [J]. Cell, 2004, 117: 285-297.
    [66] Mackenzie B, Hediger M A. SLC11 family of H+-coupled metal-ion transporters NRAMP1 and DMT1 [J]. Pflugers Arch., 2004, 447: 571-579.
    [67] Frazer D M, Anderson G J. The orchestration of body iron intake: how and where do enterocytes receive their cues? [J]. Blood Cells Mol. Dis., 2003, 30: 288-297.
    [68] Petrak J, Vyoral D. Hephaestin—a ferroxidase of cellular iron export [J]. Int. J. Biochem. Cell Biol., 2005, 37: 1173-1178.
    [69] Ponka P, Beaumont C, Richardson D R. Function and regulation of transferrin and ferritin [J]. Semin. Hematol., 1998, 35: 35-54.
    [70] Dautry-Varsat A, Ciechanover A, Lodish H F. pH and the recycling oftransferrin during receptormediated endocytosis [J]. Proc. Natl. Acad. Sci. U.S.A., 1983, 80: 2258-2262.
    [71] Gruenheid S, Canonne-Hergaux F, Gauthier S, et al. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes [J]. J. Exp. Med., 1999, 189: 831-841.
    [72] Mulero V, Searle S, Blackwell J M, et al. Solute carrier 11a1 (Slc11a1; formerly Nramp1) regulates metabolism and release of iron acquired by phagocytic, but not transferrin-receptor-mediated, iron uptake [J]. Biochem. J., 2002, 363: 89-94.
    [73] Biggs T E, Baker S T, Botham M S, et al. Nramp1 modulates iron homoeostasis in vivo and in vitro: Evidence for a role in cellular iron release involving de-acidification of intracellular vesicles [J]. Eur. J. Immunol., 2001, 31: 2060-2070.
    [74] Reddi A R, Jensen L T, Culotta V C. Manganese Homeostasis in Saccharomyces cerevisiae [J]. Chem. Rev., 2009, 109: 4722-4732.
    [75]郑集.蛋白质知识[M].上海:上海科学技术出版社,1980.
    [76]沈同,王镜岩,赵邦悌,等.生物化学[M].北京:高等教育出版社,1990.
    [77] Creighton T E. Proteins: Structures and molecular properties [M]. W.H. Freeman and Co.: New York, 1993.
    [78] Hong M. Structure, topology, and dynamics of membrane peptides and proteins from solid-state NMR spectroscopy [J]. J. Phys. Chem. B, 2007, 111: 10340-10351.
    [79] Zasloff M. Antimicrobial peptides of multicellular organisms [J]. Nature, 2002, 415: 389-395.
    [80] Y?ld?r?m M A, Goh K I, Cusick M E, et al. Drug-target network [J]. Nat. Biotechnol., 2007, 25: 1119-1126.
    [81] Berman H M, Westbrook J, Feng Z, et al. The Protein Data Bank [J]. Nucleic Acids Res., 2000, 28: 235-242.
    [82] Saxena V P, Wetlaufer D B. A new basis for interpreting the circular dichroic spectra of proteins [J]. Proc. Natl. Acad. Sci. U.S.A., 1971, 68: 969-972.
    [83] Brahms S, Brahm J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism [J]. J. Mol. Biol., 1980, 138: 149-178.
    [84] Hennessey J P Jr, Johnson W C Jr. Information content in the circular dichroism of proteins [J]. Biochemisry, 1981, 20: 1085-1094.
    [85] Greenfield N J. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data [J]. Anal. Biochem., 1996, 235: 1-10.
    [86] Lee S A, Kim Y K, Lim S S, et al. Solution structure and cell selectivity of piscidin 1 and its analogues [J]. Biochemistry, 2007, 46: 3653-3663.
    [87] GreenfieldΝ, Fasman G D. Computed circular dichroism spectra for the evaluation of protein conformation [J]. Biochemistry, 1969, 8: 4108-4116.
    [88] Sreerama N, Woody R W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set [J]. Anal. Biochem., 2000, 287: 252-260.
    [89] Whitmore L, Wallace B A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases [J]. Biopolymers, 2007, 89: 392-400.
    [90] Kelly S M, Price N C. The application of circular dichroism to studies of protein folding and unfolding [J]. Biochim. Biophys. Acta, 1997, 1338: 161-185.
    [91] Price N C. Conformational issues in the characterization of proteins [J]. Biotechnol. Appl. Biochem., 2000, 31: 29-40.
    [92] Dockal M, Carter D C, Rüker F. Conformational transitions of the three recombinant domains of human serum albumin depending on pH [J]. J. Biol. Chem., 2000, 275: 3042-3050.
    [93] Kelly S M, Jess T J, Price N C. How to study proteins by circular dichroism [J]. Biochim. Biophys. Acta, 2005, 1751: 119-139.
    [94] Williamson M P, Havel T F, Wüthrich K. Solution conformation and proteinase inhibitor IIA from bull seminal plasma by proton NMR and distance geometry [J]. J. mol. Biol. 1985, 182: 295-315.
    [95] Pervushin K, Riek R, Wider G, et al. Attenuated T2 relaxation by mutualcancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution [J]. Proc. Natl. Acad. Sci. U.S.A., 1997, 94: 12366-12371.
    [96] Hong M. Solid-state NMR studies of the structure, dynamics, and assembly ofβ-sheet membrane peptides andα-helical membrane proteins with antibiotic activities [J]. Acc. Chem. Res. 2006, 39: 176-183.
    [97] Tycko R. Molecular structure of amyloid fibrils: insights from solid-state NMR [J]. Q. Rev. Biophys., 2006, 39: 1-55.
    [98] Torres J, Stevens T J, SamsóM. Membrane proteins: the‘Wild West’of structural biology [J]. Trends Biochem. Sci., 2003, 28: 137-144.
    [99] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid [J]. Phys. Rev., 1946, 69: 37-38.
    [100] Bloch F, Hansen W W, Packard M. Nuclear induction [J]. Phys. Rev. 1946, 70, 460-474.
    [101]毛希安.现代核磁共振实用技术及应用[M].北京:科学技术文献出版社,2000.
    [102]王大成.蛋白质工程[M].北京:化学工业出版社,2002.
    [103] Altieri A S, Hinton D P, Andrew Byrd R. Association of biomolecular systems via pulsed field gradient NMR self-diffusion measurements [J]. J. Am. Chem. Soc., 1995, 117: 7566-7567.
    [104]夏佑林,吴季辉,刘琴,等.生物大分子多维核磁共振[M].合肥:中国科学技术大学出版社,1999.
    [105] Piotto M, Saudek V, Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions [J]. J. Biomol. NMR, 1992, 2: 661-665.
    [106] Rajan R, Balaram P. A model for the interaction of trifluoroethanol with peptides and proteins [J]. Int. J. Pept. Protein Res., 1996, 48: 328-336.
    [107] Guo H, Karplus M. Solvent influence on the stability of the peptide hydrogen bond: a supramolecular cooperative effect [J]. J. Phys. Chem., 1994, 98: 7104-7105.
    [108] Buck M. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins [J]. Q. Rev. Biophys., 1998, 31: 297-355.
    [109] Roccatano D, Fioroni M, Zacharias M, et al. Effect of hexafluoroisopropanol alcohol on the structure of melittin: a molecular dynamics simulation study [J]. Protein Sci., 2005, 14: 2582-2589.
    [110] Walgers R, Lee T C, Cammers-Goodwin A. An indirect chaotropic mechanism for the stabilization of helix conformation of peptides in aqueous trifluoroethanol and hexafluoro-2-propanol [J]. J. Am. Chem. Soc., 1998, 120: 5073-5079.
    [111]Opella S J, Kim Y, McDonnell P. Experimental nuclear magnetic resonance studies of membrane proteins [J]. Meth. Enzymol., 1994, 239: 536-560.
    [112] Seddon A M, Curnow P, Booth P J. Membrane proteins, lipids and detergents: not just a soap opera [J]. Biochim. Biophys. Acta, 2004, 1666: 105-117.
    [113] Arora A, Tamm L K. Biophysical approaches to membrane protein structure determination [J]. Curr. Opin. Struct. Biol., 2001 11: 540-547.
    [114] Sanders C R, S?nnichsen F. Solution NMR of membrane proteins: practice and challenges [J]. Magn. Reson. Chem., 2006, 44: S24-S40.
    [115] Sanders C R, Hare B J, Howard K P, et al. Magnetically oriented phospholipid micelles as a tool for the study of membrane associated molecules. Prog. Nucl. Magn. Reson. Spectrosc., 1994, 26: 421-444.
    [116] Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA [J]. J. Mol. Biol., 1997, 273: 283-298.
    [117] Weiner P K, Kollman P A. AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions [J]. J. Comput. Chem., 1981, 2: 287-303.
    [118] Pearlman D A, Case D A, Caldwell J W, et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules [J]. Comput. Phys. Commun., 1995, 91: 1-41. 41
    [119] Laskowski R A, Rullmann J A, MacArthur M W, et al. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR [J]. J. Biomol. NMR, 1996, 8: 477-486.
    [120] Wüthrich K. NMR of proteins and nucleic acids [M]. John Wiley & Sons, New York, 1986.
    [121]华庆新.蛋白质分子的溶液三维结构测定—多维核磁共振方法[M].长沙:湖南师范大学出版社,1995.
    [122] Wishart D S, Sykes B D, Richards F M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy [J]. Biochemistry, 1992, 31: 1647-1651.
    [123] Wishart D S, Sykes B D, Richards F M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure [J]. J. Mol. Biol., 1991, 222: 311-333.
    [124] Katragadda M, Alderfer J L, Yeagle P L. Assembly of a polytopic membrane protein structure from the solution structures of overlapping peptide fragments of bacteriorhodopsin [J]. Biophys. J., 2001, 81: 1029-1036.
    [125] Hunt J F, Earnest T N, BouschéO, et al. A biophysical study of integral membrane protein folding [J]. Biochemistry, 1997, 36: 15156-15176.
    [126] Shindo K, Takahashi H, Shinozaki K, et al. Solution structure of micelle-bound H5 peptide (427-452): a primary structure corresponding to the pore forming region of the voltage dependent potassium channel [J]. Biochim. Biophys. Acta, 2001, 1545: 153-159.
    [127] Sorgen P L, Hu Y, Guan L, et al. An approach to membrane protein structure without crystals [J]. Proc. Natl. Acad. Sci. U.S.A., 2002, 99: 14037-14040.
    [1] Goddard T D, Kneller D G. SPARKY3. University of California, San Francisco. 2001.
    [2] Cho C H, Urquidi J, Singh S, et al. Thermal offset viscosities of liquid H2O, D2O, and T2O [J]. J. Phys. Chem. B, 1999, 103: 1991-1994.
    [3] Eisenberg D. Kauzmann W. The structure and properties of water [M]. Oxford University Press, London, 1969.
    [4] Fioroni M, Diaz M D, Burger K, et al. Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study [J]. J. Am. Chem. Soc., 2002, 124: 7737-7744.
    [5] Perkins S J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences [J]. Eur. J. Biochem., 1986, 157: 169-180.
    [6] Fioroni M, Burger K, Mark A E, et al. Model of 1,1,1,3,3,3-hexafluoro- propan-2-ol for molecular dynamics simulations [J]. J. Phys. Chem. B, 2001, 105: 10967-10975.
    [7] Minamihonoki T, Ogawa H, Nomura H, et al. Thermodynamic properties of binary mixtures of 2,2,2-trifluoroethanol with water or alkanols at T = 298.15 K [J]. Thermochim. Acta, 2007, 459: 80-86.
    [8] Cantor C R, Schimmel P R. Biophysical chemistry, part II: Techniques for the study of biological structure and function [M]. W.H. Freeman, New York, 1980, 539-590.
    [9] Yao S, Howlett G J, Norton R S. Peptide self-association in aqueous trifluoroethanol monitored by pulsed field gradient NMR diffusion measurements [J]. J. Biomol. NMR, 2000, 16: 109-119.
    [10] Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA [J]. J. Mol. Biol., 1997, 273:283-298.
    [11] Pearlman D A, Case D A, Caldwell J W, et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules [J]. Comput. Phys. Commun., 1995, 91: 1-41.
    [12] Cornell W D, Cieplak P, Bayly C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules [J]. J. Am. Chem. Soc., 1995, 117: 5179-5197.
    [13] Case D A, Pearlman D A, Caldwell J W, et al. AMBER 7. University of California: San Francisco, 2002.
    [14] Laskowski R A, Rullmann J A, MacArthur M W, et al. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR [J]. J. Biomol. NMR, 1996, 8: 477-486.
    [15] Koradi R, Billeter M, Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures [J]. J. Mol. Graph., 1996, 14: 51-55.
    [1] Cellier M, PrivéG, Belouchi A, et al. Nramp defines a family of membrane proteins [J]. Proc. Natl. Acad. Sci. U.S.A., 1995, 92: 10089-10093.
    [2] Cellier M F, Courville P, Campion C. Nramp1 phagocyte intracellular metal withdrawal defense [J]. Microbes Infect., 2007, 9: 1662-1670.
    [3] Cellier M, Govoni G, Vital S, et al. Human natural resistance-associated macrophage p rotein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression [J]. J. Exp. Med., 1994, 180 : 1741-1752.
    [4] Vidal S M, Pinner E, Lepage P, et al. Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible ( Nramp1D169) mouse strains [J]. J. Immunol., 1996, 157: 3559-3568.
    [5] Gruenheid S, Gros P. Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport [J]. Curr. Opin. Microbiol., 2000, 3: 43-48.
    [6] Cellier M F, Courville P, Campion C. Nramp1 phagocyte intracellular metalwithdrawal defense [J]. Microbes Infect., 2007, 9: 1662-1670.
    [7] Vidal S M, Malo D, Vogan K, et al. Natural resistance to infection with intracellular parasites: isolation of a candidate gene for Bcg [J]. Cell, 1993, 73: 469-485.
    [8] Evans C A, Harbuz M S, Ostenfeld T, et al. Nramp1 is expressed in neurons and is associated with behavioural and immune responses to stress [J]. Neurogenetics, 2001, 3: 69-78.
    [9] Canonne-Hergaux F, Gruenheid S, Govoni G, et al. The Nramp1 protein and its role in resistance to infection and macrophage function [J]. Proc. Assoc. Am. Physicians, 1999, 111: 283-289.
    [10] Blackwell J M , Searle S, Goswami T, et al. Understanding the multiple functions of Nramp1 [J]. Microbes Infect., 2000, 2: 317-321.
    [11] Haemig H A, Brooker R J. Importance of conserved acidic residues in MntH, the Nramp homolog of Escherichia coli [J]. J. Membr. Biol., 2004, 201: 97-107.
    [12] Epand R M. The Amphipathic helix [M]. CRC Press, Inc, Florida, 1993.
    [13] Bechinger B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin [J]. J. Membr. Biol., 1997, 156: 197-211.
    [14] Thompson A N, Posson D J, Parsa P V, et al. Molecular mechanism of pH sensing in KcsA potassium channels [J]. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 6900-6905.
    [15] Sahin-Toth M, Dunten R L, Gonzales A, et al. Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1992, 89: 10547-10551.
    [16] Altieri A S, Hinton D P, Andrew Byrd R. Association of biomolecular systems via pulsed field gradient NMR self-diffusion measurements. J. Am. Chem. Soc., 1995, 117: 7566-7567.
    [17] van den Brink-van der Laan E, Chupin V, Killian J A, et al. Stability of KcsA tetramer depends on membrane lateral pressure [J]. Biochemistry, 2004, 43: 4240-4250.
    [18] Wittenberg N J, Zheng L, Winograd N, et al. Ewing short-chain alcoholspromote accelerated membrane distention in a dynamic liposome model of exocytosis [J]. Langmuir, 2008, 24: 2637-2642.
    [19] Kranenburg M, Vlaar M, Smit B. Simulating induced interdigitation in membranes [J]. Biophys. J., 2004, 87: 1596-1605.
    [20] Otzen D E, Sehgal P, Nesgaard L W. Alternative membrane protein conformations in alcohols [J]. Biochemistry, 2007, 46: 4348-4359.
    [21] Forsyth W R, Antosiewicz J M, Robertson A D. Empirical relationships between protein structure and carboxyl pKa values in proteins [J]. Proteins, 2002, 48: 388-403.
    [22] Song J, Laskowski M Jr, Qasim M A, et al. NMR determination of pKa values for Asp, Glu, His, and Lys mutants at each variable contiguous enzyme-inhibitor contact position of the turkey ovomucoid third domain [J]. Biochemistry, 2003, 42: 2847-2856.
    [23] Fersht A R. Enzyme Structure and Mechanism [M]. W. H. Freeman and Co., New York, 1985.
    [24]宫泽辰雄,荒田洋治。核磁共振实验新技术及其应用[M].北京:化学工业出版社,1991.
    [25] Laurents D V, Huyghues-Despointes B M, Bruix M, et al. 2003. Charge-charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI=3.5) and a basic variant (pI=10.2) [J]. J. Mol. Biol., 2003, 325: 1077-1092.
    [26] Bundi A, Wüthrich K. Use of amide 1H-nmr titration shifts for studies of polypeptide conformation [J]. Biopolymers, 1979, 18: 299-311.
    [27] Szyperski T, Antuch W, Schick M, et al. Transient hydrogen bonds identified on the surface of the NMR solution structure of Hirudin [J]. Biochemistry, 1994, 33: 9303-9310.
    [28] Pujato M, Navarro A, Versace R, et al. The pH-dependence of amide chemical shift of Asp/Glu reflects its pKa in intrinsically disordered proteins with only local interactions [J]. Biochim. Biophys. Acta, 2006, 1764: 1227-1233.
    [29] Van Den Hooven H W, Spronk C A, Van De Kamp M, et al. Surface location and orientation of the lantibiotic nisin bound to membrane-mimicking micelles of dodecylphosphocholine and of sodium dodecylsulphate [J]. Eur. J. Biochem., 1996,235: 394-403.
    [30] Lindberg M, Gr?slund A. The position of the cell penetrating peptide penetratin in SDS micelles determined by NMR [J]. FEBS Lett., 2001, 497: 39-44.
    [31] Ahmad A, Yadav S P, Asthana N, et al. Utilization of an amphipathic leucine zipper sequence to design antibacterial peptides with simultaneous modulation of toxic activity against human red blood cells [J]. J. Biol. Chem., 2006, 281: 22029-22038.
    [32] O’Shea E K, R Rutkowski, P S Kim. Evidence that the leucine zipper is a coiled coil [J]. Science, 1989, 243: 538-542.
    [33] Heinz D W, Baase W A, Matthews B W. Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence [J]. Proc. Natl. Acad. Sci. U.S.A., 1992, 89: 3751-3755.
    [34] Lyu P C, Liff M I, Marky L A, et al. Side chain contributions to the stability of alpha-helical structure in peptides [J]. Science, 1990, 250: 669-673.
    [35] Luo Z, Matthews A M, Weiss S R. Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion [J]. J. Virol., 1999, 73: 8152-8159.
    [36] Eilers M, Shekar S C, Shieh T, et al. Internal packing of helical membrane proteins [J]. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 5796-5801.
    [37] Derler I, Fahrner M, Carugo O, et al. Increased hydrophobicity at the N-terminus/membrane interface impairs gating of the SCID-related ORAI1mutant [J]. J. Biol. Chem., 2009, 284: 15903-15915.
    [38] Czachorowski M, Lam-Yuk-Tseung S, Cellier M, et al. Transmembrane topology of the mammalian Slc11a2 iron transporter [J]. Biochemistry, 2009, 48: 8422-8434.
    [1] Feder J N, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis [J]. Nat. Genet., 1996, 13: 399-408.
    [2] Hirsch E C. Biochemistry of Parkinson’s disease with special reference to the dopaminergic systems [J]. Mol. Neurol., 1997, 94: 135-142.
    [3] Nakagama H, Heinrich G, Pelletier J, et al. Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product [J]. Mol. Cell. Biol., 1995, 15: 1489-1498.
    [4] Eng B H, Guerinot M L, Eide D, et al. Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins [J]. J. Membr. Biol., 1998, 166: 1-7.
    [5] Voss J, Hubbell W L, Kaback H R. Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling: application to the lactose permease of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 1995, 92: 12300-12303.
    [6] Müller-Berger S, Karbach D, Kang D, et al. Roles of histidine 752 and glutamate 699 in the pH dependence of mouse band 3 protein-mediated anion transport [J]. Biochemistry, 1995, 34: 9325-9332.
    [7] Courville P, Urbankova E, Rensing C, et al. Solute carrier 11 cation symport requires distinct residues in transmembrane helices 1 and 6 [J]. J. Biol. Chem., 2008, 283: 9651-9658.
    [8] Chill J H, Louis J M, Miller C, et al. NMR study of the tetrameric KcsA potassium channel in detergent micelles [J]. Protein Sci., 2006, 15: 684-698.
    [9] Carpenter T, Bond P J, Khalid S, et al. Self-assembly of a simple membrane protein: coarse-grained molecular dynamics simulations of the influenza M2 channel [J]. Biophys. J., 2008, 95: 3790-3801.
    [10] Aller S G, Eng E T, De Feo C J, et al. Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function [J]. J. Biol. Chem., 2004, 279: 53435-53441.
    [11] Opella S J, Marassi F M, Gesell J J, et al. Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy [J]. Nat. Struct. Biol., 1999, 6: 374-379.
    [12] Shindo K, Takahashi H, Shinozaki K, et al. Solution structure of micelle-bound H5 peptide (427-452): a primary structure corresponding to the pore formingregion of the voltage dependent potassium channel [J]. Biochim. Biophys. Acta, 2001, 1545: 153-159.
    [13] Nunukova V, Jelokhani-Niaraki M, Urbankova E, et al. Properties of transmembrane segment 6 of E.coli MntH transporter [J]. Biophys. J., 2009, 96: 327a.
    [14] Doyle D A, Cabral J M, Pfuetzner R A, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity [J]. Science, 1998, 280: 69-77.
    [15] Dutzler R, Campbell E B, Cadene M, et al. X-ray structure of a ClC chloride channel at 3.0?? reveals the molecular basis of anion selectivity [J]. Nature, 2002, 415: 287-294.
    [16] Nozaki Y, Tanford C. Examination of titration behavior [J]. Meth. Enzymol., 1967, 11: 715-734.
    [17] Bundi A, Wüthrich K. 1H-nmr parameters of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH [J]. Biopolymers, 1979, 18: 285-297.
    [18] Screpanti E, Hunte C. Discontinuous membrane helices in transport proteins and their correlation with function [J]. J. Struct. Biol., 2007, 159: 261-267.
    [19] Toyoshima C, Nakasako M, Nomura H, et al. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 ? resolution [J]. Nature, 2000, 405: 647-655.
    [20] Yernool D, Boudker O, Jin Y, et al. Structure of a glutamate transporter homologue from Pyrococcus horikoshii [J]. Nature, 2004, 431: 811-818.
    [21] Hunte C, Screpanti E, Venturi M, et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH [J]. Nature, 2005, 435: 1197-1202.
    [22] Yamashita A, Singh S K, Kawate T, et al. Crystal structure of a bacterial homologue of Na+/Cl- dependent neurotransmitter transporters [J]. Nature, 2005, 437: 215-223.
    [23] Arkin I T, Xu H, Jensen M ?, et al. Mechanism of Na+/H+ antiporting [J].Science, 2007, 317: 799-803.
    [24] Thompson A N, Posson D J, Parsa P V, et al. Molecular mechanism of pH sensing in KcsA potassium channels [J]. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 6900-6905.
    [1] Lam-Yuk-Tseung S, Govoni G, Forbes J, et al. Iron transport by Nramp2/DMT1: pH regulation of transport by 2 histidines in transmembrane domain 6 [J]. Blood, 2003, 101: 3699-3707.
    [2] Mackenzie B, Ujwal M L, Chang M H, et al. Divalent metal-ion transporter DMT1 mediates both H+-coupled Fe2+ transport and uncoupled fluxes [J]. Pflugers Arch, 2006, 451: 544-558.
    [3] Nozaki Y, Tanford C. Examination of titration behavior [J]. Meth. Enzymol., 1967,11: 715-734.
    [4] Bundi A, Wüthrich K. 1H-nmr parameters of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH, Biopolymers, 1979, 18: 285-297.
    [5] Kaback H R. Lac permease of Escherichia coli: on the path of the proton [J]. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 1990, 326: 425-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700