CD14和TLR2基因多态性与中国汉族人群结核病易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病(Tuberculosis, TB)是一种由结核分枝杆菌(Mycobacterium tuberculosis,MTB)引起的慢性消耗性传染病,曾被称为“白色瘟疫”。尽管全世界约有1/3的人曾感染结核分枝杆菌,但被感染人群中仅5-15%会在一生中患结核病(即发展成活动性结核),提示遗传因素造成的个体差异可能与结核病的发病倾向,即易感性,具有显著关联。遗传学研究表明,结核病的发病是多基因与环境因素共同作用的结果。中国具有远高于世界平均水平的结核病发病率,但中国汉族人群结核病的易感相关性研究却鲜见报道。因此,筛选结核病易感相关的基因,揭示其在中国汉族人群结核病发病中的作用,具有重要意义。
     单核/巨噬细胞系统在结核分枝杆菌的早期识别和结核病的发生中起着关键作用,我们推测单核/巨噬细胞表面受体基因多态性很有可能与结核病的易感性相关。因此,我们研究了单核/巨噬细胞表面分子Toll样受体及其信号通路位于胞外区的蛋白(最早直接接触结核分枝杆菌抗原的蛋白)——CD14、TLR2和TLR4/MD-2的基因多态性与中国汉族人群结核病的易感相关性,筛选中国汉族人群的结核病易感高风险因子。并进一步在体外试验和体内试验中探讨这些高风险因子引起结核病易感性增加的分子基础。本研究从宿主免疫系统分子遗传学的角度探讨结核病的发病机理,也提供了一种区分结核高风险人群,预防和综合控制结核病传播的新思路。
     本研究收集了符合中国卫生部结核诊断标准的中国汉族结核病例累计432例,健康对照累计404例。利用生物信息数据库查找“可疑”结核病相关基因多态性位点,共选取TLR2基因外显子区域的4个单核苷酸多态性位点(single nucleotide polymorphisms, SNPs)、内含子区域的1个微卫星多态性位点;TLR4基因外显子区域的2个SNPs位点;CDl4基因启动子区域的全部5个SNPs位点和LY96基因(编码MD-2蛋白)启动子区域的全部6个SNPs位点。采用PCR联合DNA序列测定法,对所选SNPs和微卫星位点进行基因型分型。然后,利用统计学方法分析基因多态性位点和结核病相关性,包括,对照组基因型Hardy-Weinberg遗传平衡检验;等位基因及基因型频率在结核病患与健康对照组中的分布差异;单一SNP与结核病之间在不同遗传模式下的相关性分析。由此筛选出结核病易感高风险基因多态性位点。结果表明:①TLR2基因编码区的4个多态性位点,Arg677Trp在中国人群中只有一种基因型(C/C),Arg753G1n出现频率仅为0.5%,且结核组与对照组没有显著差异(P>0.05)。余下2个位点Asn199Asn和Ser450Ser在病例和对照组中均属于多态位点(MAF>1%)。但这2个多态性位点的相关等位基因频率及基因型在健康组与结核病组间的分布不存在显著性差异(P>0.05),与中国汉族人群TB发病可能不存在显著相关性。TLR2基因微卫星多态性位点Mint2位点S、M和L等位基因频率在健康组与结核病患组间的分布不存在显著性差异(P>0.05)。但是,进一步的基因型分析显示S/M基因型在结核病组中的分布频率远高于健康对照组(P=0.01),S/L基因型在健康对照组中的分布频率远高于结核病组(P=0.007)。提示S/M基因型为中国汉族人群结核病的易感高风险因子,而S/L型则为中国汉族人群结核病的保护性因子。②TLR4外显子区域Asp299G1y和Thr399Ile位点在中国汉族人群中没有多态性分布,与中国汉族人群TB发病可能不存在显著相关性。③CD14基因C-159T和G-1145A等位基因频率已在健康组与结核病患组间的分布显示了显著差异(分别为P=0.01和P<0.0001)。进一步的基因型分析也表明-159TT和-1145GG基因型在结核病组中的分布频率远高于健康对照组(分别为P=0.027和P<0.0001)。提示CD14基因-159TT和-1145GG基因型为中国汉族人群结核病的易感高风险因子。④LY96基因启动子全部6个SNPs位点中,T-538G和T-475A在中国人群中只有一种基因型,其余4个位点在病例和对照组中均属于多态位点(MAF>1%)。但这4个多态性位点的等位基因及基因型频率在健康组与结核病组间的分布不存在显著性差异(P>0.05),与中国汉族人群结核病易感性可能不存在显著相关性。
     在进行了单个SNP与结核病的相关分析后,我们继续进行了基因内和基因间不同SNPs标记之间的连锁不平衡分析;基因内和基因间不同SNPs标记之间构建单体型,单体型频率估算以及不同单体型与结核病的相关性分析。由此筛选出结核病易感高风险基因多态性位点的单体型。结果表明:①TLR2基因Arg753G1n与Asn199Asn和Ser450Ser之间存在显著连锁(D’>0.75)。CD14基因G-1145A和C-159T位点之间存在一定的连锁相关性(D’=0.6685)。LY96基因C-1625G、C-1201G、G-1174T和A-1064G位点之间存在很强的连锁相关性(D’>0.75)。②根据连锁不平衡分析结果,我们构建了SNPs组成的单体型,并分析了单体型与结核病的相关性。结果显示:TLR2基因Arg753G1n与Asn199Asn和Ser450Ser构成的单体型,LY96基因C-1625G、C-1201G、G-1174T和A-1064G构成的单体型均与结核病不存在显著关联。CD14基因G-1145A和C-159T构成的单体型与结核病存在极显著关联(P<0.0001)。③没有发现基因间SNPs存在强连锁关系,构成的单体型与结核病也没有显著关联。
     针对筛选出的结核病相关高风险基因多态性位点,采用流式细胞技术和酶联免疫吸附实验检测目的基因在结核病患及健康对照血液单核细胞表面和血清中的表达。分析结核病易感高风险SNPs位点各基因型及单体型影响基因体内表达,最终影响结核病易感性的分子机理。结果表明:①对于筛选出的结核病显著相关位点TLR2基因Mint2位点,在结核病患组和健康对照组中,S/M基因型样本TLR2在CD14+PMBCs膜上的表达量均值显著低于S/L基因型(P=0.001,P=0.002)和M/M基因型(P=0.016,P=0.038)。②对于结核病显著相关位点CD14基因CDl4 C-159T和G-1145A位点,在结核病患组和健康对照组中,尽管单一SNP位点各基因型样本CD14在血清中和PMBCs膜上的表达量均值没有表现出显著差异(P>0.05)。但这2个位点构成的TA和CG单体型样本CD14在血清中和PMBCs膜上的表达量均值显著高于CA单体型(P<0.05)。结核病患组的CD14表达量均值也显著高于健康对照组(P<0.001)。
     针对显示了与结核病易感性极其显著相关性的CD14 C-159T和G-1145A位点单体型(如CG;OR=13.7,P<0.0001),我们进一步在体外构建含各单体型的CD14启动子的表达质粒,转染U937细胞,利用荧光素酶报告基因的表达,分析CD14单体型影响CD14启动子的功能,最终影响结核病易感性的分子机理。结果表明:pGL3-TA和pGL3-CG能够有效刺激荧光报告基因的表达,荧光强度显著高于pGL3-CA(分别为P=0.013和P=0.0015)。提示TA、CG单体型CD14基因启动子强度显著高于CA单体型,并充分支持了体内实验结果。
     结论:(1)本研究首次对TLR2基因外显子区域的4个SNPs位点、内含子区域的1个微卫星多态性位点与中国汉族人群结核病的易感性进行关联研究。结果显示与国外人群不同,中国汉族人群外显子区域4个SNPs与TB发病没有显著关联。但基因统计学试验和临床样本实验表明,内含子区域的1个微卫星多态性位点与中国汉族人群结核病的易感性具有显著关联。(2)首次对TLR4基因外显子区域的2个SNPs位点与中国汉族人群结核病的易感性进行关联研究,结果显示与国外人群不同,中国汉族人群外显子区域2个SNPs与TB发病没有显著关联。(3)首次研究了LY96基因启动子区域全部6个SNPs位点与结核病的相关性,结果发现LY96启动子区域基因多态性与结核病没有显著相关性。(4)首先发现CD14基因G-1145ASNP位点为1个新的结核病易感相关位点,且与另一个结核病易感相关位点CD14C-159T具有联合效应,构成的单体型与结核病易感性具有极显著的相关性(P<0.001)。进一步的体内实验(临床样本)和体外实验(基因转染)结果表明,CD14基因G-1145A SNP位点的单体型通过影响基因启动子强度,影响CD14在结核病患体内表达水平,最终影响了结核病的易感性。
Tuberculosis (TB) is a serious infectious disease caused by Mycobacterium tuberculosis (MTB). This chronic wasting disease was once called "white plague", leading the death rates among all infectious diseases around the world. Although about a third of the world's population is infected with Mycobacterium tuberculosis, only 5-15% of those develop clinical active TB during their lifetime. Some evidence suggests that certain genetic factors may involve in innate immunity and play important roles in susceptibility to TB. China has a much higher incidence of tuberculosis than the world average level. Whether the genetic factors increase the TB disease susceptibility in Chinese or not is still less known. The aim of the present study was to investigate whether genes are associated with the susceptibility to TB in a Chinese Han population.
     Monocyte/macrophage system plays a key role in the early identification of Mycobacterium tuberculosis and the incidence of tuberculosis. Therefore, we studied the monocyte/macrophage cell surface molecules-Toll-like receptors and their signaling pathway proteins in the extracellular which directly contact with the protein antigen of Mycobacterium tuberculosis in the frist stage. CD14, TLR2 and TLR4/MD-2 gene polymorphisms which concern with the susceptibility to TB were selected and identified as risk factors for TB in the Chinese Han population. Then further trials were done on the molecular basis of these high risk factors causing the increase of susceptibility to TB. Characteristic of this study was viewing molecular genetics in the host immune system to understand the pathogenesis of TB. It also provides a distinction between high-risk population tuberculosis, and a new idea in prevention and control of TB.
     Blood samples were obtained from 432 unrelated cases, diagnosed with TB. All patients were histological confirmed with criteria of the Chinese Ministry of Health on Tuberculosis. Control DNAs were obtained from 404 unaffected individuals of Han Chinese. According to references, suspicious TB-related gene polymorphisms were selected by using biological information database。In this study, four SNPs in the exon region of TLR2 gene, a microsatellite polymorphism in the intron regions of TLR2 gene; two SNPs in the exon region of TLR4 gene; all the 5 SNPs in the promoter region of CD 14 gene; and all the 6 SNPs in the promoter region of LY96 gene (encoding MD-2 protein) were selected. The polymorphisms were detected by polymerase chain reaction (PCR) method and followed by direct sequencing. Statistical analysis was as follows: The deviation from Hardy-Weinberg equilibrium (HWE) was examined in controls by the x2 test. Based on the logistic regression method, the case-control association of genotypes in five inheritance models (codominant, dominant, recessive, overdominant, log-additive) was tested for all the single SNPs. Our data showed that:①Different from foreign reports, the TLR2 Arg677Trp polymorphism, was not observed in either group. The TLR2 Arg753Gln polymorphism occur at very low frequency in the patients with TB (0.49%, compared with 0.49% in the control subjects, P= 0.094). No significant genetic association between 2 coding region SNPs (Asn199Asn and Ser450Ser) and TB were observed in the experiment (P> 0.05). No association in allelic polymorphism between control subjects and TB patients was found. However, the S/M genotype of the microsatellite polymorphism was more frequent in TB patients than in healthy controls (P= 0.01), while the S/L genotype was more popular in controls than in TB patients (P=0.007). The data suggests that the S/M genotype of the microsatellite (GT)n polymorphisms in intron 2 of the TLR2 gene may increase the susceptibility to tuberculosis in Chinese people, and the genotype S/L may act as a negative risk factor.②No Asp299Gly or Thr399Ile SNP in TLR4 was found from either the tuberculosis group or the healthy control group, indicating there was no significant association between these SNPs in the TLR4 gene and the susceptibility to TB.③The C allele of CD14 C-159T and G allele of CD14 C-159T and G allele of CD14 G-1145A were significantly associated with TB (P= 0.001 and P< 0.0001, respectively). Moreover, there was also significant association between the CC genotype of CD14 C-159T or GG genotype of CD14 G-1145A and TB (P= 0.027 and P x 0.001, respectively). Our results suggests that SNPs CD14 C-159T and G(-1145)A might be risk factors for the development of TB.④No genetic variation was observed at positions-538 and-475 of LY96 gene. For the orther SNPs-1625,-1201,-1174 and-1064, no significant differences between patients and controls were observed in allele, haplotype or genotype distribution (P> 0.05). Our results suggest that polymorphisms in the LY96 promoter region are not associated with TB, and may not play a major role in susceptibility to TB in a Chinese population.
     Pairwise Linkage Disequilibrium (LD) was calculated for the cases and controls in Han Chinese population. Constructed the haplotype blocks based on the results of LD analyses.The association analysis of the haplotypes with TB was similar to that of genotypes of single SNP by logistic regression. The significance of all these tests was 0.05.①We found strong LD (D'> 0.75) between some pairs of the markers, such as Arg753Gln, Asn199Asn and Ser450Ser in the TLR2 gene, C-1625G、C-1201G、G-1174T和A-1064G in the LY96 gene. Positions G-1145A and C-159T in the CD14 gene were also found to be in tight linkage disequilibrium (D'= 0.6685).②Therefore, we constructed haplotype blocks consisting of some nearby SNPs which were in strong LD. And the association between these haplotypes and the susceptibility of TB was also analysised. Our data showed that the haplotypes constructed by Arg753Gln/Asn199Asn/Ser450Ser and C-1625G/C-1201G/G-1174T/A-1064G had no significant association with TB. However, haplotype-specific association analysis revealed that the G-1145A/C-159T haplotype block showed significant association with TB (P< 0.0001).③In addition, no significant linkage was found in SNPs between different genes and no significant association was found in haplotype constructed by SNPs between different genes.
     In order to evaluate the influence of TB-related gene polymorphisms on gene expression in vivo, Flow cytometry and enzyme-linked immunosorbent assay were used to detect target gene expression in blood mononuclear cell surface and serum.①The expression of TLR2 was lower in healthy volunteers possessing the S/M genotype compared to those with the S/L genotype (P= 0.002) or with the M/M genotype (P= 0.038). The expression of TLR2 was lower in TB patients with the S/M genotype compared to patients with the S/L genotype (P= 0.001) or with the M/M genotype (P= 0.016).②The levels of sCD14 in the sera of TB patients were also higher than those in the control subjects (mean level of concentration, P< 0.001). In neither the patients with pulmonary TB nor the control subjects was there any association between the G-1145A and C-159T genotype and the levels of mCD14 and sCD14 (P> 0.05). However, the TA and CG haplotype of the CD14 gene had much higher expression level than CA haplotype in both PBMCs and serum (P< 0.05). In additon, before the patients with TB started anti-TB treatment, the levels of mCD14 on monocytes were higher than those in the control subjects (P< 0.001, respectively).
     For the haplotypes which showed highly significant correlation between CD 14 C-159T/G-1145A loci haplotypes and susceptibility to tuberculosis (such as CG; OR= 13.7, P<0.0001), we further constructed the CD14 promoter containing such haplotypes in vitro. The expression plasmids were transfected to U937 cells. By using luciferase reporter gene expression, haplotypes affect the function of CD14 promoter were analysised. The results showed that:pGL3-TA and pGL3-CG can be effective in stimulating the expression of fluorescent reporter gene, whose fluorescence intensity was significantly higher than pGL3-CA (respectively, P= 0.013 and P= 0.0015). Tips CD 14 gene promoter which contain TA, CG haplotypes was significantly higher than that contain CA haplotype. The data fully supported the in vivo test results.
     Conclusion:(1) This is the first time to study the association between 4 SNPs in the exon region of TLR2 gene, a microsatellite polymorphism in the intron 2 regions of TLR2 gene in Han Chinese population. Different with foreign groups, there were no significant genetic association between 4 SNPs and susceptibility to TB in Han Chinese population. However, significant genetic association between the microsatellite polymorphism in the intron 2 regions of TLR2 gene and TB was observed. (2) This is the first time to study the association between 2 SNPs in the exon region of TLR4 gene in Han Chinese population. Different with foreign groups, there were no significant genetic association between 2 SNPs and susceptibility to TB in Han Chinese population. (3) This is the first time to study the association between 6 SNPs in the promoter region of LY96 gene worldwide. Our results suggest that polymorphisms in the LY96 promoter region are not associated with TB, and may not play a major role in susceptibility to TB. (4) Our results suggest that the CD14 G(-1145)A polymorphism might be a new risk factor for TB. This SNP has strong linkage with CD14 C-159T, and the haplotype constructed by these 2 SNPs has extremly significant association with susceptibility to TB (P< 0.0001). Further in vivo (clinical samples) and the in vitro test (gene transfer) results showed that, CD14 Gene SNP loci haplotypes influenced promoter strength, the expression of CD 14 levels of TB patients, and ultimately the TB susceptibility.
引文
1. Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, Miyake K, Bihl F, Ryffel B. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol 2002; 169(6):3155-3162
    2. Abreu MT, Arnold ET, Thomas LS, Gonsky R, Zhou Y, Hu B, Arditi M. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem 2002; 277(23):20431-20437
    3. Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2(8):675-680
    4. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4):783-801
    5. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol.2004; 4(7):499-511
    6. Aleman M, Schierloh P, de la Barrera SS, Musella RM, Saab MA, Baldini M, et al. Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving toll-like receptor 2 and p38 mitogen protein kinase in tuberculosis patients. Infect Immun 2004; 72(9):5150-5158
    7. Andrews AH, Blowey RW, Boyd H, Eddy RG. Bovine Medicine:Diseases and Husbandry of Cattle,2nd. Oxford:Wiley-Blackwell; 2004. pp.205-213
    8. Ben-Ali M, Barbouche MR, Bousnina S, Chabbou A, Dellagi K. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol 2004;11(3):625-626
    9. Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K. Genetic analysis of host resistance:toll-like receptor signaling and immunity at large. Annu Rev Immunol 2006; 24:353-38
    10. Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S, Leifer CA, Tryggvason K, Gordon S, Russell DG MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 2009; 5(6):e1000474
    11. Branger J, Leemans JC, Florquin S, Weijer S, Speelman P, Van Der Poll T. Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int Immunol 2004; 16(3):509-516
    12. Branger J, Leemans JC, Florquin S, Weijer S, Speelman P, Van Der PT. Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int Immunol 2004; 16(3):509-516
    13. Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, Spallek R, Singh M, Arditi M. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory.signals. J Biol Chem 2005; 280(22):20961-20967
    14. Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung Q Brock R, Akira S, Ulmer AJ. Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 2005; 35(1):282-289
    15. Buwitt-Beckmann U, Heine H, Wiesmuller KH, Jung G, Brock R, Akira S, Ulmer AJ. TLR1-and TLR6-independent recognition of bacterial lipopeptides. J Biol Chem 2006; 281:9049-9057
    16. Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW, Rodrigues F. Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis 2008; 197(4):618-621
    17. Cheng PL, Eng HL, Chou MH, You HL, Lin TM. Genetic polymorphisms of viral infection-associated Toll-like receptors in Chinese population. Transl Res 2007; 150(5):311-318
    18. Clementi M, Di Gianantonio E. Genetic susceptibility to infectious diseases. Reprod Toxicol 2006; 21(4):345-349
    19. Comstock G. Tuberculosis in twins:a re-analysis of the Prophit survey. Am Rev Respir Dis 1978; 117(4):621-624
    20. Cooke GS, Hill AV. Genetics of susceptibility to human infectious disease. Nat Rev Genet 2001; 2(12):967-977
    21. Davila S, Hibberd ML, Hari Dass R, Wong HE, Sahiratmadja E, Bonnard C, Alisjahbana B, Szeszko JS, Balabanova Y, Drobniewski F, van Crevel R, van de Vosse E, Nejentsev S, Ottenhoff TH, Seielstad M. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet 2008; 4(10):e1000218
    22. Delgado JC, Baena A, Thim S, Goldfeld AE. Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 2002; 186(10):1463-1468
    23. Ding S, Li L, Zhu X. Polymorphism of the interferon-gamma gene and risk of tuberculosis in a southeastern Chinese population. Hum Immunol 2008; 69(2): 129-133
    24. Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, Boom WH, Harding CV. TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol 2009; 258(1):29-37
    25. Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J, et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 2004;164(1):49-57
    26. Dye C. Global epidemiology of tuberculosis. Lancet 2006; 367(9514):938-940
    27. Dziarski R, Gupta D. Peptidoglycan recognition in innate immunity. J Endotoxin Res 2005;11(5):304-310
    28. Emingil G, Berdeli A, Baylas H, Saygan BH, Gurkan A, Kose T, Atilla G. Toll-like receptor 2 and 4 gene polymorphisms in generalized aggressive periodontitis. J Periodontol 2007; 78(10):1968-1977
    29. Everett B, Cameron B, Li H, Vollmer-Conna U, Davenport T, Hickie I, et al. Polymorphisms in Toll-like receptors-2 and-4 are not associated with disease manifestations in acute Q fever. Genes Immun.2007; 8(8):699-702
    30. Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, et al. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 2000; 275(15):11058-11063.
    31. Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, van der Ven AJ. The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. Aids 2007; 21(10):1375-1377
    32. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, Schreiber R, Mak TW, Bloom BR. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 1995; 2(6):561-572
    33. Folwaczny M, Glas J, Torok HP, Limbersky O, Folwaczny C. Toll-like receptor (TLR) 2 and 4 mutations in periodontal disease. Clin Exp Immunol 2004; 135(2):330-335
    34. Folwaczny M, Glas J, Torok HP, Fricke K, Folwaczny C. The CD14-159C-to-T promoter polymorphism in periodontal disease. J Clin Periodontol 2004; 31(11):991-995
    35. Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 2004; 114(12):1790-1799
    36. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225-2229
    37. Gibot S, Cariou A, Drouet L, Rossignol M, Ripoll L. Association between a genomic polymorphism within the CD 14 locus and septic shock susceptibility and mortality rate. Crit Care Med.2002; 30(5):969-973
    38. Greenwood CMT, Fujiwara M, Boothroyd LJ, Miller MA, Frappier D, Fanning EA, Schurr E, Morgan K. Linkage of tuberculosis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal Canadian family. Am J Hum Genet 2000; 67(2):405-416
    39. Gu W, Dong H, Jiang DP, et al. Functional significance of CD14 promoter polymorphisms and their clinical relevance in a Chinese Han population. Crit Care Med 2008; 36(8):2274-2280
    40. Gu W, Shan YA, Zhou J, Jiang DP, Zhang L, Du DY, Wang ZG, Jiang JX. Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann Surg 2007; 246(1):151-158
    41. Hartel C, Rupp J, Hoegemann A, et al.159C>T CD14 genotype—functional effects on innate immune responses in term neonates. Hum Immunol 2008; 69(6):338-443 Han D, She W, Zhang L. Association of the CD 14 gene polymorphism C-159T with allergic rhinitis. Am J Rhinol Allergy 2010; 24(1):e1-3
    42. Hartel C, Rupp J, Hoegemann A, et al.159C>T CD 14 genotype—functional effects on innate immune responses in term neonates. Hum Immunol 2008; 69(6):338-443
    43. Hawn TR, Dunstan SJ, Thwaites GE, Simmons CP, Thuong NT, Lan NT, et al. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J Infect Dis 2006; 194(8):1127-1134
    44. Heldwein KA, Fenton MJ. The role of Toll-like receptors in immunity against mycobacterial infection. Microbes Infect 2002; 4(9):937-44.
    45. Hill PC, Brookes RH, Fox A, Fielding K, Jeffries DJ, Jackson-Sillah D, Lugos MD, Owiafe PK, Donkor SA, Hammond AS, Otu JK, Corrah T, Adegbola RA, McAdam KP. Large-scale evaluation of enzyme-linked immunospot assay and skin test for diagnosis of Mycobacterium tuberculosis infection against a gradient of exposure in The Gambia. Clin Infect Dis 2004; 38(7):966-973
    46. Hoheisel G, Zheng L, Teschler H, Striz I, Costabel U. Increased soluble CD14 levels in BAL fluid in pulmonary tuberculosis. Chest 1995; 108(6):1614-1616.
    47. Huang LY, Ishii KJ, Akira S, Aliberti J, Golding B. Thl-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. J Immunol 2005; 175:3964-3970
    48. Ibeagha-Awemu EM, Lee JW, Ibeagha AE, Zhao X. Bovine CD14 gene characterization and relationship between polymorphisms and surface expression on monocytes and polymorphonuclear neutrophils. BMC Genet 2008; 9:50
    49. Jiang JX, Chen YH, Xie GQ, et al. Intra-pulmonary expression of scavenger receptor and CD 14 and their relationship with local inflammatory responses in endotoxemia in mice. World J Surg 2003; 27:1-9
    50. Jo EK, Yang CS, Choi CH, Harding CV. Intracellular signalling cascades regulating innate immune responses to Mycobacteria:branching out from Toll-like receptors. Cell Microbiol 2007; 9(5):1087-1098
    51. Jones BW, Heldwein KA, Means TK, Saukkonen JJ, Fenton MJ. Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann Rheum Dis 2001; 60 Suppl 3:iii6-12
    52. Juffermans NP, Verbon A, van Deventer SJ, et al. Serum concentrations of lipopolysaccharide activity-modulating proteins during tuberculosis. J Infect Dis 1998; 178(6):1839-1842
    53. Kamath AB, Alt J, Debbabi H, Behar SM. Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect Immun 2003; 71(7):4112-4118
    54. Kang HJ, Choi YM, Chae SW, Woo JS, Hwang SJ, Lee HM. Polymorphism of the CD14 gene in perennial allergic rhinitis. Int J Pediatr Otorhinolaryngol 2006; 70(12):2081-2085
    55. Kopp EB, Medzhitov R. The Toll-receptor family and control of innate immunity. Curr Opin Immunol 1999; 11(1):13-18
    56. Lawn SD, Labeta MO, Arias M, Acheampong JW, Griffin GE. Elevated serum concentrations of soluble CD 14 in HIV- and HIV+ patients with tuberculosis in Africa:prolonged elevation during anti-tuberculosis treatment. Clin Exp Immunol 2000; 120(3):483-487
    57. Leulier F, Lemaitre B. Toll-like receptors—taking an evolutionary approach. Nat Rev Genet 2008; 9(3):165-178
    58. Leung TF, Tang NL, Sung YM, et al. The C-159T polymorphism in the CD14 promoter is associated with serum total IgE concentration in atopic Chinese children. Pediatr Allergy Immunol 2003; 14(4):255-260
    59. Leung TF, Tang NL, Wong GW, et al. CD14 and toll-like receptors:Potential contribution of genetic factors and mechanisms to inflammation and allergy. Curr Drug Targets Inflamm Allergy 2005; 4(2):169-175
    60. LeVan TD, Essen SV, Romberger DJ, et al. Polymorphisms in the CD 14 gene associated with pulmonary function in farmers. Am J Respir Crit Care Med 2005; 171(7):773-779
    61. Liang XH, Cheung W, Heng CK, et al. CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes, Pharmacogenet. Genomics 2006; 16(4):229-36
    62. Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 2002; 162(9):1028-1032
    63. Lykouras D, Sampsonas F, Kaparianos A, Karkoulias K, Tsoukalas G, Spiropoulos K. Human genes in TB infection:their role in immune response. Monaldi Arch Chest Dis 2008; 69(1):24-31
    64. Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One 2007; 2(12):e1318
    65. Means TK, Jones BW, Schromm AB, Shurtleff BA, Smith JA, Keane J, Golenbock DT, Vogel SN, Fenton MJ. Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J Immunol 2001; 166(6):4074-4082
    66. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999; 163(7):3920-3927
    67. Medzhitov R, Janeway CA, Jr. Innate immunity:the virtues of a nonclonal system of recognition. Cell 1997; 91(3):295-298
    68. Merx S, Neumaier M, Wagner H, Kirschning CJ, Ahmad-Nejad P. Characterization and investigation of single nucleotide polymorphisms and a novel TLR2 mutation in the human TLR2 gene. Hum Mol Genet 2007; 16(10):1225-1232
    69. Misch EA, Hawn TR. Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond) 2008; 114(5):347-360
    70. Miyake K. Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res 2006; 12(4):195-204
    71. Moller M, de Wit E, Hoal EG. Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol Med Microbiol 2009; 2010; 58(1):3-26
    72. Moore CE, Segal S, Berendt AR, Hill AV, Day NP. Lack of association between Toll-like receptor 2 polymorphisms and susceptibility to severe disease caused by Staphylococcus aureus. FEMS Immunol Med Microbiol 2010; 58(1):3-26
    73. Morr M, Takeuchi O, Akira S, Simon MM, Muhlradt PF. Differential recognition of structural details of bacterial lipopeptides by toll-like receptors. Eur J Immunol 2002; 32(12):3337-3347
    74. Mucha R, Bhide MR, Chakurkar EB, Novak M, Mikula I Sr. Toll-like receptors TLR1, TLR2 and TLR4 gene mutations and natural resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle. Vet Immunol Immunopathol 2009; 128(4):381-388
    75. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 2002; 3(7):667-672
    76. Naranjo V, Acevedo-Whitehouse K, Vicente J, Gortazar C, de la Fuente J. Influence of methylmalonyl-CoA mutase alleles on resistance to bovine tuberculosis in the European wild boar (Sus scrofa). Anim Genet 2008; 39(3):316-320
    77. National Center for Biotechnology Information (NCBI). Genomes: http://www.ncbi.nlm.nih.gov/Genomes 2010
    78. Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA. Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A 2002; 99(3):1503-1508
    79. Nejentsev S, Thye T, Szeszko JS, Stevens H, Balabanova Y, Chinbuah AM, et al. Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat Genet 2008; 40(3):261-262
    80. Newport MJ, Allen A, Awomoyi AA, Dunstan SJ, McKinney E, Marchant A, Sirugo G. The toll-like receptor 4 Asp299Gly variant:no influence on LPS responsiveness or susceptibility to pulmonary tuberculosis in The Gambia. Tuberculosis (Edinb) 2004; 84(6):347-352
    81. Nishitani C, Takahashi M, Mitsuzawa H, Shimizu T, Ariki S, Matsushima N, Kuroki Y. Mutational analysis of Cys(88) of Toll-like receptor 4 highlights the critical role of MD-2 in cell surface receptor expression. Int Immunol 2009; 21(8):925-934
    82. Noguchi E, Nishimura F, Fukai H, Kim J, Ichikawa K, Shibasaki M, Arinami T. An association study of asthma and total serum immunoglobin E levels for Toll-like receptor polymorphisms in a Japanese population. Clin Exp Allergy 2004; 34(2):177-183
    83. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, et al. The Arg753Gln polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004; 23(2):219-223
    84. Okusawa T, Fujita M, Nakamura J, Into T, Yasuda M, Yoshimura A, Hara Y, Hasebe A, Golenbock DT, Morita M, Kuroki Y, Ogawa T, Shibata K. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by toll-like receptors 2 and 6. Infect Immun 2004; 72(3):1657-1665
    85. Olerup O, Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours:an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 1992; 39(5):225-235
    86. Olesen R, Wejse C, Velez D R, et al. DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun 2007; 8(6):456-467
    87. Pacheco E, Fonseca C, Montes C, Zabaleta J, Garcia LF, Arias MA. CD14 gene promoter polymorphism in different clinical forms of tuberculosis. FEMS Immunol Med Microbiol 2004; 40(3):207-213
    88. Qiu L, Huang D, Chen CY, Wang R, Shen L, Shen Y, et al. Severe tuberculosis induces unbalanced up-regulation of gene networks and overexpression of IL-22, MIP-lalpha, CCL27, IP-10, CCR4, CCR5, CXCR3, PD1, PDL2, IL-3, IFN-beta, TIM1, and TLR2 but low antigen-specific cellular responses. J Infect Dis 2008; 198(10):1514-1519
    89. Quesniaux V, Fremond C, Jacobs M, Parida S, Nicolle D, Yeremeev V, et al. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect 2004; 6(10):946-959
    90. Reiling N, Holscher C, Fehrenbach A, Kroger S, Kirschning CJ, Goyert S, et al. Cutting edge:Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 2002; 169(7):3480-3484
    91. Rocha-Ramirez LM, Estrada-Garcia I, Lopez-Marin LM, Segura-Salinas E, Mendez-Aragon P, Van Soolingen D, et al. Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class Ⅱ expression in human macrophages. Tuberculosis (Edinb) 2008; 88(3):212-220
    92. Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, Caballero-Olin G, Arce-Mendoza AY. CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J Infect Dis 2007; 196(11):1698-1706
    93. Rosman MD, Oner-Eyupoglu AF. Clinical presentation and treatment of tuberculosis. In:Fishman AP, eds. Fishman's Pulmonary Diseases and Disorders. New York, USA:McGraw-Hill,1998:pp 2483-2502
    94. Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet 2003;361:1871-2.
    95. Rousseau F, Rehel R, Rouillard P, DeGranpre P, Khandjian EW. High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum Mutat 1994; 4(1):51-54
    96. Sandanger O, Ryan L, Bohnhorst J, Iversen AC, Husebye H, Halaas O, Landro L, Aukrust P, Froland SS, Elson G, Visintin A, Oktedalen O, Damas JK, Sundan A, Golenbock D, Espevik T. IL-10 enhances MD-2 and CD 14 expression in monocytes and the proteins are increased and correlated in HIV-infected patients. J Immunol 2009; 182(1):588-595
    97. Schnare M, Rollinghoff M, Qureshi S. Toll-like receptors:sentinels of host defence against bacterial infection. Int Arch Allergy Immunol 2006; 139(1):75-85
    98. Schroder NW, Hermann C, Hamann L, Gobel UB, Hartung T, Schumann RR. High frequency of polymorphism Arg753Gln of the Toll-like receptor-2 gene detected by a novel allele-specific PCR. J Mol Med 2003; 81(6):368-372
    99. Schroder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 2005; 5(3):156-164
    100.Shams H, Wizel B, Lakey D L, et al. The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunol Med Microbiol 2003; 36(1-2):63-69
    101.Shim TS, Turner OC, Orme IM. Toll-like receptor 4 plays no role in susceptibility of mice to Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2003; 83(6):367-371
    102.Skamene E, Schurr E, Gros P. Infection Genomics:Nrampl as major determinant of natural resistance to intracellular infections. Annu Rev Med 1998; 49:275-287
    103.Sousa AO, Salem JI, Lee FK, Vercosa MC, Cruaud P, Bloom BR, Lagrange PH, Hugo DL. An epidemic of tuberculosis with a high rate of tuberculin anergy among a population previously unexposed to tuberculosis, the Yanomami Indians of the Brazilian Amazon. Proc Natl Acad Sci USA 1997; 94(24):13227-13232
    104.Strapagiel D, Kasztalska K, Druszczynska M, Kowalewicz-Kulbat M, Vrba A, Matusiak A, et al. Monocyte response receptors in BCG driven delayed type hypersensitivity to tuberculin. Folia Histochem Cytobiol 2008; 46(3):353-359
    105.Sugawara I, Yamada H, Li C, Mizuno S, Takeuchi O, Akira S. Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol 2003; 47(5):327-336
    106.Sugawara I, Yamada H, Mizuno S, Takeda K, Akira S. Mycobacterial infection in MyD88-deficient mice. Microbiol Immunol 2003; 47(1):841-847
    107. Sutherland AM, Walley KR, Russell JA. Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 2005; 33(3):638-644
    108.Tabel Y, Berdeli A, Mir S. Association of TLR2 gene Arg753Gln polymorphism with urinary tract infection in children. Int J Immunogenet 2007; 34(6):399-405
    109.Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21:335-376
    110.Takeshita F, Leifer CA, Gursel I, Ishii KJ, Takeshita S, Gursel M, Klinman DM. Cutting edge:Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 2001; 167(7):3555-3558
    111.Texereau J, Chiche JD, Taylor W, Choukroun G, Comba B, Mira JP. The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin Infect Dis 2005; 41 Suppl 7:S408-15.
    112.The International HapMap Consortium. The International HapMap Project. Nature 2003; 426(6968):789-796
    113.Tissieres P, Dunn-Siegrist I, Schappi M, Elson G, Comte R, Nobre V, Pugin J. Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria. Blood 2008; 111(4):2122-2131
    114.Triantafilou M, Triantafilou K. Lipopolysaccharide recognition:CD14, TLRs and the LPS-activation cluster. Trends Immunol 2002; 23(6):301-304
    115.Tsolaki AG. Innate immune recognition in tuberculosis infection. Adv Exp Med Biol 2009; 653:185-197
    116.Ulevitch R J, Tobias P S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995; 13:437-457
    117.Ulevitch RJ:Toll gates for pathogen selection. Nature 1999; 401:755-756
    118.Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 1999; 96(25):14459-14463
    119.Velez DR, Wejse C, Stryjewski ME, Abbate E, Hulme WF, Myers JL, Estevan R, Patillo SG, Olesen R, Tacconelli A, Sirugo G, Gilbert JR, Hamilton CD, Scott WK. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet 2010; 127(1):65-73
    120.Veltkamp M, Wijnen PA, van Moorsel CH, Rijkers GT, Ruven HJ, Heron M, et al. Linkage between Toll-like receptor (TLR) 2 promotor and intron polymorphisms: functional effects and relevance to sarcoidosis. Clin Exp Immunol 2007; 149(3):453-462
    121.Vercelli D, Baldini M, Martinez F. The monocyte/IgE connection:may polymorphisms in the CD 14 gene teach us about IgE regulation? Int Arch Allergy Immunol 2001; 124(1-3):20-24
    122.Vercelli D, Baldini M, Stern D, et al. CD14:A bridge between innate immunity and adaptive IgE responses. J Endotoxin Res 2001; 7(1):45-48
    123.Verstak B, Hertzog P, Mansell A. Toll-like receptor signalling and the clinical benefits that lie within. Inflamm Res 2007; 56(1):1-10
    124.Visintin A, Iliev DB, Monks BG, Halmen KA, Golenbock DT. Md-2. Immunobiology 2002; 211(6-8):437-447
    125.Wang F, Tahara T, Arisawa T, Shibata T, Nakamura M, Fujita H, Iwata M, Kamiya Y, Nagasaka M, Takahama K, Watanabe M, Hirata I, Nakano H. Genetic polymorphisms of CD14 and Toll-like receptor-2 (TLR2) in patients with ulcerative colitis. J Gastroenterol Hepatol 2007; 22(6):925-929
    126.Wetzler LM. The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine 2003; 21 Suppl 2:S55-60.
    127.WHO Website. World Health Organization. Programs and projects. Tuberculosis. The Stop TB Strategy 2008
    128.Wieland CW, van der Windt GJ, Wiersinga WJ, Florquin S, van der Poll T. CD14 contributes to pulmonary inflammation and mortality during murine tuberculosis. Immunology 2008; 125(2):272-279
    129.Wolfs TQ Dunn-Siegrist I, van't Veer C, Hodin CM, Germeraad WT, van Zoelen MA, van Suylen RJ, Peutz-Kootstra CJ, Elson Q Pugin J, Buurman WA. Increased release of sMD-2 during human endotoxemia and sepsis:a role for endothelial cells. Mol Immunol 2008; 45(11):3268-3277
    130.World Health Organization (WHO). The World Health Report 2007:Changing History. Geneva:WHO; 2007
    131.Yim JJ, Lee HW, Lee HS, Kim YW, Han SK, Shim YS, et al. The association between microsatellite polymorphisms in intron Ⅱ of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun 2006; 7(2):150-155
    132.Yoon HJ, Shin JH, Yang SH, et al:Association of the CD14 gene-159C polymorphism with progression of IgA nephropathy. J Med Genet 2003; 40(2):104-108
    133.Yoon HJ, Choi JY, Kim CO, Park YS, Kim MS, Kim YK, et al. Lack of Toll-like receptor 4 and 2 polymorphisms in Korean patients with bacteremia. J Korean Med Sci 2006;21(6):979-982
    134.Zafra G, Florez O, Morillo CA, Echeverria LE, Martin J, Gonzalez CI. Polymorphisms of toll-like receptor 2 and 4 genes in Chagas disease. Mem Inst Oswaldo Cruz 2008; 103(1):27-30
    135.Zhang G, Goldblatt J, LeSouef PN. Does the relationship between IgE and the CD14 gene depend on ethnicity? Allergy 2008; 63(11):1411-141
    1. Stewart, G.R., et al., Effect of deletion or overexpression of the 19-kilodalton lipoprotein Rv3763 on the innate response to Mycobacterium tuberculosis. Infect Immun,2005.73(10):p.6831-7.
    2. Pai, R.K., et al., Prolonged toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages. Infect Immun,2004.72(11):p. 6603-14.
    3. Hovav, A.H., et al., Mitogenicity of the recombinant mycobacterial 27-kilodalton lipoprotein is not connected to its antiprotective effect. Infect Immun,2004.72(6):p. 3383-90.
    4. Drage, M.G., et al., TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol, 2009.258(1):p.29-37.
    5. Jung, S.B., et al., The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect Immun,2006.74(5):p.2686-96.
    6. Gilleron, M., V.F. Quesniaux, and G Puzo, Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus Calmette Guerin and mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J Biol Chem,2003.278(32):p.29880-9.
    7. Torrelles, J.B., A.K. Azad, and L.S. Schlesinger, Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J Immunol,2006.177(3):p.1805-16.
    8. Wieland, C.W., et al., Non-mannose-capped lipoarabinomannan induces lung inflammation via toll-like receptor 2. Am J Respir Crit Care Med,2004.170(12):p. 1367-74.
    9. Quesniaux, V.J., et al., Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol,2004.172(7):p.4425-34.
    10. Doz, E., et al., Acylation determines the toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J Biol Chem,2007. 282(36):p.26014-25.
    11. Bulut, Y., et al., Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem,2005. 280(22):p.20961-7.
    12. Basu, S., et al., Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by Toll-like receptor 2-dependent release of tumor necrosis factor-alpha. J Biol Chem,2007.282(2):p.1039-50.
    13. Girardin, S.E., et al., Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem,2003.278(11):p.8869-72.
    14. Ryffel, B., et al., Innate immunity to mycobacterial infection in mice:critical role for toll-like receptors. Tuberculosis (Edinb),2005.85(5-6):p.395-405.
    15. Akira, S. and K. Takeda, Toll-like receptor signalling. Nat Rev Immunol,2004.4(7): p.499-511.
    16. Sweet, L. and J.S. Schorey, Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner. J Leukoc Biol, 2006.80(2):p.415-23.
    17. Branger, J., et al., Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int Immunol,2004.16(3):p.509-16.
    18. Bafica, A., et al., TLR9 regulates Thl responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med,2005. 202(12):p.1715-24.
    19. Brodsky, I.E. and D. Monack, NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol,2009.21(4):p. 199-207.
    20. Master, S., et al., Mycobacterium tuberculosis prevents inflammasome activation. Cell Host & Microbe,2008.3(4):p.224-232.
    21.Ferwerda, G., et al., NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog,2005.1(3):p.279-85.
    22. Nigou, J., et al., Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells:evidence for a negative signal delivered through the mannose receptor. J Immunol,2001.166(12):p.7477-85.
    23. Kang, P.B., et al., The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med,2005. 202(7):p.987-99.
    24. Yadav, M. and J.S. Schorey, The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood,2006.108(9): p.3168-75.
    25. Underhill, D.M., et al., Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood,2005.106(7):p.2543-50.
    26. Doherty, T.M. and M. Arditi, TB, or not TB:that is the question-does TLR signaling hold the answer? J Clin Invest,2004.114(12):p.1699-703.
    27. Yoshida, A., et al., The role of toll-like receptor 2 in survival strategies of Mycobacterium tuberculosis in macrophage phagosomes. Anticancer Res,2009. 29(3):p.907-10.
    28. Harding, C.V. and W.H. Boom, Regulation of antigen presentation by Mycobacterium tuberculosis:a role for Toll-like receptors. Nat Rev Microbiol,2010. 8(4):p.296-307.
    29. Pathak, S.K., et al., Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol,2007.8(6):p.610-8.
    30. Salaun, B., P. Romero, and S. Lebecque, Toll-like receptors' two-edged sword:when immunity meets apoptosis. Eur J Immunol,2007.37(12):p.3311-8.
    31. Kelly, D.M., et al., Bystander macrophage apoptosis after Mycobacterium tuberculosis H37Ra infection. Infect Immun,2008.76(1):p.351-60.
    32. Ma, X., et al., Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One,2007.2(12):p. e1318.
    33. Jin, L., et al., The Arg753Gln Polymorphism of the Human Toil-like Receptor 2 Gene and Its Association with Tuberculosis Disease in Zhejiang Han Population Chinese Journal ofCell Biolog,2007.29:p.229-231.
    34. Xue, Y., et al., Microsatellite polymorphisms in intron 2 of the toll-like receptor 2 gene and their association with susceptibility to pulmonary tuberculosis in Han Chinese. Clin Chem Lab Med,2010.
    35. Newport, M.J., et al., The toll-like receptor 4 Asp299Gly variant:no influence on LPS responsiveness or susceptibility to pulmonary tuberculosis in The Gambia. Tuberculosis (Edinb),2004.84(6):p.347-52.
    36. Davila, S., et al., Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet,2008.4(10):p. e1000218.
    37. Khor, C.C., et al., A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet, 2007.39(4):p.523-8.
    38. Castiblanco, J., et al., TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect Genet Evol,2008.8(5):p.541-4.
    39. Nejentsev, S., et al., Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat Genet,2008.40(3):p.261-2; author reply 262-3.
    40. Hawn, T.R., et al., A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J Infect Dis,2006.194(8):p.1127-34.
    41.Proell, M., et al., The Nod-like receptor (NLR) family:a tale of similarities and differences. PLoS One,2008.3(4):p. e2119.
    42. Austin, C.M., X. Ma, and E.A. Graviss, Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease in African Americans. J Infect Dis,2008.197(12):p.1713-6.
    43. Barreiro, L.B., et al., Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med,2006.3(2):p. e20.
    44. Ben-Ali, M., et al., Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients. Hum Immunol, 2007.68(11):p.908-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700