建兰亚属植物种质资源分子分类及亲缘关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了加快兰花的育种步伐,培育出优质的兰花品种。本文对建兰亚属兰花种质资源的形态及叶绿素含量进行比较分析,并利用RAPD、ERPAD、PCR-RFLP、ISSR、SRAP分子标记技术对建兰亚属植物资源进行分子分类及亲缘关系研究。
     主要研究结果如下
     1.对建兰亚属21个兰花品种的形态特征的观察和分析可以看出,除叶脉序特征均为平行脉序(弧形脉),叶片均为纸质外,不同品种间的一级与二级脉随品种也不相同,所有品种在形态上具一定的分化,表明其形态特征反映出不同品种间的相似性和差异性,从而为属下种间的界限和关系的探讨提供了重要的形态学证据。
     2.应用SPAD-502叶绿素计和常规方法对21个建兰亚属兰花品种的叶绿素含量进行了比较分析。结果表明:大多数兰花在种间或种内的叶绿素a、叶绿素b、总叶绿素含量以及SPAD值均有所不同,但他们之间表现出优异的差异性;7个兰花种间的叶绿素含量与其SPAD值的相关性均达到了显著水平,表明利用SPAD值来衡量其叶绿素含量的可行性;通过聚类分析可以把21个兰花品种分为2大类群。
     3.应用ERPAD(延长随机引物扩增DNA)标记对54个寒兰品种进行分析和鉴定。结果表明:8个多态性强引物的1个碱基延长,共扩增出2959条带,其中2527条带(85.40%)具有多态性,延长2个碱基引物ACTGAACGCCCG+ACTGAACGCCGG能获得一条2.5Kb RAPD特异性片段,此片段在RAPD引物(ACTGAACGC)和延长一个碱基的(ACTGAACGCC+ ACTGAACGCCC)引物具有相同的扩增片段。在无需克隆和测序的条件下,这种标记的稳定性和特异性均接近SCAR标记。通过聚类分析可以把54个寒兰品种分为2大类群。
     4.应用PCR-RFLP标记对54个寒兰品种的叶绿体和线粒体基因组进行分析和鉴定。结果表明:在6个叶绿体基因组(cpDNA)的PCR-RFLP分析中,对4个(66.67%)可扩增出条带引物进行12种限制性内切酶消化,有19种(26.38%)引物酶组合能检测到116多态性带纹。在6个线粒体基因组中(mtDNA)的PCR-RFLP分析中,利用12种限制性内切酶对能扩增出条带的2种引物进行消化后,只有一种引物(Cox1)能扩增出55(53.49%)多态性带纹。通过聚类分析可以把54个寒兰品种分为4大类群。
     5.应用ISSR标记对54个寒兰品种进行分析和鉴定。结果表明:8个ISSR引物共扩增出893条带,每对引物扩增条带数为2-6条,平均为3.22。其中有224个多态性条带,占总带数的24.72%,平均多态性条带数为2.73。扩增带纹片段多在200bp-2000bp之间。通过聚类分析可以把21个兰花品种分为6大类群。
     6.应用SRAP标记对51个寒兰品种的基因组DNA进行分析。结果表明筛选出的11对SRAP引物组合对共扩增出586条带纹,其中504条为多态性(86.01%),平均每个引物扩增46条多态性带。聚类分析表明把51份材料根据起源和生物学特性划分为中国寒兰和日本寒兰两大类群。
     综上所述,通过形态学标记、生理学标记以及分子标记对部分兰花进行比较分析,并探讨其亲缘关系,旨在为兰花品种的进一步研究和利用提供科学基础。
In order to speed up the pace of orchid breeding and to improve the high-quality orchids, the morphology and chlorophyll contents of Cymbidium kanran resources in Subgen Jensoa were compared and analysis, the molecular taxonomy and relative relationships research of Cymbidium kanran resources in Subgen Jensoa were studies by RAPD, ERPAD, PCR-RFLP, ISSR and SRAP molecular markers.
     The study results were as the followings:
     1. The venational morphology characters of 21 orchid's varieties were be observed and analyzed, which revealed that different first and secondary vein have different leaf venation characterization except parallel venation, and which could be provided the morphological evidence for their boundaries and relationships between species.
     2. The chlorophyll contents of Twenty-one cultivars from Cymbidium species were measured and compared with chlorophyll meter SPAD-502 and conventional methods. The results showed that the chlorophyll a, chlorophyll b, total chlorophyll and SPAD value of most Cymbidium cultivars were different among inter-or intra-species. The correlative of segment cultivars between the chlorophyll content and SPAD value were obvious, which were proved that the chlorophyll content could be menstruated by SPAD value. Cluster analysis showed that all these Cymbidium species could be divided into 4 groups.
     3. Fifty-four Cymbidium kanran cultivars were examined and analyzed by using the successive screening of 3'-end extended random primer amplified polymorphic DNA (ERPAD) markers to determine their molecular diversity and relationships. The results showed that 2959 bands including 2527 polymorphic bands (85.40%)were obtained by extended random primers,. ACTGAACGCCCG+ACTGAACGCCGG and ACTGAACGCCC+ACTGAACGCC were devel-oped from the original ACTGAACGC RAPD primer, which produced the same locus (2.5-kb), and the products of extended two basicity marker were more stable and specific than the original RAPD marker and were approach the SCAR marker. Unweighted pair-group mean analysis (UPGMA) grouped them into two clusters based upon geographical traits.
     4. The Mitochondrial DNA and chloroplast DNA genome of fifty-four Cymbidium kanran cultivars were examined and analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) markers. The results showed that genetic differences were revealed in 4 of 6 primer sets (66.67%) and 19 of 72 primer-enzyme combinations (26.38%),116 polymorph--ic bands were detected in chloroplast (cp) DNA PCR-RFLP analyses, genetic differences were revealed in 2 of 6 primer sets (25%) and 55 polymorphic bands (53.49%) were detected with one restriction primer-enzyme combinations in mitochondrion (mt) DNA PCR-RFLP analyses. Unweighted pair-group mean analysis (UPGMA) grouped them into four clusters based upon geographical traits.
     5. Fifty-four Cymbidium kanran cultivars were examined and analyzed using inter-simple sequence repeat (ISSR) markers. The result showed that 893 bands including 224 polymorphic bands (24.72%) were obtained, which were proved the average number of approximately3.22 DNA bands including 2.73 polymorphic DNA bands and the amplified bands from 2 to 6, all amplified bands located from 200bp to 2000bp. Unweighted pair-group mean analysis (UPGMA) grouped them into six clusters based upon geographical traits.
     6. Fifty-four Cymbidium kanran cultivars were examined and analyzed by the sequence-related amplified polymorphism (SRAP) marker. A total of 586 DNA bands were amplified by 11 selective primers,504 of which (86.01%) were polymorphic. The average number of polymorphic DNA bands amplified by each prime was 46. Cluster analysis revealed that the cymbidium could be divided into two cluster (Chinese orchid and Japanese orchid) based on geographic and ecological traits.
     In a word, Cymbidium cultivars were examined and analyzed using morphological markers, physiological markers and molecular markers, which could provide scientific basis for future study and utilization of Cymbidium.
引文
[1]陈心启,吉占和.中国兰花全书.北京:中国林业出版社,1997
    [2]罗毅波,贾建生,王春玲.中国兰科植物保育的现状与展望.生物多样性,2003,11(1).70-77
    [3]李昂.三种兰科植物的保护遗传学研究.硕士学位论文.中国科学院植物研究所,2001
    [4]李筑荪,吴铁明,龙岳林,刘丽辉,刘庆华.湖南野生兰花的调查研究.湖南农业大学学报,1996,22(3):270-274.
    [5]吴振兴,王慧中,施农农,赵艳.兰属Cymbidium植物ISSR遗传多样性分析.遗传,200830(5):627-632
    [6]高丽,杨波.湖北野生春兰资源遗传多样性ISSR分析.生物多样性,2006,14(3):250-257.
    [7]刘仲健,陈心启,茹正忠,陈利君.中国兰属植物.北京:科学出版社,2006:24-26.
    [8]张明永,孙彩云,郝刚,粦叶秀,梁承邺,朱光华.基于nrDNA ITS序列数据的兰属系统发育关系的初步分析(英).植物学报,2002,44(5):588-592
    [9]费永俊,郭永兵,吴广宇,黄芬肖,李波兰.湖北两种兰属植物种群及群落生态特征初步研究.山地农业生物学报,2004,23(2):129-133
    [10]黄家平,戴思兰.中国兰花品种数量分类初探.北京林业大学学报,1998,20(2):38-43
    [11]文李,叶庆生,王小菁,潘瑞炽.利用RAPD技术分析兰属品种间的亲缘关系.应用与环境生物学报.2001,7(1):29-32
    [12]王慧中,王玉东,周晓云,应奇才,郑康乐.兰属14种植物遗传多样性RAPD及AFLP分析.实验生物学报,2004,37(6):482-486.
    [13]李玉阁,郭卫红,吴伯骥.4种国产兰属植物的核型比较研究.西北植物学报,2002,22(6):1438-1444.
    [14]孙彩云,张明永,叶秀粦,梁承邺,夏快飞.中国兰属植物种间及品种间亲缘关系的RAPD分析.园艺学报,2005,32(6):1121-1124.
    [15]文李,叶庆生,潘瑞炽.胶束毛细管电动色谱法研究兰属品种间的亲缘关系.应用与环境生物学报,1999,5(3):279-282
    [16]梁红健,刘敏,钟志宇,吴应祥,李文彬.中国部分兰花品种的RAPD分析.园艺学报.1996,23(4):365-370
    [17]梁红健,刘敏,张纯花,薛淮.中国兰花(Chinese Cymbidium)部分品种的叶片同工酶分析.实验生物学报,1997,3(30):343-348.
    [18]陈心启,刘仲健.兰属中若干分类群的订正.植物分类学报.2003,41(1):79-84
    [19]张俊祥,李枝林,范成明,程少丽,赵明富,何月秋.云南野生兰属主要种间亲缘关系的AFLP分析.园艺学报,2006,33(5):1141-1144
    [20]杨增宏.兰花中国兰科植物集锦.北京.中国世界语出版社.1993
    [21]中国农业百科全书编辑部.中国农业百科全书(观赏园艺卷).北京.农业出版社.1996,254-258
    [22]刘金.兰花.北京:中国农业出版社.1998.
    [23]陈俊愉.中国花卉品种分类学.北京:中国林业出版社.2000.287-299
    [24]蒋细旺.中国兰花优质品种评价研究.江汉大学学报.2000.17(6):16-18
    [25]程刚.中国兰花的鉴赏标准简介.生物学教学.2003,28(11):55
    [26]程金水.园林植物遗传育种学.中国林业出版社.2000
    [27]葛颂.DNA分子标记在保护生物学中的应用.见:邹喻苹和王晓东(主编)系统与进化植物学中的分子标记.北京:科学出版社.2001,140-149
    [28]周延清.DNA分子标记技术在植物研究中的应用.北京:化学工业出版社.2005,143-147
    [29]马朝芝,傅廷栋.用ISSR标记技术分析中国和瑞典甘蓝型油菜的遗传多样性.中国农业科学,2003,36(11):1403-1408
    [30]杨淑达,施苏华,龚询,周仁超.滇牡丹遗传多样性的ISSR分析.生物多样性,2005,13(2):105-111
    [31]于永福.中国野生植物保护工作的里程碑.植物杂志.1999,5:3-11
    [32]陈心启,罗毅波.中国几个植物类群的研究进展.中国兰科植物研究的回顾与前瞻.植物学报,2003,45(增刊):2-20
    [33]中国植物志(第十八卷).中国科学院中国植物志编辑委员会,北京:科学出版社,1999,221-223
    [34]李筑荪,吴铁明,龙岳林,刘丽辉,刘庆华.湖南野生兰花的调查研究.湖南农业大学学报,1996,22(3):270-274
    [35]王国兴.兰属(Cymbidium)植物茎的初探.园艺学报,1989,16(4):314-315
    [36]朱根发,郭振飞.重要观赏兰科植物的分子生物学研究进展.植物学通报,2004,21(4):471-477
    [37]卢思聪.提倡人工培育国兰新品种.森林与人类.2004,5.27-27
    [38]杨洪臣,杲承荣,吴可,陈丽洁.兰花栽培及养护管理技术.山东林业科技.2002.6.89-91
    [39]罗毅波,贾建生,王春玲.初论中国兜兰属植物的保护策略及其潜在资源优势.生物多样性.2003,11(6):491-498
    [40]赵卫星,陈少波,姜红波,侯有明.茶蚜对不同SPAD值绿色的趋性.生态学杂志.200726(11):1755-1760
    [41]徐照丽,李天福.SPAD-502叶绿素仪在烤烟生产中的应用研究.贵州农业科学.2006,34(4):23-24
    [42]杨益花,李庆魁,苏祖芳,张亚洁.拔节、抽穗期叶片SPAD值与杂交中籼稻产量及其构成因素的关系.耕作与栽培.2006.4:12-13
    [43]朱哲燕,鲍一丹,黄敏,冯雷.油菜叶绿素与氮含量关系的试验研究.浙江大学学报.2006,32(2):152-154
    [44]雷泽湘,艾天成,李方敏,董维.草莓叶片叶绿素含量、含氮量与SPAD值间的关系.湖北农学院学报.2001,21(2):138-140
    [45]王慧中,王玉东,周晓云,应奇才,郑康乐.兰属14种植物遗传多样性RAPD及AFLP分析.实验生物学报.2004,37(6):482-486
    [46]程少丽,李枝林,张俊祥,范成明,赵明富,何月秋.利用RAPD技术分析云南兰属部分种的种间关系.云南植物研究.2006,28(6):565-569
    [47]萧浪涛 王三根.植物生理学实验技术.中国农业出版社.2004.
    [48]Du Pay, D Cribb P. The Genus Cymbidium. Timber Press, Oregon.1988
    [49]Dubouzet J G.Murata N, Shinoda K. Relationships among somecultivated species and varieties of Alstroemeria L. based on RAPD analysis.Sci. Hort.1998.73.37-44
    [50]Obara-Okeyo P, Kako S. In vitro and in vivo characterization of Cymbidium cultivars by isozy--me analysis. J. Hort. Sci.1997.72.263-270
    [51]Obara-Okeyo P. Kako S. Genetic diversity and identification of Cymbidium cultivars as measur-ed by random amplified polymorphic DNA (RAPD) markers. Euphytica.1998.99.95-101
    [52]Arditti J. Classification and naming of orchids. In:The Fundamentals ofOrchid Biology. John Wiley and Sons Press,1992,55-101
    [53]Wolff, E. Chinese cymbidium species. In:TheMagazine of the American Orchid Society, Ameri-can Orchid Society Press.1999
    [54]Zhang MY, Sun CY, Hao G, Ye X.L. A preliminary analysis of phylogenetic relationships in Cymbidium (orchidaceae) based on nrITS sequence. Acta Bot. Sin.2002,44,588-592
    [55]Li G, Quiros C F. Sequence related amplified polymorphism(SRAP) a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica.Theor Appl Genet.2001,103:455-461
    [56]Shao rong Chen, Martin B. Dickman. Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot., Dec 2004,55:2617-2623
    [57]Jeung S.H, Kang J.U, Jung H M, Lee K W, Shin J S. Development and utilization of sequence tagged site polymorphic sequence markers for classification of oriental cymbidium cultivars and variegates. J.Kor. Soc. Hort. Sci.2004.45,216-221
    [58]Oriental Orchid.Orchid and Life Press, Seoul (in Korean).1989.
    [59]Makoto T. Fujiwara, Kohsuke Sekine, Yoshiharu Y. Yamamoto, Tomoko Abe, Naoki Sato, and Ryuuichi D. Itoh. Live Imaging of Chloroplast FtsZ1 Filaments, Rings, Spirals, and Motile Dot Structures in the AtMinEl Mutant and Overexpressor of Arabidopsis thaliana.Plant Cell Physiol., Jun 2009; 50:1116-1126.
    [60]Jose M Palma, Ana Jimenez, Luisa M Sandalio, Francisco J Corpas, Marianne Lundqvist, Manuel Gomez, Francisca Sevilla, and Luis A del Rio. Antioxidative enzymes from chloroplas-ts, mitochondria and peroxisomes during leaf senescence of nodulated pea plants. J. Exp. Bot., May 2006; 57:1747-1758.
    [61]Liwang Liu, Guang Liu, Yiqin Gong, Wenhao Dai, Yan Wang, Fanmin Yu, and Yunying Ren. Evaluation of Genetic Purity of F1 Hybrid Seeds in Cabbage with RAPD, ISSR, SRAP, and SSR Markers,HortScience,2007; 42:724-727.
    [62]Chowdhury MA,Vandenberg B,Warkentin T.Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 2002.127:317-325.
    [63]Campbell w,Rowe G, Beebee TJC, Hutchings MJ.Isolation and characterization of microsatell -ite primers for the fragrant orchid Gymnadenia conopsea (L.) R. Brown (Orchidaceae).Conserv Genet.2002,3:209-210.
    [64]Capesius I. Isolation and characterization of native AT-rich satellite DNA from nuclei of the orchid Cymbidium. FEBS Lett,1976,68(2):255-258
    [65]Arnau G, Lallemand J, Bourgoin M. Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica.2003,129:69-79
    [66]DuPuy D, Cribb PJ. The genus Cymbidium. Christopher Helm London Fang DQ, Roose ML Identification of closely related citrus cultivars with inter-simple sequence repeat markers. The-or App Genet,1988,95:408-417.
    [67]Ferna'ndez M, Figueiras A, Benito C. The use of ISSR and.RAPD markers for detecting DNA polymorphism genotypeidentification and genetic diversity among barley cultivars with known origin. Theor Appl Genet,2002,104:845-851
    [68]Kar PK, Srivastava PP, Awasthi AK, Urs SR. Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genomes,2008,4:75-83
    [69]Hew CS. Ancient Chinese orchid cultivation:a fresh look at an age-old practice. Sci Hortic 2001,87:1-10.
    [70]Liu J-J, Podila GK. Characterization of a MADS box gene(Y09611) from immature female cone of red pine (PGR97-032)Plant Physiol,1997,113-115
    [71]Jarne P, Lagoda PJL. Microsatellites from molecules to populations and back. Trends Ecol Evol 1996,11:424-429.
    [72]Liu J J, Ekramoddoullah AKM, Hunt R, Zamani A. Identification and characterization of RAPD markers linked to a major gene (Cr2) for resistance to Cronartium ribicola (Fish.) in Pinus monticola (D. Don.). Phytopathology,2006b,96:395-399
    [73]Jin WT, Yao SP. Cultivation and appreciation of noble Spring Orchid cultivars. Guangdong Science and Technology Press Guangzhou, China,2006
    [74]Kimura M, Crow JF. The number of alleles that can be maintained in a finite population. Gen-etics,1964,49:725-738
    [75]Liu Z-J, Chen S-C, Ru Z-Z, Chen L-J. Chinese Cymbidium plants. Science Press, Beijing,2006a
    [76]Obara-Okeyo P, Fujii K, Kako S. Isozyme variation in Cymbidium species (Orchidaceae). HortScience,1998,33:133-135
    [77]Powell W, Morgante M, Hanafey M, Vogel J, Tingey S, Rafalski A.The comparison of RFLP RAPD, AFLP, SSR (microsatellite) markers for germoplasm analysis.Mol Breed,1996, 2:225-238.
    [78]Obara-Okeyo P, Kako. SGenetic diversity and identification of Cymbidium cultivars as measur-ed by random amplified polymorphic DNA (RAPD) markers. Euphytica,1998,99:95-101.
    [79]Sonnante G. Pignone D Assessment of genetic variation in a collection of lentil using molecular tools. Euphytica,2001,120:301-307.
    [80]Pharmawati M, Yan G, Finnegan PM. Molecular variation and fingerprinting of Leucadendron cultivars (Proteaceae) by ISSR markers. Ann Bot (Lond).2005.95(7):1163-1170.
    [81]Van den Berg C, Ryan A, Cribb PJ, Chase MW.Molecular phylogenetics of Cymbidium (Maxillarieae):sequence data from internal transcribed spacers (ITS) of nuclear ribosomal DNA and plastid matK. Lindleyana,2002,17:102-111
    [82]Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM.RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity varietals identification and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome,2001,44:763-772.
    [83]Wang HZ, Wang YD, Zhou XY, Ying QC, Zheng KL.Analysis of genetic diversity of 14 species of Cymbidium based on RAPDs and AFLPs. Acta Biol Exp Sin.2004.37(6):482-486
    [84]Bijay Singh, Yadvinder Singh, Jagdish K. Chlorophyll Meter and Leaf Color Chart-Based Nitrogen Management for Rice and Wheat in Northwestern India. Agron.2002.94:821-829.
    [85]Felix Loh, Jason Grabosky, Nina Bassuk.191 Use of the Minolta SPAD-502 to Determine Chlorophyll Concentration in Ficus benjamina L. and Populus deltoides Marsh Leaf Tissue. HortScience.2000. (7); 35:423-424.
    [86]Hyun-Hee Han, Yong-Koo Kim, Jae-Young Lee. Correlation among the Nitrogen, Chlorophyll (SPAD Value) and Photosynthetic Reactions on the Leaves of One-year-old Shoots by Training Angles in 'Fuji' Apple Trees. HortScience..2004.39:762-763.
    [87]P. Obara-Okeyo, S. Kako. Genetic diversity and identification of cymbidium cultivars as measured by random amplified polymorphic DNA (RAPD) markers. Euphytica,1998.2(99). 95-101
    [88]Bernt Olav Hoel, Knut Asbjon Solh. Effect of Irradiance on Chlorophyll Estimation with the Minolta SPAD-502 Leaf Chlorophyll Meter. Annals of Botany.1998,82:389-392
    [89]Babar M A., Reynolds MP, van Ginkel M. Spectral Reflectance to Estimate Genetic Variation for In-Season Biomass, Leaf Chlorophyll, and Canopy Temperature in Wheat. Crop Sic.2006 46:1046-1057.
    [90]Tobias DJ, Yosihkawa K, Ikemoto A. Seasonal changes of leaf chlorophyll content in the crowns of several broad leaved tree species. J. Jap.Soc.Reveget.Technol.1994.21-32
    [91]Denise Neilsen, Eugene J. Hogue, Gerald H. Neilsen. Using SPAD-502 Values to Assess the Nitrogen Status of Apple Trees. HortScience.,1995.508-512
    [92]Felix C W. Loh Jason C. Grabosky, Nina L.Bassuk. Using the SPAD 502 Meter to Assess Chlorophyll and Nitrogen Content of Benjamin Fig and Cottonwood Leaves.HortTechnology, 2002.541-740
    [93]Hyun-Hee Han; Yong-Koo Kim; Jae-Young Lee. Correlation Among the Nitrogen, Chlorophyll (SPAD Value) and Photosynthetic Reactions on the Leaves of One-year-old Shoots by Training Angles i n 'Fuji'Apple Trees. Hort Science.2004.745-897
    [94]Denise Neilsen, Eugene J. Hogue, Gerald H. Neilsen. Using SPAD-502 Values to Assess the Nitrogen Status of Apple Trees. HortScience.1995.427-657
    [95]Scott C. Chapman, Hector J Barreto. Using a Chlorophyll Meter to Estimate Specific Leaf Nitrogen of Tropical Maize during Vegetative Growth. Agron.1997.557-562
    [96]Jeff L. Sibley, D. Joseph Eakes, Charles H. Gilliam. Foliar SPAD-502 Meter Values, Nitrogen Levels, and Extractable Chlorophyll for Red Maple Selections. HortScience.1996.312-475
    [97]Li y.c., Alva a.k., Calvert d.v.. Using Leaf Chlorophyll Meter to Predict Nitrogen Status and Yield of Grapefruit Trees. HortScience.1996.564-702
    [98]Fred T.Turnerand Michael F.Jund. Chlorophyll Meter to Predict Nitrogen Topdress Requirement for Semidwarf Rice. Agron J.1991.926-928
    [99]Sean M. Westerveld, Graduate student, Alan W. McKeown. Assessment of Chlorophyll and Nitrate Meters as Field Tissue Nitrogen Tests for Cabbage, Onions, and Carrots. HortTechnology.2004.168-300
    [100]H. J. Earl and M. Tollenaar. Maize Leaf Absorptance of Photosynthetically Active Radiation and Its Estimation Using a Chlorophyll Meter. Crop Sci.1997.436-440
    [101]Shaobing Peng, Felipe V. Garcia, Rebecca C. Laza. Adjustment for Specific Leaf Weight Improves Chlorophyll Meter's Estimate of Rice Leaf Nitrogen Concentration. Agron J 1993.987-990
    [102]Wilcox M.; Sanchez C A.654 PB 034 Evalution of chlorophyll meter readings for assessing the Nstatus of lettuce. HortScience.1994.427-581
    [103]Dressler RL. How many orchid species? Selbyana.2005.26,155-158.
    [104]Ferreira WDM, Kerbauy GB, Costa APP. Micropropagation and genetic stability of a Dendrobium hybrid (Orcidaceae)..In Vitro Cell Dev. Biol. Plant.2006,42:568-571.
    [105]Goh MWK, Kumar PP, Lim SH, Tan HTW. Random amplified polymorphic DNA analysis of the moth orchids, Phalaenopsis (Epidendroideae:Orchidaceae). Euphytica.2005.141:11-22.
    [106]Hamrick J.L, Godt M.L. Allozyme diversity in plant species. In:Brown, A.H.D., Kehler, A.I.,Weir, B.S. (Eds.), Plant Population Genetics, Breeding and Genetic Resources. Sinauer Associates, Sunderland, MA,1989.43-63.
    [107]Kuehnle AR.Chapter20:Orchids Dendrobium.In:N.O Anderson (ed.) Flower Breeding and Genetics, Springer,2007.539-560.
    [108]Keith R.Mitchelson,Janneke Drenth et al. Direct sequencing of RAPD fragments using 3'-extended oligonucleotide primers and dye terminator cycle sequencing. Nucleic Acids Research.1999.19(27),28-33.
    [109]Mi Yoon Chung, Myong Gi Chung. Conservation genetics of the endangered terrestrial orchid pogonia minorin in south korea. Ann.Bot.Fennici,2008,45:455-464
    [110]Kuaifei Xia.XiulinYe. Mingyong Zhang. Isolation and Characterization of Nine Microsatellite Markers for Cymbidium sinense. HortScience, Oct 2008; 43:1925-1926.
    [111]Wu zx, Shi nn, Zhao y, Wang hz. Study on the relationships of Cymbidium by RMAPD technique. J Mol Cell Biol, Apr 2008; 41(2):145-149
    [112]Watanabe K, Tanaka R, Sakurai H, Iguchi K, Yamada Y, Hsu CS, Sakuma C, Kikuchi H, Shibayama H, and Kawai T. Structure of cymbidine A, a monomeric peptidoglycan-related compound with hypotensive and diuretic activities, isolated from a higher plant, Cymbidium goeringii (Orchidaceae). Chem Pharm Bull (Tokyo), May 2007; 55(5):780-3.
    [113]Wu zx, Wang hz, Shi nn, and Zhao y. The genetic diversity of Cymbidium by ISSR, Yi Chuan, May 2008; 30(5):627-32
    [114]Wang hz, Wang yd, Zhouxy, Ying qc, and Zheng kl. Analysis of genetic diversity of 14 species of Cymbidium based on RAPDs and AFLPs. Shi Yan Sheng Wu Xue Bao, Dec 2004; 37(6): 482-486.
    [115]Roberto G. Lopez. Erik S. Runkle.Environmental Physiology of Growth and Flowering of Orchids HortScience, Dec 2005; 40:1969-1973.
    [116]Rossi W B. Corrias P. Gene variation and gene flow in Orchis morio (Orchidaceae) from Italy. Plant Systematics and Evolution,1992.179:43-58.
    [117]Scacchi R, Corbo M. Effect of the breeding system on the genetic structure in three Cephala-nthera spp. (Orchidaceae). Plant Systematics and Evolution.1991.176:53-62.
    [118]Sun, M. Cleistogamy in Scutellaria indica (Labiatae):effective matingsystem and population genetic structure. Molecular Ecology,1999.8:1285-1296.
    [119]Sun, M., AND H. CORKE. Population genetics of colonizing success ofweedy rye in Northern California. Theoretical and Applied Genetics,1992.83:321-329
    [120]Scacchi R.P.Lanzara. Allozyme variation among and within eleven Orchis species (Orchida-ceae), with special reference to hybridizing aptitude. Genetica.1990.81:143-150.
    [121]Shields C. R. Stuber C. W.. An outline of generalresource needs and procedures for the electro-phoretic separation of activeenzymes from plant tissue. In S. D. Tanksley and J. J. Orton [eds.], Isozymes in plant genetics and breeding, Elsevier Science Publishers, Amsterdam, The Netherlands, part A,1983.443-468.
    [122]Sun, M. Effects of population size, mating system, and evolutionaryorigin on genetic diversity in Spiranthes sinensis and S. hongkongensis.Conservation Biology,1996.10:785-795.
    [123]Sun M. Genetic diversity in three colonizing orchids with contrasting mating systems. Ameri-can Journal of Botany,199784:224-232.
    [124]Yeh F C. Yang R. C. Mao J. X. the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Alberta, Canada.1997.
    [125]Wu J. Krutovskii K V. Strauss S. H.. Nuclear DNA diversity, population differentiation, and ph-ylogenetic relationships in the California closed-cone pines based on RAPD and allozyme markers. Genome.1999.42:893-908.
    [126]Sun M.F. Ganders R.. Outcrossing rates and allozyme variation in rayed and rayless morphs of Bidens pilosa. Heredity.1990.64:139-143.
    [127]Szalanski,A.L., Petersen G J.. Origin and conservation genetics of the threatened Ute ladie's tresses, Spiranthes diluvialis (Orchidaceae). American Journal of Botany.2001.88:177-180.
    [128]Wong, K C.M Sun. Reproductive biology and conservation genetics of Goodyera procera (Orchidaceae). American Journal of Botany.1999.86:1406-1413.
    [129]Wendel J F.. Genetics of plant isozymes. In D.E. Soltis and P. S. Soltis [eds.], Isozymes in plant biology, Dioscorides Press, Portland, Oregon, USA.1989.46-72.
    [130]Wendel,J.F., Weedel N F.. Visualization and interpretation of plant isozymes. In D. E.Soltis and P. S. Soltis. Isozymes in plant biology,1989.5-45.
    [131]Barbara Gravendeel, Ann Smithson, Ferry J. W. Slik, and Andre Schuiteman, Epiphytism and pollinator specialization:drivers for orchid diversity? Phil Trans R Soc B, Oct 2004;359: 1523-1535.
    [132]Sun M. and Wong K C..Genetic structure of three orchid species with contrasting breeding systems using RAPD and allozyme markers. Am. J. Botany, Dec 2001; 88:2180-2185
    [133]Obara-Okeyo P., Kako, S. In vitro and in vivo characterization of Cymbidium cultivars by isozyme analysis. J. Hort. Sci.1997.72,263-270.
    [134]ParanI.Michelmore.R..Development.of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet,1993,85:985-993
    [135]Roy J K, Prasad M, Varshney R K, Balyan H S. Gupta P K. Identification of a microsatellite on chromosomes 6B and a sts on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor. Appl. Genet,2000,100:336-341
    [136]Choi S H. Kim M.J., Lee J S., Ryu K H. Genetic diversity and phylogenetic relationships among and within species of oriental cymbidiums based on RAPD analysis. Scientia Horticul-turae.2006.108:79-85
    [137]Sun M. Genetic diversity in three colonizing orchids with contrasting mating systems. Ameri-can Journal of Botany.1997.84:224-232.
    [138]Toshio Ando,Hisashi Kokubun et al. Phylogenetic Analysis of Petunia sensu Jussieu (Solana-ceae) using Chloroplast DNA RFLP. Annals of Botany.2005.96:289-297.
    [139]Yao Qi-Lun, Fang Ping. et al.. Genetic diversity based on SSR markers in maize (Zea mays L.) landraces from Wuling mountain region in China. Journal of Genetics,2008.87(3):287-291.
    [140]Yoshiya SHima MOTO.Polymorphism and phylogeny of soybean based on chloroplast and mitochondrial DNA analysis.2001.35(2):79-84.
    [141]Zhang M.Y., Sun C Y, Ye Hao, Liang X.L, Zhu C.Y. A preliminary analysis of phylogenetic relationships in Cymbidium (orchidaceae) based on nrITS sequence. Acta Bot. Sin.2002.44, 588-592.
    [142]Takasaki T, Okada K, Castillo C, et al. Sequence of the S9-RNase cDNA and PCR-RFLP system for discriminating S1-to S9-allele in Japanese pear. Euphytica,2004,135:157-167.
    [143]Jamann S, Fernandez M P and Normand P. Typing methodfor N2 fixing bacteria based on PCR-RFLP application to the characterization of Frankia strains; Mol. Ecol.1993.2.17-26
    [144]Kaye N. Ballantyne, Chi-hang Chan1 and Geoffrey K. Chambers.A PCR-RFLP based method for assigning mitochondrial control region haplogroups in hybridizing Chatham Islands Cyanoramphus parakeets. New Zealand Natural Sciences.2004.29:33-38
    [145]Kanbe T, Suzuki Y, Kamiya A, Mochizuki T, Kawasaki M, Fujihiro M, Kikuchi A.. Species-identification of dermatophytes Trichophyton, Microsporum and Epidermophyton by PCR and PCR-RFLP targeting of the DNA topoisomerase Ⅱ genes. J Dermatol Sci,2003, 33(1):41-54.
    [147]Irion A, Felger I, Abdulla S, Smith T, Mull R, Tanner M, Hatz C,Beck HP,. Distinction of recrudescences from new infections by PCR-RFLP analysis in a comparative trial of CGP 566-97 and chloroquine in Tanzanian children. Trop Med IntHealth,1998,3:490-497.
    [148]Lidia S. Watrudl.Comparison of taxonomic, colony morphotype and PCR-RFLP methods toch-aracterize microfungal diversity. Mycologia,2006,98(3),384-392.
    [149]Mitchelson K R, Drenth J, Duong H,et al. Direct sequencing of RAPD fragments using 3'-ex-tended oligonucleotide primers and dye terminator cycle sequencing.Nucl Acids Res.,1999, 27(19):28
    [150]Teixeira da Silva J A, Chan M T, Chai M L, et al.Priming abiotic factors for optimal hybrid Cymbidium(Orchidaceae)PLB and callus induction, plantlet formation, and their subsequent cy togenetic stability analysis.. Scientia Horticulturae,2006,109:368-378
    [151]Huan LVT,Takamura T,Tanaka M.Callus formation and plant regeneration f rom callus through somatic embryo st ructures in Cymbidium orchid.Plant Science,2004,166(6):1443-1449.
    [152]Dekreij C,Vandenberg T M. Ef fect of elect rical conductivity of the nut rient solution and fer tilization regime on spike production and quality of Cymbidium.Scientia Horticulturae,1990, 44:293-300.
    [153]Ohno H. Par ticipation of ethylene in f lower bud blasting induced by high temperature in Cymbidium(Orchidaceae)Journal of the Japanese Society for Horticultural Science,1991,60(6) :415-420.
    [154]Ohno H, Kako S. Roles of f loral organs andphytohormones in f lower stalk elongation of Cymbidium(Orchidaceae).Joumal.of.the.Japanese.Society for Horticultural Science,1991,60 (1):159-165
    [155]Kuaifei Xia,XiulinYe,and Mingyong Zhang. Isolation and Characterization of Nine Microsatel-lite Markers for Cymbidium sinense. HortScience,2008; 43:1925-1926.
    [156]Obara-Okeyo P., Kouei Fujii, Shunji Kako. Enzyme Polymorphism in Cymbidium Orchid Cul-tivars and Inheritance of Leucine Aminopeptidase. HortScience, Dec 1997; 32:1267-1271.
    [157]Edard C. Yeung,S Y. ZEE, and X. L Ye. Embryology of Cymbidium sinense:Embryo Devel-opment. Ann. Bot., Jul 1996; 78:105-110.
    [158]Keun Ho Cho, Beyoung Hwa Kwack, Moo Ryong Huh, and Chiwon W. Lee.152 Environm-ental Factors Affect the Growth and Transpiration Rate of Potted Oriental Cymbidium (Cymbidium goeringii). HortScience, Jun 2000; 35:416.
    [159]B.-Q Huang, X.L. Ye, Edward C. Yeung, and S. Y. ZE.Embryology of Cymbidium sinense:the Microtubule Organization of Early Embryos Ann. Bot.,1998; 81:741-750.
    [160]Nigel D.Swarts,KingsleyW Dixon. Terrestrial orchid conservation in the age of extinction.Ann. Bot, Aug 2009,104:543-556.
    [161]Mariana Mondragon-Palomino and Giinter TheiBen. Why are orchid flowers so diverse? Redu-ction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann. Bot., Aug 2009; 104:583-594.
    [162]Rhian J. Smith, and Jane C. Stout, Karl J. Duffy, Giovanni Scopece, Salvatore Cozzolino, Michael F. Fay. Ecology and genetic diversity of the dense-flowered orchid, Neotinea maculata, at the centre and edge of its range. Ann. Bot., Aug 2009; 104:507-516.
    [163]Leitch I. J, Kahandawala I., Suda J, L. Hanson, Ingrouille M. J., Chase M W., and Fay M F. Genome size diversity in orchids:consequences and evolution. Ann. Bot., Aug 2009; 104: 469-481
    [164]Judd WS,Campbell.C.S,Kellog,E.A.Stevens.Phylogenetic relationships of angiosperms.In:De Jussieu.A.L(Ed.).Plant Systematics:A Phylogenetic Approach. Sinauer Associates Inc,MA, USA.1999
    [165]Kim, C.S,Lee.C.H, Park,K.W,Kang, S.J,Shin, I.S,Lee, G.P. Phylogenetic relationships among Pyrus pyrifolia and P. communis detected by randomly amplified polymorphic DNA (RAPD) and conserved Rdna sequences.Sci.Hort.2005,106,491-501
    [166]Erlich,H.A, Gelfand,D.Sninsky, J. Recent advances in the polymerase chain reaction. Science, 1991,252:1643-1650
    [167]Jobst J.King K.Hemleben, V.Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family Cucurbitaceae.Mol. Phylogenet.1998.9.204-219
    [168]Knapp J E. Chandlee, J.M. RNA/DNA mini-prep from single sample of orchid tissue. BioTechn-iques.1996,21,54-56
    [169]Lazaro,A. Aguinagalde,I. Phylogenetic relationships between the wild taxa of the Brassica oleracea L group (2n=18) using random amplified polymorphic DNA assay. Sci.Hort.1996, 65,219-227
    [170]Lee, C.B. Illustrated flora of Korea. Hyangmunsa (in Korean).1979
    [171]Mehrnia,M. Zarre, S. Sokhan-Sanj, A. Intra-and inter-specific relationships within the Astragalus microcephalus complex (Fabaceae) using RAPD.Biochem Sys. Ecol.2005,33, 149-158
    [172]Chapparro J X. Durham. Use of isozyme techniques to Horticulture. HortScience.1987.22. 300-302
    [173]Nei M. Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A.1979.76,5269-5273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700