重要植物疫害的检测鉴定及分子系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有害生物入侵已成为对生物多样性构成严重威胁的第二大因素,仅次于生态环境的破坏,引起世界各国普遍关注。我国是农产品贸易的第四大进口国和第五大出口国,是全球受外来生物入侵影响最大的国家之一,随着我国对外贸易的进一步扩大,植物及其产品的调运日趋频繁,伴随着旅游业的大发展,外来有害生物入侵的形势愈加严峻,已经成为危害我国生物多样性、生态环境和国民经济的一个十分重要和紧迫的问题。加强口岸检疫,构筑防范外来疫害入侵的第一道屏障,对保障我国农业生产安全,服务于农产品的出口和国内贸易具有重大的现实意义。
     近年来,顺应城市园林绿化和农牧业的需求,国外大量草种进入我国,尤其早熟禾、黑麦草、雀麦、紫羊茅和翦股颖等禾本科草种进口量大,它们是腥黑粉菌的重要寄主,腥黑粉菌严重影响其产量和品质,其中小麦矮腥黑穗病(Tilletia controversa Kuhn, TCK)是我国规定禁止进境的植物检疫性有害生物,既为害小麦,又感染多种禾本科草种。这些草种还传带其它在我国尚未发生的腥黑粉菌,作为土传种带真菌病害,一旦传入,防治、根除非常困难。本研究建立了黑麦草上3种具网纹状、冬孢子形态相似的腥黑粉菌TCK、T. lolii及T. vankyi的三重PCR检测方法,用于检测菌丝和冬孢子基因组DNA,实现对三种腥黑粉菌的同时检测,降低了检测成本,便于口岸推广应用;建立了雀麦上T.bromi的分子检测方法,用于检测菌丝和冬孢子基因组DNA;建立了翦股颖上T. sphaerococca和TCT菌丝的双重PCR和冬孢子的套式双重PCR检测方法;建立了紫羊茅上T. vankyi分子检测方法,用于检测菌丝和冬孢子基因组DNA;建立了早熟禾上T.sp.和T. fusca菌丝的双重PCR和冬孢子的套式双重PCR检测方法,并基于IGS1基因的Tilletia属的系统进化分析显示T.sp.与T. bromi的亲缘关系较近,与T. fusca亲缘关系相对较远;针对禾本科草籽上2种腥黑粉菌新种T. vankyi和T. puccinelliae进行了形态学及萌发生理特性的研究。研究结果被纳入2篇新种发布的文献;并进行了2个新种基于IGS1基因序列的系统进化分析,结果与2篇新种发布文献的结论一致;建立了黑麦草、雀麦、翦股颖、紫羊茅和早熟禾5类禾本科草种上腥黑粉菌的检疫鉴定程序。
     大豆是我国重要的粮食作物,近年来进口量激增。菜豆荚斑驳病毒(Bean pod mottle virus,bpMV)是我国规定禁止进境的植物检疫性病毒,能导致大豆品质降低和产量下降,可随种子进行远距离传播,是大豆上一种非常重要的种传病害,我国未分布。本研究针对进口大豆BPMV的检测,建立了一步法RT-PCR和一步法实时荧光RT-PCR检测方法。依据BPMV的外壳蛋白编码基因设计了特异引物和特异Taqman探针,特异引物的扩增片段约为500bp,阳性质粒的实时荧光PCR方法的检测下限为20fg/μL,是一步法RT-PCR方法的100倍,检测时间由至少8h缩短至4h,一步法实时荧光RT-PCR方法具有快捷、灵敏、准确和简便的特点,适于口岸检测;种脐色斑与病毒携带相关性分析表明,种脐褐色斑驳的大豆种子BPMV检测呈阳性,大豆花叶病毒(Soybean mosaic virus, SMV)检测呈阴性,种脐黑色斑驳的大豆种子SMV检测呈阳性,BPMV检测呈阴性,种脐褐色斑驳的大豆种子DAS-ELISA检测表明不携带其它8种大豆种传病毒;基于BPMV的外壳蛋白编码基因的系统进化分析表明从进境美国大豆截获的BPMV分离物可能归属于亚组Ⅱ。
     美国白蛾(Hypantria cunea Drury)是世界性检疫害虫,适应性强,食性杂,给森林树种、园林绿化树种及果树造成严重危害。线粒体基因组具有基因组小、基因组成稳定、普遍为母性遗传和较少发生重组等特点,成为基因组学和进化研究的理想材料。相对于鳞翅目庞大的类群,已测定的鳞翅目线粒体基因组的种类非常有限,因此,对鳞翅目线粒体基因组进行测序和分析,对揭示鳞翅目线粒体基因组的进化以及研究鳞翅目超家族间复杂的系统发育关系具有重要意义。本研究对美国白蛾进行了线粒体基因组全序列的测定,其线粒体全基因组序列为15481bp,环状双链,具有鳞翅目线粒体基因组典型的基因构成和顺序;其tRNAMet基因易位到tRNAIle基因的5′端上游位置,与果蝇中推定的昆虫祖先基因排列存在差异;mtDNA组成偏好于碱基A和T,AT含量高达80.38%,其AT组成偏好性呈现出弱阳性(0.010),表明AT碱基中偏好使用A;13个蛋白编码基因中,除COI之外的所有蛋白编码基因均以典型的ATN作为起始密码子,美国白蛾的COI基因起始密码子暂定为CGA,13个蛋白编码基因中有4个采用了不完整的T或者TA作为终止密码子;tRNASer(AGN)的二氢尿嘧啶臂(DHU)不能形成稳定的茎环结构,其他所有的tRNAs都具有线粒体tRNA典型的三叶草二级结构;在tRNASer(AGN)和ND1之间的基因间隔区序列具有鳞翅目保守的ATACTAA模序;美国白蛾357bp的A+T富集区由非重复性序列构成,其特征序列包括ATAGA模序后紧随18bp的poly-T stretch, ATTTA模序后紧随的微卫星样的(AT)8单元,最后是一个11bp的poly-A位于tRNAMet基因上游;根据已有鳞翅目昆虫线粒体基因组序列进行的系统发育分析表明,三种夜蛾总科昆虫中,美国白蛾与舞毒蛾亲缘关系较近,与大袋蛾亲缘关系较远,结果还支持夜蛾总科(美国白蛾、舞毒蛾和大袋蛾)与尺蛾总科(桑尺蠖)是单系发生的假说,然而凤蝶总科(褐脉粉蝶、苎麻珍蝶和纹蝶)处于鳞翅目单系的基部,这一结果与传统分类结论不同。
     高梁属中有重要的粮食作物和优良牧草,也有我国规定禁止进境的三种检疫性杂草假高粱、黑高粱和丝克高粱。根据GenBank中高粱Sorghum bicolor的adh1全基因设计引物,扩增并测定了8个植物材料约2000bp的adhl基因部分序列,结合GenBank中24个Sorghum属种的同源序列,分别构建了MP、ML和NJ三种分子进化树,得到了基本相同的拓扑结构,结果表明:(1)高梁属可明显分为三大支,一支是Eusorghum亚属,一支是Chaetosorghum和Heterosorghum两个亚属,这两个分支包含2n=20、40,染色体较小的种类,另一分支包括Parasorghum和Stiposorghum两个亚属,包含2n=10的种类和它们的多倍体近缘种,染色体相对较大;(2)Eusorghum亚属中,三种检疫性杂草S. halepense、S. almum、S. silk与其它形态近似种S. bicolor及其亚种S. arundinaceum、S.sudanense、S. propinquum聚为一类,与形态学的研究结论一致,S. silk、S. sudanense和S. almum表现出较近的亲缘关系;(3)S. almum的Adh1基因表现出明显的地理分化;(4)Parasorghum亚属的S. purpureosericeum和S. versicolor、S. nitidum和S. leiocladum聚在一起,而该亚属中的S. matarankense、S. grande、S. timorense却与亚属Stiposorghum的种聚在一起,表现出更近的亲缘关系;(5)S. macrospermum和S. laxiflorum之间具有最近的亲缘关系。
     本研究建立了口岸经常截获、已对我国农业生产造成现实威胁的5类禾本科草种上腥黑粉菌、大豆种传菜豆荚斑驳病毒的分子检测技术,用于口岸近缘种及株系的甄别、国内田间病害早期诊断和疫情动态监测,并对网状腥黑粉菌、菜豆荚斑驳病毒、美国白蛾、高粱属中3种检疫性杂草进行了分子系统学研究。研究结果有助于从分子水平阐明种间的系统进化关系及病毒的株系分化,不仅具有重大的理论意义,同时在农业植保实践中也具有重要的应用价值,以明确其分类地位,补充和完善传统分类方法,为检疫提供分子水平依据。本研究对于增强我国防范农业植物外来疫害入侵和扩散的检疫监控能力,提高我国农业植物疫害生物检验检疫整体水平,确保农产品的生产安全,促进农产品顺利出口具有重要的政治意义和经济意义。
Pest invasion has been becoming a hot research field all over the world, because it has been the second most severe threat to biodiversity. China has grown up to be the fourth largest importer and the fifth largest exporter of agricultural trade, and one of the countries which are affected most by biological invasion. As the further expansion of foreign trade, import and export of plants and their products have become more and more frequent. Then, the controlling of invasive species has been becoming an important and urgent issue which is severe hazards to biological diversity, ecological environment and the national economy. To solve this big issue, the first barrier is to strengthen customs inspection and quarantine to protect the safety of agricultural production. Therefore, new techniques with higher accuracy and efficiency developed for this purpose will be great practical significance to our agricultural domestic trade and export.
     In recent years, with the need of urban landscape and animal husbandry, a large quantity of Gramineae grass seeds has been imported from abroad, especially bluegrass, ryegrass, brome, red fescue and bentgrass, which are one of the most important hosts of smut fungi. The yield and quality of agriculture products are seriously affected by Tilletia fungi, of which wheat dwarf bunt Tilletia controversa is a quarantine pest prohibited to enter China. T. controversa endangers the wheat and infects many Gramineae grass seeds which may carry Tilletia species without occurring in my homeland. As soil-borne and seed-infected fungi pathogens, Once introduced it will be very difficult to prevent and eradicate them. To strengthen the port inspection and quarantine to smut fungi, we developed a more sensitive and efficient technique—triple PCR—to detect three Tilletia species infecting ryegrass T. controversa、T. lolii and T. vankyi which are very similar in reticulate-spored morphology. This technique can be applied to detect three smut fungi at the same time, which significantly reduces the cost in distinguishing them. Also, the molecular diagnostic methods were developed to identify T. bromi on brome grasses and T. vankyi on red fescue by using the DNA samples from either the mycelia or the teliospores isolated from grasses. Novel techniques of double PCR for hyphal genomic DNA and nested-double PCR for teliospores were developed to identify T. sphaerococca and TCT on bent grasses. Furthermore, the Novel techniques of double PCR and nested-double PCR were applied to successfully distinguish the T. sp. and T. fusca on bluegrasses. Moreover, we did the phylogenetic analysis based on the Tilletia IGS1 gene, which shows that T. sp. has closer genetic distance to T. Bromi, but farther genetic distance to T. fusca relatively. The morphological and physiological characteristics of germination of teliospores of two new Tilletia species T. vankyi and T. puccinelliae were studied and the results were brought into two papers about the two new species. And the phylogenetic analysis based on the Tilletia IGS1 gene were carried out to characteristic the two new species. Our results showed that they are consistent with the conclusion from two papers about the two new species. In conclusion, the identification protocols are successfully developed to identify the smut fungi from these five Gramineae grasses.
     Soybean (Glycine max L. Merrill) is a very important crop and has been imported into China on a large scale recently. Bean pod mottle virus (BPMV, Genus: Comovirus, Family:Comoviridae) is an important seedborne virus in soybean, causing quality and yield loss seriously due to seed coat mottling and seed weight reduction. Therefore, it is an important quarantine pest for China. BPMV is not original from China, but has been intercepted frequently from imported soybean from USA. For detection of BPMV in imported soybean, the specific primers and Taqman probe were designed based on the coding gene of BPMV coat protein (cp) and one step RT-PCR and one step real-time fluorescent RT-PCR methods were developed. The aplicon of one step RT-PCR was about 500bp, and the detection limit for real-time fluorescent PCR was 20fg/μL of positive cloning plasmid, while that was 100-fold higher than that of RT-PCR, and the detection duration shortened from at least 8h to 4h. The quick, sensitive, accutate and convenient detection method of one step real-time fluorescent RT-PCR for BPMV has been successfully established in this study and it is adaptive greatly to port detection. In addition, the relationship between hilum pigmentation and the virus infection was carried out with above molecular method and DAS-ELISA assay. Our results suggest that the color of hilum is correlated with virus infection, and BPMV was detected from soybean with brown hilum, but not black hilum. Soybean mosaic virus (SMV) was detected from soybean with black, not brown hilum. Also, other eight viruses were not detected from the soybean with brown hilum with DAS-ELISA test. The phylogenetic analysis based on the BPMV cp gene was carried out to study the strain differentiation. The result suggests that the BPMV isolates infected imported soybean from USA may be belong to subgroup II.
     The fall webworm, Hyphantria cunea Drury (Lepidoptera:Arctiidae), is a severe invasive and quarantine pest all over the world which has a wide range of habitats. It is a polyphagus pest that feeds on about 175 species of broad leaf trees in China, which has caused serious damage to forest trees throughout its range and appears to be continuing to spread. It also damages the roadside and garden trees around urban areas. Mitochondrial genome (mitogenome) is usually used for determining population structure, phylogenetic relationships and general evolutionary events because of its small genome size, stable gene content, uniparental inheritance, and lack of extensive recombination and the accelerated rate of nucleotide substitution. However, limited mitogenomes, representing only a few families in this species-rich insect order, have been sequenced. Therefore, characterization of more lepidopteran mitogenomes is needed to address evolutionary questions and traits, and to probe into the phylogenetic relationships among the lepidopteran superfamilies. In this study, the complete mitogenome of the fall webworm, Hyphantria cunea (Lepidoptera:Arctiidae) was determined. The genome is a circular molecule 15 481bp. It presents a typical gene organization and order for completely sequenced lepidopteran mitogenomes. As found in all sequenced lepidopteran mitogenomes, by the translocation of tRNAMet to a position 5'upstream of tRNAIle, the placement of tRNAMet of H. cunea differs from that of Drosophila yakuba, the hypothesized ancestral gene order of insects. The nucleotide composition of the genome is also highly A+T biased, accounting for 80.38%, with a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI, which is tentatively designated by the CGA codon as observed in other lepidopterans. Four of 13 PCGs harbor the incomplete termination codon, T or TA. All tRNAs have a typical clover-leaf structure of mitochondrial tRNAs, except for tRNASer (AGN), the DHU arm of which could not form a stable stem-loop structure. The intergenic spacer sequence between tRNASer(AGN) and ND1 also contains the ATACTAA motif, which is conserved across the Lepidoptera order. The H. cunea A+T-rich region of 357bp is comprised of non-repetitive sequences, but harbors several features common to the Lepidoptera insects, including the motif ATAGA followed by an 18bp poly-T stretch, a microsatellite-like (AT)8 element preceded by the ATTTA motif, Finally, an llbp poly-A present immediately upstream tRNAMet. The phylogentic analyses of the available lepidopteran species support view that the H. cunea is closer related to the Lymantria dispar than Ochrogaster lunifer, and support the hypothesis that Noctuoidea (H. cunea, L. dispar, and O. lunifer) and Geometroidea (Phthonandria atrilineata) are monophyletic. However, in the phylogenetic trees based on mitogenome sequences among the lepidopteran superfamilies, Papillonoidea (Artogeia melete, Acraea issoria, and Coreana raphaelis) joined basally within the monophyly of Lepidoptera, which is different to the traditional classification.
     In the genus Sorghum, there are some important grain crops and economically and ecologically important forage grasses together with three agricultural quarantine weed pests which are S. halepense, S. almum and S. silk. In the present study, Total DNA from the seeds of eight plant materials was extracted, and the Adh1 gene analogues about 2 OOObp long were obtained by PCR strategy using specific primers designed from conserved regions of Adh1 gene reported in the GenBank (AF050456). All PCR products were cloned and sequenced. Based on these sequences and 24 sequences registered in the GenBank, the phylogenetic trees constructed by multiple methods (MP, ML and NJ) supported nearly the same topology. Our molecular results show that:(1) there are obviously three lineages for genus Sorghum. One including two subgenera Chaetosorghum and Heterosorghum, and the second being subgenus Eusorghum, consist of 2n=20 and 2n=40 species with small chromosomes, and the third containing two subgenera Parasorghum and Stiposorghum comprises 2n=10 species and their polyploid relatives with relatively large chromosomes; (2) In subgenus Eusorghum, three quarantine weed pests S. halepense, S. almum and S. silk stay together with morphologically similar species such as S. bicolor and its subspecies S. arundinaceum, S. sudanense and S. propinquum, which is in accordance with the results of morphological study. And S. silk is closer to S. sudanense and S. almum. (3) there lies geographical divergence between the S. almum populations obviously; (4) S. purpureosericeum, S. versicolor, S. nitidum and S. leiocladum belonging to subgenus Parasorghum clust together, but S. matarankense, S. grande and S. timorense belonging to the same subgenus clust with the species of subgenus Stiposorghum and have shown closer relationship to subgenus Stiposorghum; (5) S. macrospermum shows more closely related to S. laxiflorum than the other species of the genus Sorghum. These relationships between Sorghum species provide an important guide for plant breeders to exploit wider Sorghum genepool through crosses between wild and cultivated species in an effort to improve Sorghum production, and are helpful in port detections of the three quarantine weed pests.
     In this study, molecular detection techniques were developed to detect smut fungi on five kinds of imported Gramineae grasses, and BPMV infecting soybean. These techniques could be applied to port-related species and trains sreening, early diagnosis of diseases of the domestic field and dynamic monitoring of the epidemic in agriculture. And molecular systematic analyses of reticulate-spored Tilletia spp, BPMV, fall webworm and three quarantine weeds in sorghum were carried out. These pests have interceptd regularly in port detection and so have caused a real threat to agriculture. Our results help to clarify the molecular level phylogenetic relationships among species and strain differentiation of virus, not only of great theoretical significance, also of practice significance in plant protection in agriculture. Our techniques and results have important applications in clarifying taxonomic status, supplementing and improving the traditional morphological classification at molecular level. This study will improve our agricultural plants against harmful alien invasion and spread of epidemic and quarantine monitoring capabilities. Also it can improve agricultural inspection and quarantine of plant quarantine pests overall level of agricultural production to ensure safety and promote the smooth export of agricultural products. This has important political significance and economic significance to our agriculture development.
引文
[1]许志刚主编.植物检疫学(第三版):高等教育出版社,1-10.
    [2]洪霓主编.植物检疫方法与技术:化学工业出版社,89-140.
    [3]王福祥.浅析植物检疫性有害生物与外来入侵物种的关系.中国植保导刊,2007,27(10):42-44.
    [4]张树林.天津市水生外来物种入侵防治对策.天津水产,2006,2:26-29.
    [5]范晓虹,李尉民.保护我国生物安全的检疫对策研究.生物多样性,2001,9(4):439-445.
    [6]万方浩,郭建英,王德辉.中国外来入侵生物的危害与管理对策.生物多样性,2002,10(1):119-125.
    [7]张润志.农业外来生物人侵种研究现状与发展趋势.植物保护,2004,(3):3.
    [8]高岚,赵铁珍.中国外来有害生物入侵的环境影响及举措.北京林业大学学报(社会科学版),2006,5,增刊:29-38.
    [9]姚文国.我国植物检疫的现状与技术进展.植物保护,2007,33(5):14-20.
    []O]陈建东,吴新华,顾忠盈.外来有害生物入侵与防治对策.外来有害生物检疫及防除技术学术研讨会论文汇编,2005.
    [11]王春林,张宗益,黄幼玲.外来植物有害生物入侵及其对策.植物保护学报,2005,32(1):104-108.
    [12]施宗伟,姚文国.从口岸截获疫情浅析外来昆虫入侵特点和防范对策.昆虫知识,2004,41(4):371-374.
    [13]袁克,吴新华,陈建东.进境植物种苗检疫存在风险的评估与对策.中国检验检疫,2001,2:25-26.
    [14]张中义,冷怀琼,张志铭,等.植物病原真菌学.成都:四川科学出版社,1988,282-292.
    [15]Castlebury L A, Carris L M, Vanky K. Phylogenetic analysis of Tilletia and allied genera in order Tilletiales (Ustilaginomycetes; Exobasidiomycetidae) based on large subunit nuclear rDNA sequences. Mycologia,2005,97(4):888-900.
    [16]Carris L M, Castlebury L A, Goates B J. Nonsystemic bunt fungi-Tilletia indica and T. horrida:a review of history, systemmatics, and biology. Annu Rev Phytopathol,2006, 44:1-5,21.
    [17]Ferreira M A S V, Tooley P W, Hatziloukas E, et al. Isolation of a species-specific mitochondrial DNA sequence for identification of Tilletia indica, the Karnal bunt of wheat fungus. Applied and Environmental Microbiology,1996,62(1):87-93.
    [18]Smith O P. Development of a PCR-based method for identification of Tilletia indica, causal agent of Karnal bunt of wheat. Phytopathology,1996,86:115-122.
    [19]Frederick R D. An improved PCR method utilizing TaqMan for the detection and differentiation of Tilletia indica, the causal organism of Karnal bunt of Wheat, and a related ryegrass smut. phytopathology,1998,88:S29.
    [20]Mcneil M, Roberts A M I, Cockerell V, et al. Real-time PCR assay for quantification of Tilletia caries contamination of UK wheat seed. Plant Pathology,2004,53:741-750.
    [21]Eibel P, Wolf G A and Koch E. Detection of Tilletia caries, causal agent of common bunt of wheat, by ELISA and PCR. J Phytopathology,2005,153,297-306.
    [22]Pimentel G. Genetic variability among isolates of Tilletia barclayana, T. indica and allied species. Mycologia,1998,90:1017-1027.
    [23]Mcdonald J G, Wong E, White G P. Differentiation of Tilletia species by rep-PCR genomic fingerprinting. Plant Disease,2000,84(10):1121-1125.
    [24]刘丹.小麦光腥黑粉菌(Tilletia foetida)AFLP分析及其种的特异性SCAR标记的发掘.硕士学位论文,四川:四川农业大学,2005.
    [25]郭成亮.腥黑穗菌属(Tilletia)部分种ITS rDNA限制性片段多态性(RFLP)的研究.博士论文,哈尔滨:东北林业大学,1997.
    [26]易建平,沈禹飞,陶庭典,等.PCR技术在印度腥黑穗病菌检测和鉴定中的应用.上海农业学报,2002,18(2):57-61.
    [27]周益林,段霞瑜,贾文明,等.小麦矮腥黑穗病(TCK)传入中国及其定殖的风险分析研究进展.植物保护,2007,33(2):6-10.
    [28]Grey W E, Mathre D E, Hoffmann J A, et al. Importance of seedborne Tilletia controversa for infection of winter wheat and its relationship to international commerce. Plant Disease, 1986,70:122-125.
    [29]Goats B J, Peterson G L. Relationship between soilborne inoculum density and the incidence of dwarf bunt of wheat. Plant Dis,1999,83:819-824.
    [30]易建平,戚龙君,孙红,等.小麦矮腥黑穗病菌的单孢接种侵染.植物检疫,1999,13(5):263-265.
    [31]Tyler L J, Jensen N F. Some factors that influence development of dwarf bunt in winter wheat. Phytopathology,1958,44:565-571.
    [32]王吉霞,周益林,段霞瑜,等.温度对小麦矮腥黑穗病菌冬孢子萌发的影响.植物保护,2006,32(1):38-40.
    [33]贾文明,周益林,段霞瑜,等.土壤湿度对小麦矮腥黑穗病菌(TCK)冬孢子萌发的影响.植物保护,2006,32(6):48-51.
    [34]王海光,祝慧云,马占鸿,等.小麦矮腥黑穗病研究进展与展望.中国农业科技导报,2005,7(4):21-27.
    [35]孙振宇,马占鸿,王海光,等.等离子体对小麦矮腥黑粉菌处理效果的扫描电镜观察.植物病理学报,2008,38(2):208-210.
    [36]Trione E J, Krygier B B. New tests to distinguish teliospores of Tilletia controuersa, the dwarf bunt fungus, from spores of other Tilletia species. Phytopathology,1977, 67:1166-1172.
    [37]Graham S O. The effects of various reagents, mounting meida, and dyes on the teliospore walls of Tilletia controversa Kuhn. Mycologia,1959,51:477-91.
    [38]Graham S O. The morphology and a chemical analysis of the teliospore of the dwarf bunt fungus, Tilletia controuersa. Mycologia,1960,52:97-118.
    [39]Trione E J. Morphology and cytology of Tilletia caries and T. controversa in axenie culture. Am J Bot,1974,61:914-19.
    [40]Hess W M, Trione E J. Use of electronmicroscopy to characterize teliospores of Tilletia caries and T. controuersa. Plant Dis,1986,70:458-460.
    [41]周卫川.小麦矮腥黑粉菌和禾草腥黑粉菌的快速鉴别研究.西北农林科技大学学报,2005,33(8):37-40.
    [42]Stockwell V O, Trione E J. Distinguishing teliospores of Tilletia controversa from those of T. caries by fluorescencemicroseopy. Plant Dis,1986,70:924-926.
    [43]张江洪,张清源,方元炜,等.荧光显微术在TCK、TCT鉴别中的应用.福建农业科技,2001,(4):6-7.
    [44]章正.中美小麦矮腥黑穗病菌鉴定合作研究Ⅰ.自发荧光显微学特性研究.植物病理学报,1995,25(3):199-206.
    [45]章正.小麦矮腥检疫40年—中国植物检疫案例之一.植物检疫,2007,21(1):32-35.
    [46]Banowetz G M, Trione E J, Krygier B B. Immunological comparisons of teliospores of two wheat bunt fungi, Tilletia species, using monoclonal antibodies and antisera. Mycologia, 1984,76:51-62.
    [47]Banowetz G M, Doss R P. Acomparison of polypeptides from teliospores of Tilletia controversa (Kuhn) and Tilletia tritici (Bjerk) Wint. J Phytopathol,1994,140:285-292.
    [48]Weber G, Schauz K. Characterization of spore protein patterns in Tilletia controversa and Tilletia caries with gelelectrophoretie methods. Z Pflanzenkr Pflanzenchutz,1985, 92:600-605.
    [49]张桦,黄炜,邱焯,等ELISA和PCR检测在小麦矮腥黑穗病研究中的应用初探.新疆农业大学学报,2007,30(4):88-90.
    [50]Gardner J S and Hess W M. Ultrastructure of lipid bodies in Tilletia caries teliospores. Journal of Bacteriology,1977,131(2):662-671.
    [51]Trione, E J, and Ross W D. Lipids as bioregulators of teliospore germination and sporidial formation in the wheat bunt fungi, Tilletia species. Mycologia,1988,80:38-45.
    [52]Beattie S E, Stafford A E and King A D. Triacylglycerol profiles of Tilletia controversa and Tilletia tritici. Applied and Environmental Microbiology,1993,59(4):1054-1057.
    [53]Kawchuk L M, Kim W K, Nielson J. A comparison of polypeptides from the wheat bunt fungi Tilletia laevis. T. tritici, and T.controuersa. Can J Bot,1988,66:2367-2376.
    [54]Goates B J, Hoffmann J A. Somatic nuclear division in Tilletia species pathogens on wheat. Phytopathology,1979,69:592-598.
    [55]Russell B W, Mills D. Electrophoretic karyotypes of Tilletia caries, T. controversa, and their F1 progeny:further evidence for conspecific status. Mol Plant Microbe Interact,1993, 6(1):66-74.
    [56]Rusell B W, Mills D. Morphological, physiological and genetic evidence in support of a conspecific status for Tilletia caries, T. controversa, and T.foetida. Phytopathology,1994,84: 576-582.
    [57]Kim W K, Mcnabb S A, Klassen G R. A linear plasmid in Tilletia controversa, a fungal pathogen of wheat. Canadian Journal of Botany,1988,66(6):1098-1100.
    [58]梁宏,张国珍,陈万权,等.小麦矮腥黑穗病菌与其近缘种的rDNA-ITS序列分析.植物病理学报,2005,35(6,ZK):181-183.
    [59]梁宏,彭友良,张国珍,等.腥黑粉菌属3种检疫性真菌rDNA-IGS区的扩增及其序列分析.植物病理学报,2006,36(5):407-412.
    [60]Kellerer T, Sedlmeier M, Rabenstein F, et al. Development of immunochemical and PCR methods for qualitative detection of Tilletia species in organic seeds. Czech Journal of Genetics and Plant Breeding,2006,42(Special issue):72-74.
    [61]Shi Y L, Loomis P, Christian D, et al. Analysis of the genetic relationships among the wheat bunt fungi using RAPD and ribosomal DNA markers. Phytopathology.1996,86:311-318.
    [62]Yuan Q, Nian S, Yin Y, et al. Development of a PCR-based diagnostic tool specific to wheat dwarf bunt, caused by Tilletia controversa. Eur J Plant Pathol,2009,124:585-594.
    [63]Bakkeren G. Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilagino mycetes. Mycologia,2000,92:510-521.
    [64]Liu J H, Gao L, Liu T G, et al. Development of a sequence-characterized amplified region marker for diagnosis of dwarf bunt of wheat and detection of Tilletia controversa. Letters in Applied Microbiology,2009,49:235-240.
    [65]赵美琦,孙明,王慧敏,王琦主编.草坪病害,北京:中国林业出版社,1999,230-232.
    [66]Lindeberg B. Ustilaginales of Sweden. Symb Bot Upsal,1959,16:67-75.
    [67]Duran R, Fischer G W. The Genus Tilletia. Pullman Washington State University Press,1961, p136.
    [68]Vanky K. Carpathian Ustilaginales. Symb Bot Upsal,1985,24:129-144.
    [69]Vanky K. European Smut Fungi. Gustav Fischer Verlag,1994, New York, p567.
    [70]Mordue J E. Tilletia lolii, CMI Descriptions of pathogenic fungi and bacteria,1984, No.804.
    [71]Castlebury L A and Carris L M. Tilletia walkeri, a new species on Lolium multiflorum and L. perenne. Mycologia,1999,91:121-131.
    [72]Carris L M, Castlebury L A, Guoming Huang, et al. Tilletia vankyi, a new species of reticulate-spored bunt fungus with non-conjugating basidiospores infecting species of Festuca and Lolium. Mycological Research,2007,111(12):1386-1398.
    [73]易建平,陶庭典,沈禹飞,等.进境黑麦草种子中黑麦草腥黑粉菌的鉴定.南京农业大学学报,2002,25(2):52-56.
    [74]章正.关于小麦矮腥病菌某些近似种的探讨.植物病理学报,1980,10:89-94.
    [75]章正,章桂明,朱连.黑麦草粒腥黑粉病菌与黑麦草的检疫问题.植物检疫,2005,19(6):362-367.
    [76]Ingold C T. The basidium of Tilletia and it's evolution. Mycologist,1997,11(3):98-100.
    [77]Genus Tilletia in the United States. Systematic botany and mycology laboratory. Agricultural Research Service United States Department of Agriculture Beltsville, Maryland USA.2002, http://nt.ars-grin.gov/TaxaDescriptions/Tilletia/Index2.cfm.
    [78]Matsumoto T and Bell T. Laboratory guide identification of fungi quarantine significance California-smut fungi,1989.
    [79]Piepenbring M. New species of smut fungi from the neotropics. Mycological Research,2001, 105(6):757-767.
    [80]Pimentel G, Carris L M, Peever T L. Characterization of interspecific hybrids between Tilletia controversa and T. bromi. Mycologia,2000,92(3):411-420.
    [81]Boyd M L and Carris L M. Molecular relationships among varieties of the Tilletia fusca (T. bromi) complex and related species. Mycol Res,1997,101(3):269-277.
    [82]Carris L M and Gray P M. The ability of Tilletia fusca to hybridize with the wheat bunt species under axenic conditions. Mycologia,1994,86(1):157-163.
    [83]Hoffmann J A, Meiners J. Host specialization in the complex species Tilletia fusca. Phytopathology,1971,61(3):225-227.
    [84]Guillemette M K. Tilletia togwatii, a new bunt species from Poa reflexa. Mycologia,1988, 80(3):273-285.
    [85]Boyd M L and Carris L M. Evidence supporting the separation of the Vulpia- and Bromus-infecting isolates in the Tilletia fusca (T. bromi) complex. Mycologia,1998, 90(6):1031-1039.
    [86]王栋,任继周.牧草学各论,新1版.南京:江苏科学技术出版社,1989:153-154.
    [87]周国梁.禾草腥黑粉菌及其近似种的分类进展植物检疫,2000,14(3):160-163.
    [88]Boyd M L, Carris L M, Gray P M. Characterization of Tilletia goloskokovii and allied species. Mycologia,1998,90(2):310-322.
    [89]罗加凤,黄国明,崔铁军.进境翦股颖草种中腥黑粉菌的检验鉴定.植物检疫,2004,18(6):355-359.
    [90]谢可军,李阳春,吴天德.10种早熟禾属植物的过氧化酶同工酶分析.中国草地,2003,25(2):30-33.
    [91]Bao X, Carris LM, Huang G, et al. Tilletia puccinelliae, a new species of reticulate-spored bunt fungus infecting Puccinellia distans. Mycologia,2010,102(3)(in press).
    [92]龚贤弟,江霞玲.六月禾腥黑穗病菌的初步研究.植物检疫,1991,5(6):407-411.
    [93]李鸣,罗加凤.从美国进口六月禾中检出狐草腥黑穗病菌.植物检疫,1992,6(6):46.
    [94]王圆.中国进境植物检疫有害生物选编,北京:中国农业出版社,1997,505-506.
    [95]曲宪军,朝鲁j北方地区优良的草坪植物—紫羊茅.内蒙古草业,2003,15(1):31-32.
    [96]黄国明,罗加凤,刘勇,等.进境碱茅上腥黑粉菌新记录的初步研究.植物检疫,2008,22(1):4-7.
    [97]季良.种传病毒的检疫.植物检疫,1993,7(4):288-303.
    [98]Laviolette F A, Athow K L. Longevity of tobacco ring spot virus in soybean seed. Phytopathology,1971,61 (7):755.
    [99]邹雪容,夏更生,朱振东等.蚕豆染色病毒检测技术标准化研究初报.植物检疫,1993,7(4):309-312.
    [100]Pierce W H, Hungerford C W. A note on the longevity of the bean mosaic virus. Phytopathology,1929,19 (6):605-606.
    [101]李彬,吴翠萍,安榆林.江苏局从进口美国大豆中截获烟草环斑病毒.植物检疫,2005,19(6):379.
    [102]刘强,孙浸渂,韩晓敏.张家港局从进境美国大豆中截获菜豆荚斑驳病毒和大豆花叶病毒.植物检疫,2006,20(6):344.
    [103]陈燕平,耿金培.烟台局从美国进口大豆中截获菜豆荚斑驳病毒.植物检疫,2005,19(3):147.
    [104]Gieslerv L J, Ghabrial S A, Hunt T E, et al. Bean pod mottle virus, a threat to U.S. soybean production. Plant Disease,2002,86:1280-1289.
    [105]Michelutty R, Tu J C, Hunt D W A, et al. First report of bean pod mottle virus in soybean in Canada. Plant Disease,2002,86(3):330.
    [106]Anjos J R N, Brioso P S T, Charchar M J A. Partial characterization of bean pod mottle virus in soybeans in Brazil. Fitopatologia-Brasileira,1999,24(1):85-87.
    [107]Fribourg C E, Perez W. Bean pod mottle virus (BPMV) affecting Glycine max (L.) in the Peruvian jungle. Fitopatologia,1994,29(3):207-210.
    [108]Zettler F W, Stansly P A, Elliott M S, et al. Report of bean pod mottle virus in South America. Plant Disease,1989,73(6):518.
    [109]魏梅生.美国大豆种传病毒.植物检疫(增刊),2003,17:13-18.
    [110]Carole J and Regenmortel M H. Influence of the C terminus of the small protein subunit of bean pod mottle virus on the antigenicity of the virus determined using monoclonal antibodies and anti-peptide antiserum. Journal of General Virology,1991,72:2225-2232.
    [111]洪健,李德葆.周雪平.植物病毒分类图谱.北京:科学出版社,2001.
    [112]Rong D I, Chung C H, Said A.Ghabria. Complete Nucleotide Sequence of Bean Pod Mottle Virus RNA1:Sequence Comparisons and Evolutionary Relationships to Other Comoviruses. Virus Genes,1999,18(2):129-137.
    [113]Gu H, Clark A J, de Sa P B, et al. Diversity among isolates of Bean pod mottle virus. Phytopathology,2002,92:446-452.
    [114]Chun G Z, Hong C G, and Said A Ghabrial. Molecular characterization of naturally occurring RNA1 recombinants of the comovirus Bean pod mottle virus. Phytopathology, 2007,97(10):1255-1262.
    [115]Ross J P. Effect of single and double infectious of soybean mosaic and bean pod mottle viruses on soybean yield and seed characters. Plant Dis Rep,1968,52:344-348.
    [116]Anandalakshmi R, Pruss G J, Ge X, et al. A viral suppressor of gene silencing in plant. Proc Natl Acad Sci,1998,95:13079-13084.
    [117]Anjos J R, Jarlfors U and Ghabrial S A. Soybean mosaic potyvirus enhances the titer of two comoviruses in dually infected soybean plants. Phytopathology,1992,82:1022-1027.
    [118]Mabry T R, Hobbs H A, Steinlage T A, et al. Distribution of leaf-feeding beetles and Bean pod mottle virus (BPMV) in Illinois and transmission ofbpMV in soybean. Plant Disease, 2003,87(10):1221-1225.
    [119]Richard 0 M, Sue M H-M, Gary W F, et al. Increased larval growth and preference for virus-infected leaves by the Mexican bean beetle, Epilachna varivestis mulsant, a plant virus vector. Journal of Insect Behavior,2003,16(2):247-256.
    [120]Jack R D and Claudio G. Antagonistic effects of soybean viruses on soybean aphid performance. Environmental Entomology,2007,36(4):918-925.
    [121]Lin M T, Hill J H. Bean pod mottle virus:occurrence in Nebraska and seed transmission in soybeans. Plant Disease,1983,67:230-233.
    [122]Ross J P. Response of early- and late-planted soybeans to natural infection by bean pod mottle virus. Plant Disease,1986,70:222-224.
    [123]Schwenk F W and Nickell C D. soybean green stem caused by bean pod mottle virus. Plant Dis,1980,64:863-865.
    [124]Ziems A D, Giesler L J, and Graef G L, et al. Effect of bean pod mottle virus on soybean seed quality. Phytopathology,2001,91:100.
    [125]Hopkins J D, Mueller A J. Effect of bean pod mottle virus on soybean yield. Journal of Economic Entomology,1984,77(4):943-947.
    [126]Ross J P. Response of early-planted and late-planted soybeans to natural infection by Bean pod mottle virus. Plant Disease,1986,70(3):222-224.
    [127]Abney T S and Ploper L D. Effects of bean pod mottle virus on soybean seed maturation and seedborne Phomopsis spp. Plant Dis,1994,78:33-37.
    [128]Kartaatmadja S, Sehgal O P. Quantification of Bean Pod Mottle Virus in plant tissue by Dot Immunobinding Assay. Phytopathology,1987,77(12):1765.
    [129]魏梅生,相宁,张春泉,Said A G.菜豆荚斑驳病毒的RT-PCR检测.大豆科学,2005,24(4):317-319.
    [130]李彬,吴新华,粟寒等.进境美国大豆幼苗中菜豆荚斑驳病毒的检测与鉴定.南京农业大学学报,2007,30(2):139-141.
    [131]Mayer C L, Palmer C J. Evaluation of PCR, nested PCR, and fluorescent antibodies for detection of Giardia and Crytosporidium species in waste water. Applied and Environmental Microbiology,1996,62 (6):2081-2085.
    [132]闻伟刚,崔俊霞,赵秀玲等.半巢式RT-PCR检测进口大豆中菜豆荚斑驳病毒的研究.植物病理学报,2006,36(4):296-300.
    [133]于翠,杨翠云,宋绍祎等.进口大豆上菜豆荚斑驳病毒的免疫捕获巢式RT-PCR检测.植物检疫,2006,20(4):201-204.
    [134]Cui M Z, Peng Y C, Theodore H, et al. Evaluation of Glycine species for resistance to Bean pod mottle virus. Crop Protection,2005,24, (1):49-56.
    [135]Reddy M S S, Ghabrial S A, Redmond C T, et al. Resistance to Bean pod mottle virus in transgenic soybean lines expressing the capsid polyprotein. Phytopathology,2001,91: 831-838.
    [136]Rayda K K, Larry P P, John H H, et al. Bean leaf beetle (Coleoptera:Chrysomelidae) management for reduction of Bean Pod Mottle Virus. Journal of Economic Entomology, 2004,97(2):192-202.
    [137]Krella R K, Pedigob L P, Rice M E et al. Using planting date to manage bean pod mottle virus in soybean. Crop Protection,2005,24:909-914.
    [138]Burger G, Gray M W, Franz Lang B. Mitochondrial genomes:anything goes. Trends in Genetics,2003,19(12):709-716.
    [139]Gray M W, Burger Q Lang B F. Mitochondrial evolution. Science,1999,283(5407):1476.
    [140]Cha S Y, Yoon H J, Lee E M, et al. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblbee, Bombus ignitus (Hymenoptera:Apidae). Gene,2007,392(1):206-220.
    [141]Brown W M, George M, Wilson A.C. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of sciences of the United States of America.1979, 76(4):1967-1971.
    [142]Oliveira D C S G., Rhitoban R, Lavrov D V, et al. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera:Pteromalidae). Molecular Biology and Evolution,2008,25(10):2167-2180.
    [143]Simon C, Buckley T R, Frati F, et al. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics,2006,37:545.
    [144]Miya M, Nishida M. Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Molecular Phylogenetics and Evolution,2000,17(3):437-455.
    [145]Kawahara R, Miya M, Mabuchi K, et al. Interrelationships of the 11 gasterosteiform families(sticklebacks, pipefishes and their relatives):A new perspective based on whole mitogenome sequences from 75 higher teleosts. Molecular Phylogenetics and Evolution, 2008,46(1):224-236.
    [146]Lavoue S, Miya M, Saitoh K, et al. Monophyly, phylogenetics position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences. Molecular Phylogenetics and Evolution,2008,47(3):1111-1121.
    [147]Yamanoue Y, Miya M, Matsuura K, et al. A new perspective on phylogeny and evolution of tetraodontiform fishes (Pisces:Acanthopterygii) based on whole mitochondrial genome sequences:basal ecological diversification? BMC Evolutionary Biology,2008,8:212.
    [148]Fenn J D, Song H, Cameron S L, et al. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylpgenetic signal found within mitochondrial genome data. Molecular Phylogenetics and Evolution,2008,49(1):59-68.
    [149]Hua J M, Li M, Dong P Z, et al. Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (insecta:Hemiptera:Heteroptera) BMC Genomics,2008,9:610.
    [150]Wang C H, Chen Q, Lu G Q, et al. Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei):Insight into its phylogenic position within Cyprinidae. Gene,2008,424(1):96-101.
    [151]minegishi Y, Aoyama J, Inoue J G, et al. Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. Molecular Phylogenetics and Evolution,2005,34(1):134-146.
    [152]Ballard J W 0. Comparative genomics of mitochondrial DNA in Drosophila simulans. Journal of Molecular Evolution,2000,51(1):64-75.
    [153]Carr S M and Marshall H D. Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic cod (Gadus morhua):origins of the "Codmother" transalantic vicariance and midglacial population expansion. Genetics,2008,180(1):381-389.
    [154]Salvato P, Simonato M, Battisti A, et al. The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae). BMC Genomics,2008, 9:331.
    [155]雷朝亮,荣秀兰.普通昆虫学.北京:中国农业出版社,2003:429-434.
    [156]Yang L, Wei Z J, Hong G Y, et al. The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera:Geometridae). Mol Biol Rep.2009; 36: 1441-1449
    [157]Liu Y, Li Y, Pan M, et al. The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera:Saturniidae). Acta Biochim Biophys Sin,2008,40: 693-703.
    [158]Kim S R, Kim M, Hong M Y, et al. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera:Saturniidae). Mol Biol Rep,2009,36: 1871-1880.
    [159]Hong M Y, Lee E M, Jo Y H, et al. Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera:Saturniidae) and comparison with other lepidopteran insects. Gene,2008,413:49-57
    [160]Jiang S T, Hong G Y, Yu M, et al. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera:Saturniidae). Int J Biol Sci. 2009; 5:351-365.
    [161]Yukuhiro K, Sezutsu H, Itoh M, et al. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol,2002,19:1385-1389.
    [162]Pan M H, Yu Q Y, Xia Y L, et al. Characterization of mitochondrial genome of Chinese wild mulberry silkworm Bomyx mandarina (Lepidoptera Bombycidae). Sci China Ser C-Life Sci,2008,51:693-701.
    [163]Cameron S L, Whiting M F. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta (Insecta:Lepidoptera:Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene,2008,408:112-113.
    [164]Coates B S, Sumerford D V, Hellmich RL, et al. Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis. Int J Biol Sci,2005,1:13-18.
    [165]Lee E S, Shin K S, Kim M S, et al. The mitochondrial genome of the smaller tea tortix Adoxophyes honmai (Lepidoptera:Tortricidae). Gene,2006,373:52-57.
    [166]Hu J, Zhang D X, Hao J S, et al. The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera:Nymphalidae:Heliconiinae:Acraeini):sequence, gene organization and a unique tRNA translocation event. Mol Biol Rep,2010, In press.
    [167]Hong G, Jiang S, Yu M, et al. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera:Pieridae). Acta Biochim Biophys Sin,2009,41:446-455.
    [168]Kim I, Lee E M, Seol K Y, et al. The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera:Lycaenidae). Insect Mol Biol,2006,15:217-225.
    [169]Wolstenholme D R. Animal mitochondrial DNA:structure and evolution. International review of cytology,1992,141:173-216.
    [170]Boore J L. Animal mitochondrial genomes. Nucleic Acids Research,1999,27(8): 1767-1780.
    [171]李建华,王继文.动物线粒体DNA在进化遗传学研究中的应用.生物学通报,2005,40(2):5-7.
    [172]Inoue J G, Miya M, Tsukamoto K, et al. Complete mitochondrial DNA sequence of Conger myriaster (Teleostei:Anguilliformes):novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families. J Molecular Evolution,2001,52(4):311-320.
    [173]Taanman J W. The mitochondrial genome:structure, transcription, translation and replication. Biochimica et Biophysica Acta,1999,1410(2):103-123.
    [174]张亚平,施立明.动物线粒体DNA多态性的研究概况.动物学研究,1992,13(3):289-298.
    [175]Xu W, Jameson D, Tang B, et al. The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. Journal of Molecular Evolution,2006,63(3):375-392.
    [176]李青青,段焰青,李佛琳,等.线粒体基因在鳞翅目昆虫分子系统学中的研究进展.昆虫知识,2009,46(3):372-382.
    [177]Zhang M, Cao T, Zhang R, et al. Phylogeny of Apaturinae butterflies based on mitochondrial cytochrome oxidase Ⅰ gene. J. Genet. Genom,2007,34(9):812-823.
    [178]Behere G T, Tayw T, Russelld A, et al. Molecular markers to discriminate among four pest species of Helicoverpa (Lepidoptera:Noctuidae). Bulletin of Entomological Research, 2008,98(6):599-603.
    [179]Hajibabaei M, Janzen D H, Bures J M, et al. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Science,2006,103(4):968-971.
    [180]Simonato M, Mendel Z, Kerdelhu C, et al. Phylogeography of the pine processionary moth Thaumetopoea wilkinsoni in the Near East. Molecular Ecology,2007,16(11):2273-2283.
    [181]Albre J, Gers Clegal L. Molecular phylogeny of the Erebia tyndarus(Lepidoptera, Rhopalocera, Nymph alidae, Satyrinae) species group combining Cox Ⅱ and ND5 mitochondrial genes:A case study of a recent radiation. Mol Phylogenetics Evolution, 2008,47(1):196-210.
    [182]Oliver J C, Shapiro A M. Genetic isolation and cryptic variation within the Lycaena xanthoides species group (Lepidoptera:Lycaenidae). Molecular Ecology,2007,16(20): 4308-4320.
    [183]Roe A D, Sperling F A H. Patterns of evolution of mitochondrial cytochrome coxidase Ⅰ and Ⅱ DNA and implications for DNA barcoding. Mol Phylogenetics Evolution,2007,44(1): 325-345.
    [184]Zakharov E V, Hellmann J J. Genetic differentiation across a latitudinal gradient in two co-occurring butterfly species:revealing population differences in a context of climate change. Molecular Ecology,2008,17(1):189-208.
    [185]Simmonsm P, Zhang L B, Webb C T, et al. A penalty of using anonymous dominant markers (AFLPs, ISSRs, and RAPDs) for phylogenetic inference. Mol Phylogenetics Evolution, 2007,42:528-542.
    [186]Schwarzbach A E, Ricklefs R E. The use of molecular data in mangrove plant research. Wetlands Ecology Manage,2001,9:195-201.
    [187]Caterino M S, Cho S, Sperling F A H. The current state of insect molecular systematics:a thriving tower of babel. Annual Review of Entomology,2000,45:1-54.
    [188]戴金霞.线粒体Cyt b基因与昆虫分子系统学研究.四川动物,2005,24(2):222-225.
    [189]黄华平,杨腊英,王国芬,等.rDNA和mtDNA在昆虫系统发育与区系研究中的应用.华南热带农业大学学报,2006,12(4):45-49.
    [190]时号,张婧,蒋国芳.线粒体基因和核基因在蝶类分子系统学中的研究进展.广西科学,2006,13(2):156-160.
    [191]Erpenbeck D, Hooper J N A, Wcrheide G. CO1 phylogenies in diploblasts and the "Barcoding of Life"-are we sequencing a suboptimal partiton? Molecular Ecology Notes, 2005,1:1-4.
    [192]Brower A V Z. Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera:Nymphalidae). Molecular Phylogenetics and Evolution,1994,3: 159-174.
    [193]Frohlich D R, Stevenson B A, Peterson A M, et al. Mitochondrial cytochrome C oxidase subunit I of Manduca sexta and a comparison with other invertebrate genes. Comp Biochem Physiol, PartB Biochemistry and Molecular Biology,1996,113B:785-788.
    [194]Landry B, Powell J A, Sperling F A H. Systematics of the Argyrotaenia franciscana (Lepidoptera:Tortricidae) species group:evidence from mitochondrial DNA. Annals of the Entomological Society of America,1999,92:40-46.
    [195]Hajibabaei M, Singer G, Hebert P, et al. DNA barcoding:how it complements taxonomy, molecular phylogenetics and population genetics.Trends Genet,2007,23(4):167-172.
    [196]Wheat C W, Wattw B. A mitochondrial-DNA-based phylogeny for some evolutionary-genetic model species of Colias butterflies (Lepidoptera, Pieridae). Molecular Phylogenetics and Evolution,2008,47(3):893-902.
    [197]Eastwood R, Pierce N E, Kitching R L, et al. Do ants enhance diversification in lycaenid butterflies? phylogeographic evidence from a model myrmecophile, Jalmenus evagoras. Molecular Phylogenetics and Evolution,2006,60(2):315-327.
    [198]Meng X F, Shi M, Chen X X. Population genetic structure of Chilo suppressalis Walker (Lepidoptera:Crambidae):strong subdivision in China inferred from microsatellite markers and mtDNA gene. Molecular Ecology,2008,17(12):2880-2897.
    [199]Long Y, Wan H, Yan F, et al. Glacial effects on sequence divergence of mitochondrial CO Ⅱ of Polyura eudamippusin China. Biochem Genet,2006,44(7/8):361-377.
    [200]魏兆军,陈复生,尹姣,等.棉铃虫线粒体cox2基因的克隆、序列及系统学分析.核农学报,2006,20(3):193-198.
    [201]王戎疆,万宏,玉龙,等.利用线粒体CO Ⅱ基因序列对中国尾蛱蝶属系统分化的研究(鳞翅目:蛱蝶科).昆虫学报,2004,47(2):243-247.
    [202]诸立新,吴孝兵,晏鹏,等.从CO Ⅰ和CO Ⅱ基因部分序列研究中国翠凤蝶亚属的分子系统关系.动物学报,2007,53(2):257-263.
    [203]Kim C G, Zhou H Z, Imura Y, et al. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera:Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences. Molecular Biology and Evolution,2000,17: 137-145.
    [204]Makita H, Shinkawa T, Kazumasa O, et al. Phylogeny of Luehdorfia butterflies inferred from mitochondrial ND5 gene sequences. Entomological Science,2000,3(2):321-329.
    [205]Omoto K, Katoh T, Chichvarkhin A, et al. Molecular systematics and evolution of the "Apollo" butterflies of the genus Parnassius(Lepidoptera:Papilionidae) based on mitochondrial DNA sequence data. Gene,2004,326(4):141-147.
    [206]Ohshima I, Yoshizawa K. Multiple host shifts between distantly related plants, Juglandaceae and Ericaceae, in the leaf-mining moth Acrocercops leucophaea complex (Lepidoptera: Gracillariidae). Molecular Phylogenetics and Evolution,2006,38(1):231-240.
    [207]曹广力,郑小坚,薛仁宇,等.野桑蚕线粒体ND5基因及其两端侧翼tRNA基因的克隆与序列分析.蚕业科学,2006,32(4):482-490.
    [208]Arunkumar K P, Mettam, Nagaraju J. Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Molecular Phylogenetics and Evolu tion,2006,40(2):419-427.
    [209]陈娜,朱国萍,郝家胜,等.基于线粒体16S rDNA序列探讨蛱蝶科(鳞翅目)主要分类群的系统发生关系.动物学报,2007,53(1):106-115.
    [210]苏成勇,朱国萍,郝家胜,等.凤蝶亚科16S rRNA基因的分子系统发生分析.动物分类学报,2007,32(2):335-342.
    [211]Lange C L, Scottk D, Graham G C, et al. Sugarcane moth borers (Lepidoptera:Noctuidae and Pyraloidea):phylogenetics constructed using COⅡ and 16S mitochondrial partial gene sequences. Bulletin of Entomological Research,2004,94(5):457-464.
    [212]Nazar I V, Zakharov E V, Sperling F A H. Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Molecular Phylogenetics and Evolution,2007,42(1):131-156.
    [213]Hwang U W, Park C J, Yong T S, et al. One-step PCR amplification of complete arthropod mitochondrial genomes. Mol Phylogenet Evol,2001,19:345-352.
    [214]张向欣,王正军.外来入侵种美国白蛾的研究进展.安徽农业科学,2009,37(1):215-219,236.
    [215]杨忠岐,唐桦.美国白蛾.大自然,2004,5:47-48.
    [216]李淑贤惠,高宝嘉,张东风,等.美国白蛾危险性评估研究.中国农学通报,2009,25(10):202-206.
    [217]Gomi T, Muraji M, Takeda M. Mitochondrial DNA analysis of the introduced fall webworm, showing its shift in life cycle in Japan. Entomol Sci,2004,7:183-188.
    [218]田其有.辽阳地区美国白蛾发生现状及治理对策.辽宁林业科技,2002(5):32-33.
    [219]中国出入境检验检疫行业标准.美国白蛾检疫鉴定方法.SN/T 1374-2004.北京:中国标准出版社,2004.
    [220]李润枚.美国白蛾的识别与防治研究.农技服务,2009,26(8):91-93.
    [221]胡冰冰,曾岩,赵铁建,等.美国白蛾与其相似种—奇特望灯蛾在形态学和生物学上的区别(鳞翅目,灯蛾科).动物分类学报,2009,34(1):148-154.
    [222]Ozaki K, Ohbayashi T. DNA comparison of Japanese populations of Hyphantria cunea with divergent life cycles. Entomological Science,2001,4(1):47-52.
    [223]Boore J L, Lavrov D, Brown W M. Gene translocation links insects and crustaceans. Nature, 1998,393:667-668.
    [224]Hebert P D, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci.2003,270:313-321.
    [225]印丽萍,邓晟,易建平,等.假高梁及其近似种同源性研究进展.植物检疫,2004,18(4):232-236.
    [226]郭琼霞.杂草种子彩色鉴定图鉴.北京:中国农业出版社,1998,p115.
    [227]吴海荣,强胜,段惠,等.假高粱的特征特性及控制,杂草科学,2004,(1):52-55.
    [228]吴双民,董会生,尹凯峰.假高粱对家兔毒性的初试.动物毒理学,1994,9(1):14-15.
    [229]王建书,李扬汉.假高粱与同属7种植物营养器官的较解剖学研究.杂草学报,1995,9(1):27-33.
    [230]王建书.假高粱与黑高粱结实器官的形态学比较.植物检疫,2001,15(5):275-277.
    [231]孙建云,强胜,刁彩华,等.丝克高粱与检疫性杂草假高粱的比较解剖学研究.江西农业大学学报,2002,24(6):840-846.
    [232]方雪恩,陈沁,印丽萍,等.高粱属A-PAGE图谱的建立及在种子鉴定中的应用.西北植物学报,2007,27(12):2399-2403.
    [233]蔡华,钱立生,张丽,等.入侵杂草假高粱的染色体变异及核型分析.核农学报,2006,20(6):40-493.
    [234]郭琼霞,黄可辉,虞赞等.基于rDNA ITS分析的假高梁鉴定方法.福建农业学报,2006,21(1):32-34.
    [235]郭琼霞,黄可辉,虞赞.PCR-RFLP鉴别假高粱和丝克高粱.植物检疫,2005,19(6):330-333.
    [236]郭琼霞,黄可辉,虞赞,等.丝克高粱rDNA ITS区的RFLP分析.福建农林大学学报,2005,34(3):349-352.
    [237]Draper S R. ISTA variety committee report of the working group for biochemical tests for cultivar identification 1983-1986. Seed Sci Technol,1987,15:431-434.
    [238]Snowden J D. Cultivated races of Sorghum. Adlard and Sons,1979,247.
    [239]Garber E D. Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot,1950,23: 283-361.
    [240]Price H J, Dillon S L, Hodentt G, et al. Genome evolution in the genus Sorghum (Poaceae). Ann Bot,2005,95(1):219-227.
    [241]Eberlein C V. Germination of Sorghum almum seeds and longerity in soil. Weed Science, 1987,35(6):796-801.
    [242]Ross B J. Silk sorghum. Agnote Dorwin,1999,784:3.
    [243]钟小仙,顾洪如,丁成龙,等.苏丹草与拟高梁远缘杂交初报.草地学报,2002,10(1):287-292.
    [244]Smith J R C, Smith O S. Variation in Kafirin and alcohosobubke glutekin chromatograms of sorghum inbred lines reveiled by reversed-phase high-performance liquid chromatography. Theor Appl Genet,1988,76(1):97-107.
    [245]Morden C W, Doebley J, Schertz K F. Allozyme variation among the spontaneous species of Sorghum section Sorghum (Poaceae). Theor Appl Genet,1990,80(3):296-304.
    [246]Chittenden L M, Schertz K F, Lin Y R, et al. A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet,1994,87(8):925-933.
    [247]Dahlberg J A, Zhang X, Hart G E, Mullet J E. Comparation assessment of variation among Sorghum germplasm accession using seed morphology and RAPD measurements. Crop Sci, 2002,42(1):291-296.
    [248]Dweikat I. A diploid, interspecific, fertile hybrid from cultivated sorghum, Sorghum bicolor and the common Johnsongrass weed Sorghum halepense. Mol Breed,2005,16(2):93-101.
    [249]郭琼霞,黄娴,虞赞,等.检疫性杂草假高粱及其近似种SSR分子标记的遗传多样性.武夷科学,2008,24(12):54-59.
    [250]方雪恩,陈沁,印丽萍,等.ISSR在高梁属植物遗传关系研究中的应用.作物学报,2008,34(8):1480-1483.
    [251]Sun Y, Skinner D Z, Liang G H, et al. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet,1994, 89(1):26-32.
    [252]Dillon S L, Lawrence P K, Henry R J. The use of ribosomal ITS to determine phylogenetic relationships within Sorghum. Plant Syst Evol,2001,230(1):97-110.
    [253]印丽萍,邓晟,康林,等.假高粱及其近似种rDNA ITS序列同源性分析.植物检疫,2004,18(5):262-265.
    [254]Dillon S L, Lawrence P K, Henry R J, et al. Sorghum laxiflorum and S. macrospermum, the Australian native species most closely related to the cultivated S. bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Plant Syst Evol,2004,249(2):233-246.
    [255]廖芳,崔铁军,张裕君,等.翦股颖上腥黑粉菌近似种多重分子检测.植物保护,2009,35(3):31-35.
    [256]周灼标,郑雷青,管维,等.用二重PCR方法检测李痘病毒和李坏死环斑病毒.植物保护,2006,32(4):107-109.
    [257]张华,胡白石,刘凤权.双重PCR技术检测水稻白叶枯病菌和细菌性条斑病菌.植物检疫,2007,21(S1):34-35.
    [258]葛建军,曹爱新,周国梁.香蕉穿孔线虫双重PCR快速检测技术研究.植物病理学报,2007,37(5):472-478.
    [259]Norman W S, Reid D. Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu Rev Phytopathol,2003,41:305-311.
    [260]Eun A J, Seoh M, Wong S. Simultaneous quantification of two orchid viruses by the TaqMan real-time RT-PCR. J virol Methods,2000,87:151-160.
    [261]Bohm J, Hang A, Schubert R, et al. Real-time quantitative PCR:DNA determination in isolated spores of themycorrhizal fungus glomusmosseae andmonitoring of phytophthora infestans and phytopht hora citricola in their respective host plants. J Phytopathology,1999, 147:409-416.
    [262]王明旭,朱水芳,罗宽,等.松材线虫rDNA-IT实时荧光PCR检测.林业科学,2005,41(2):82-85.
    [263]王焱,季镭,余本渊,等.3种松材线虫分子检测技术的比较分析.南京林业大学学报(自然科学版),2007,31(4):128-132.
    [264]Flowers J, Hartman J, Vaillancourt L. Detection of latent Sphaeropsis sapinea infections in ustrian pine tissues using nested-polymerase chain reaction. Phytopathology,2003,93 (12): 1471-1477.
    [265]Mercado B J, Rodriguez J D, Parrilla A S, et al. Simultaneous detection of the defoliating and nondefoliating Verticillium dahliae pathotypes in infected olive plants by duplex, nested polymerase chain reaction. Plant Disease,2003,87(12):1487-1494.
    [266]Langrell S R H. Development of a nested PCR detection procedure for Nectria fuckeliana direct from Norway spruce bark extracts. FEMS Microbiology Letters,2005,242(1): 185-193.
    [267]Somai B M, Keinath A P, Dean R A. Development of PCR-ELISA for detection and differentiation of Didymella biyoniae from related Phoma species. Plant Disease,2002, 86(7):710-716.
    [268]Bailey A M, Mitchell D J, Manjunath K L, et al. Identification to the species level of the plant pathogens Phytophthora and Pythium by using unique sequences of the ITS1 region of ribosomal DNA as capture probes for PCR ELISA. EMS Microbiology Letters,2002, 207(2):153-158.
    [269]宋蕤,刘箐,刘雅莉,等.西瓜细菌性果斑病菌快速免疫PCR检测.植物检疫,2009,23(2):4-6.
    [270]Shiro F, Kazushi O, Keiko Y, et al. Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum. J Virol Methods,2004,121:49-55.
    [271]Aniko V, Delano J. Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J Virol Methods,2006,138:184-190.
    [272]Szemes M, Bonants P. Diagnostic application of padlock probes-multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res.2005,33(8):70
    [273]Wu Z, Tsumura Y, Blomquist G.18S rRNA gene variation among common airborne fungi, and development of specific oligonucleotide probes for the detection of fungal isolates. Appl Environ Microbiol.2003,69(9):5389-5397.
    [274]陈浩梁,李金甫,邱国强,等.植物害虫检疫中的近红外光谱检测技术.植物检疫,2008,22(4):256-259.
    [275]Mendoza J P, Throne J E, Dowell F E, et al. Chronological age-grading of three species of stored-product beetles by using near-infrared spectroscopy. Journal of Economic Entomology,2004,97(3):1159-1167.
    [276]Mendoza J P, Dowell F E, Broce A B, et al. Chronological age-grading of house flies by using near-infrared spectroscopy. Journal of Medical Entomology,2002,39(3):499-508.
    [277]Maghirang E B, Dowell F E, Baker J E, et al. Automated detection of single wheat kernels containing live or dead insects using near-infrared reflectance spectroscopy. Transactions of the ASAE,2003,46 (4):1277-1282.
    [278]陈信忠,龚艳清.变性高效液相色谱在动物检疫领域的应用前景.检验检疫科学,2007,17(5):70-75.
    [279]Domann E, Hong G, Imirzalioglu C. Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. Journal of Clinical Microbiology,2003,41(12):3273-3283.
    [280]程家安,唐振华.昆虫分子科学.北京:科学出版社,2001,pp.7-14.
    [281]Rzhesky A, Nei M. Theoretical foundation of theminimum-evolution trees. Mol Biol Evol, 1993,10,1073-1095.
    [282]Huelsenbeck, J P. The performance of phylogenetic methods in simulation. Syst Biol,1995, 44,17-48.
    [283]吕宝忠,钟扬,高莉萍译(Nei & Kumar著,2000).分子进化与系统发育.北京:高等教育出版社,2002,pp 128-133.
    [284]陈士超,杨红,李珊,等.贝叶斯推论及其在百合目分子系统学中的应用.云南植物研究,2007,29(2):161-166.
    [285]刘玲玲.蓖麻蚕和天蚕线粒体DNA部分序列的测定和系统发生研究.西南大学硕士学位论文,2005,pp 5-6.
    [286]高强,吴品珊,朱水芳等.实时荧光PCR技术对小麦矮腥黑穗病菌的检测.微生物学通报,2005,32(6):74-77.
    [287]Thompson J D, Gibson T J, Plewnia F. The Clustal_X windows interface:flexible strategies for multiple sequences alignment aided by quality analysis tools. Nuc Aci Res,1997,25: 4876-4882.
    [288]O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution,1997,7(1):103-116.
    [289]Tamura K, Dudley J, Nei M & Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Bio Evol,2007,24(8):1596-1599.
    [290]中华人民共和国国家标准.小麦矮腥黑穗病菌检疫鉴定方法.GB/T 18086-2000,北京:中国标准出版社,2000.
    [291]易建平,陶庭典,印丽萍,等.小麦印度腥黑穗病菌和黑麦草腥黑穗病菌的单孢检测.南京农业大学学报,2003,26(2):42-46.
    [292]Bruns J D, White T J, Tayor J W. Fungal molecular systematics. Annual Review of Ecology and Systematics,1991,22:525-564.
    [293]Mitchell J I, Robert P J, Moss S T. Sequencing or structure? A short view on the application of nucleic acid sequence information to fungal taxanomy. Mycologist,1995,9(2):67-75.
    [294]Sugita T, Ikeda R, Shinoda T. Diversity among strains of Cryptococus neoformans var. gattii as revealed by a sequence analysis of multiple genes and a chemotype analysis of capsular polysaccharide. Microbiol Immunol,2001,45(11):757-768.
    [295]Saito T, Tanaka N, Shinozawa T. Characterization of subrepeat regions with rDNA intergenic spacers of the edible basidiomycete Lentinula edodes. Biosci Biotechnol Biochem,2002,66 (10):2125-2133.
    [296]Guidot A, Lumini E, Debaud J, et al. The nuclear rDNA intergenic spacer as a target sequence to study intraspecific diversity of the ectomycorrhizal Hebeloma cylindrosporum directly on Pinus root systems. Appl Environ Microbiol,1999,65 (3):903-909.
    [297]Dover G. Molecular drive:A cohensive mode of species evolution. Nature,1982,299(5879): 111-117.
    [298]Moss T. A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. Nature,1983,302(5905):223-228.
    [299]Dutta S K, Verma M. Primary structure of the nontranscribed spacer region and flanking sequences of the ribosomal DNA of Neuropora crassa and comparison with other
    organisms. Biochem Biophys Res Commun,1990,170(39):187-193.
    [3001 Zerucha Z, Kim W K, Mauthe W, et al. The location and uncleotide rRNA gene of bunt of wheat, Tilletia caries and T. controversa. Nucleic Acids Research, 1992,20(10):2600.
    [301]王杰,王晓鸣,黄丽丽.大豆干种子中大豆花叶病毒的RT-PCR检测.植物病理学报,2005,35(3):214-220.
    [302]王升吉,尚佑芬,赵玖华.葡萄卷叶病毒主要检测技术比较.山东农业科学,2008,(3):95-98.
    [303]刘红光,王中康,曹月青,等.应用常规RT-PCR和荧光定量RT-PCR检测柑桔衰退病毒.植物病理学报,2008,38(1):24-30.
    [304]Hobbs H A, Hartman G L, Wang Y, et al. Occurrence of seed coat mottling in soybean plants inoculated with Bean pod mottle virus and Soybean mosaic virus. Plant Disease, 2003,87(11):1333-1336.
    [305]Simon C, Frait F, Bechenback A, et al. Evolution, weighting, and phylogentic utility of mitochondrial gene sequence and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am,1994,87:651-701.
    [306]Lowe T M, Eddy S R. tRNAscan-SE:A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res,1997,25:955-964.
    [307]Steinberg S, Cedergren R. Structural compensation in atypical mitochondrial tRNAs. Struct Biol,1994,1:507-510.
    [308]Perna N T, Kocher T D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol,1995,41:353-358.
    [309]Benson G. Tandem repeats finder:A program to analyze DNA sequences. Nucleic Acids Res, 1999,27:573-580.
    [310]Clary D O, Wolstenholme D R. The mitochondrial DNA molecular of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J Mol Evol,1985,22:252-271.
    [311]Beard C B, Mills D, Collins F H. The mitochondrial genome of the mosquito Anopheles gambiae:DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol,1993,2:103-124.
    [312]Clary D O, Wolstenholme D R. Genes for cytochrome c oxidase subunit I, URF2,. and three tRNAs in Drosophila mitochondrial DNA. Nucleic Acids Res,1983,11:6859-6872
    [313]de Bruijn M H L. Drosophila melanogaster mitochondrial DNA:a novel organisation and genetic code. Nature,1983; 304:234-241.
    [314]Ballard J W O. Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. J Mol Evol,2000,51:48-63.
    [315]Nardi F, Carapelli A, Fanciulli PP, et al. The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis:Evidence for heteroplasmy and tRNA translocations. Mol Biol Evol,2001,18:1293-1304.
    [316]Krzywinski J, Grushko O G, Besansky N J. Analysis of the complete mitochondrial DNA from Anopheles funestus:An improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol,2006,39:417-423.
    [317]Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochodria. Natute,1981,290:470-474.
    [318]Lessinger A C, Junqueira A C, Lemos T A, et al. The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera:Calliphoridae). Insect Mol Biol,2000,9: 521-529.
    [319]Lavrov D V, Brown W M, Boore J L. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA,2000, 97:13738-13742.
    [320]Zhang D X, Szymura J M, Hewitt G M. Evolution and structural conservation of the control region of insect mitochondrial DNA. J Mol Evol,1995,40:382-391.
    [321]Vila M, Bjorklund M. The utility of the neglected mitochondrial control region for evolutionary studies in Lepidoptera (Insecta). J Mol Evol,2004,58:280-290.
    [322]Saito S, Tamura K, Aotsuka T. Replication origin of mitochondrial DNA in insects. Genetics,2005,171:1695-1705.
    [323]Hassanin A. Phylogeny of Arthropoda inferred from mitochondrial sequences:strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol,2006,38:100-116.
    [324]Kristensen N P, Skalski A W. Phylogeny and paleontology. In:Kristensen N P, ed. Lepidoptera:Moths and Butterflies,1 Evolution, Systematics, and Biogeography, Handbook of Zoology Vol IV, Part 35. Berlin and New York:De Gruyter.1999. pp 7-25.
    [325]Kawahara A Y, Mignault A A, Regier J C, et al. Phylogeny and Biogeography of Hawkmoths (Lepidoptera:Sphingidae):Evidence from Five Nuclear Genes. PLoS ONE. 2009; 4(5):e5719. doi:10.1371/journal.pone.0005719
    [326]Swofford D L. PAUP*4.0b9:Phylogenetic Analysis Using Parsimony (*and other methods), beta version.2002, Sinauer Associates, Sunderland.
    [327]Tamura K, Nei M & Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS,2004,101:11030-11035.
    [328]赵建国,李辉,王启贵,王宇祥,唐志权.鸡解偶联蛋(UCP)基因内含子的克隆与系统发生树的构建.遗传,2004,26(1):50-54.
    [329]Brunner S, Fengler K, Morgante M, et al. Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell,2005,17:343-360.
    [330]Ilic K, San Miguel P J, Bennetzen J L. A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci,2003,100: 12265-12270.
    [331]Alexander P T, Phillip J S, Yuko N, et al. Colinearity and its exceptions in orthologous Adh regions of maize and sorghum. PNAS,1999,96:7409-7414.
    [332]Knight A,mindell D P. Substitutions bias, weighting of DNA sequence evolution, and the phylogentic positions of fea's viper. Syst Biol,1993,42(1):18-31.
    [333]Doggett H. Sorghum,2nd edu. Johm wiley and Sons,1988, New York.
    [334]Ragab R A. Construction of a Sorghum RFLP linkage map using Sorghum and maize DNA probe. Genome,1994,37(4):590-594.
    [335]Deu M H. Mitochondrial DNA diversity in wild and cultivated sorghum. Genome,1995,38: 635-645.
    [336]Guo Q X, Hung K H, Yu Y, et al. Phylogenetic relationships of Sorghum and related species inferred from sequence analysis of the nrDNA ITS region. Agricultural Sciences in China, 2006,5(4):250-256.
    [337]詹秋文,钱章强.高粱与苏丹草杂种优势利用的研究.作物学报,2004,30(1):73-77.
    [338]Spangler R E. Taxonomy of Sarga, Sorghum and Vacoparis (Poaceae:Andropogoneae). Austral Syst Bot,2003,16:279-299.
    [339]Duvall M R, Doebley J F. Restriction-site variation in the chloroplast genome of Sorghum (Poaceae). Systematic Bot,1990,15:472-480.
    [340]莫赛军,宋平,罗大极,等.鲫鱼生长激素Ⅰ基因内含子2的多态性分析.遗传学报,2004,31(6):582-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700