鳞翅目昆虫胚胎细胞系的建立和高蛋白表达细胞克隆株的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1962年成功建立传代昆虫细胞系以来,昆虫细胞系已广泛地应用于生物学、农业和医学等领域,其中鳞翅目昆虫细胞系应用最为广泛,特别是随着杆状病毒表达载体系统(Baculovirus expression victor system,BEVS)的发明,使昆虫细胞在重组蛋白生产、工程疫苗和蛋白组学等领域得到了越来越多的应用,被认为是有巨大开发潜力的新型生物反应器。因此,建立新型昆虫细胞系、筛选用于病毒和重组蛋白生产等方面更加理想的细胞系,将具有重要的理论意义和实践价值。本文以重要农业害虫-棉铃虫(Helicoverpa armigera)和粘虫(Mythimna separata)为材料建立新细胞系,并对其生物学特性进行研究,丰富了有限的昆虫细胞系资源,为离体条件下进行昆虫生理生化、杆状病毒感染和细胞凋亡机制的研究提供实验材料;同时对本实验室建立的高产悬浮性粉纹夜蛾(Trichoplusia ni)胚胎细胞系QB-Tn9-4s进行克隆,从中筛选高蛋白表达的克隆株,进行无血清培养驯化,并阐明其生物学特性,为昆虫细胞这一新型生物反应器的深入研究和开发奠定基础。
     1.由棉铃虫胚胎组织建立了两株细胞系,分别命名为QB-Ha-E-1和QB-Ha-E-5,在含10%胎牛血清的TNM-FH培养基中已传代60余代。两株细胞系均以圆形和短梭形细胞为主;DAF和RAPD鉴定结果表明两株细胞系均来源于棉铃虫胚胎;染色体均为典型的鳞翅目昆虫细胞染色体特征;QB-Ha-E-1和QB-Ha-E-5的第30代细胞群体倍增时间分别为63.7 h和66.9 h。两株细胞系均能被棉铃虫核型多角体病毒(HaSNPV)感染,4 d的感染率分别为86.6%和56.5%;对甘蓝夜蛾(Mamestra brassicae)核型多角体病毒(MbNPV)7 d的感染率均为15%左右;但对苜蓿银纹夜蛾(Autographa californica)核型多角体病毒(AcMNPV)侵染的反应不同,DAPI染色和基因组DNA电泳结果表明,AcMNPV可诱导QB-Ha-E-5细胞发生凋亡,极少数细胞内可形成病毒多角体,但不能诱导QB-Ha-E-1细胞发生凋亡,其感染率为55.3%,两株细胞系均可被1.25μg/mL的放线菌素D诱导发生凋亡。
     2.由粘虫胚胎组织建立了四株细胞系,分别命名为QB-Ms-E-1、QB-Ms-E-2、QB-Ms-E-3和QB-Ms-E-4,在含10%胎牛血清的TNM-FH培养基中已传代50余代。四株细胞系均以圆形和短梭形细胞为主;DAF和RAPD鉴定结果表明四株细胞系均来源于粘虫胚胎;染色体均呈典型的鳞翅目昆虫细胞染色体特征;QB-Ms-E-1、QB-Ms-E-2、QB-Ms-E-3和QB-Ms-E-4的群体倍增时间分别为44.9 h、46.6 h、46.5 h和47.1 h。四株细胞系均能被同源的粘虫核型多角体病毒(MsNPV)感染,7 d的感染率分别为56.6%、53.6%、49.3%和62.5%;对MbNPV 10 d的感染率均在5%以下;但对苜蓿银纹夜蛾核型多角体病毒(AcMNPV)都很敏感,4 d的感染率均在90%以上。
     3.对粉纹夜蛾胚胎细胞系QB-Tn9-4s进行克隆获得了9个克隆株,分别命名为克隆株QB-Tn-Ⅰ、QB-Tn-Ⅱ、QB-Tn-Ⅲ、QB-Tn-Ⅳ、QB-Tn-Ⅴ、QB-Tn-Ⅵ、QB-Tn-Ⅶ、QB-Tn-Ⅷ和QB-Tn-Ⅸ。对各克隆株基因组DNA进行RAPD鉴定,结果表明各克隆株与原始细胞系QB-Tn9-4s具有相同的DNA扩增谱带。病毒侵染试验表明,各克隆株对AcMNPV均很敏感,感染率都在87%以上,平均每个细胞病毒多角体产量在70~87个之间,其中克隆株QB-Tn-Ⅰ的多角体产量最高(86.7±1.5 OBs/cell),高于对照BTI-Tn5B1-4和原始细胞QB-Tn9-4s的多角体产量,是Sf-9多角体产量的2.8倍。比较各细胞第6 d重组蛋白β-半乳糖苷酶(β-gal)的表达量,克隆株QB-Tn-Ⅴ的表达量最高(3.06×10~4 IU/mL),其次为克隆株QB-Tn-Ⅰ(2.70×10~4 IU/mL),均高于原始细胞QB-Tn9-4s和对照细胞BTI-Tn5B1-4及Sf-9的表达量。比较各细胞克隆株第7 d分泌型碱性磷酸酶(SEAP)的表达量,克隆株QB-Tn-Ⅴ的表达量最高(2.96 IU/mL),其次为QB-Tn-Ⅰ(2.41 IU/mL),均显著高于原始细胞QB-Tn9-4s和对照细胞BTI-Tn5B1-4及Sf-9的表达量。
     4.将原始细胞系QB-Tn9-4s及其克隆株QB-Tn-Ⅰ和QB-Tn-Ⅴ分别在无血清培养基Sf-900Ⅲ及EX-CELL 420中进行驯化培养,在Sf-900Ⅲ中驯化均获得成功,而在EX-CELL 420中只有克隆株QB-Tn-Ⅴ最终驯化成功。无血清驯化后各细胞形态和大小都发生了一定的改变。生长曲线测定结果表明,各细胞在Sf-900Ⅲ中的生长速度变快,群体倍增时间缩短,细胞最大密度均有提高,但是克隆株QB-Tn-Ⅴ在EX-CELL 420中生长速度变慢,倍增时间延长,细胞最大密度有所下降。QB-Tn9-4s及克隆株QB-Tn-Ⅰ和克隆株QB-Tn-Ⅴ在有血清培养基TNM-FH中的群体倍增时间分别为27.4 h、28.0 h和27.0 h,在Sf-900Ⅲ中的倍增时间分别为24.1 h、26.1 h和25.4 h,克隆株QB-Tn-Ⅴ在EX-CELL 420中的群体倍增时间为28.8 h。QB-Tn9-4s及其克隆株QB-Tn-Ⅰ和QB-Tn-Ⅴ在Sf-900Ⅲ中细胞最大密度分别是TNM-FH中的1.8、1.7和1.7倍,而在EX-CELL 420中的细胞最大密度是TNM-FH中的0.9倍。
     AcMNPV感染各细胞的结果表明,克隆株QB-Tn-Ⅰ在Sf-900Ⅲ中的病毒感染率为80.3%,平均每个细胞病毒多角体(OBs)产量为33.9个,其他细胞的感染率均在90%以上,平均每个细胞多角体产量在81~87个之间,与对照细胞BTI-Tn5B1-4的产量差异不显著。
     测定了各细胞在有血清培养基和无血清培养基中的重组蛋白表达水平,结果表明,克隆株QB-Tn-Ⅴ在Sf-900Ⅲ中第6 dβ-半乳糖苷酶的表达量最高(3.27×10~4 IU/mL);对比各细胞有血清和无血清培养下第6 dβ-半乳糖苷酶的表达量可以看出,各细胞在无血清培养基Sf-900Ⅲ中的表达量均高于在有血清培养基TNM-FH中的表达量,但克隆株QB-Tn-Ⅴ在无血清培养基EX-CELL 420中的表达量低于其在Sf-900Ⅲ中和在有血清培养基TNM-FH中的表达量。BTI-Tn5B1-4在Sf-900Ⅲ中第7 d分泌型碱性磷酸酶的表达量(4.43 IU/mL)最高,其次为QB-Tn-Ⅴ(4.30 IU/mL)在Sf-900Ⅲ中的表达量。对比各细胞在有血清和无血清培养下第7 d的分泌型碱性磷酸酶表达量可以看出,各细胞在无血清培养基Sf-900Ⅲ中的表达量均显著高于有血清培养基TNM-FH中的表达量,但克隆株QB-Tn-Ⅴ在无血清培养基EX-CELL 420中的表达量低于其在Sf-900Ⅲ中和有血清培养基TNM-FH中的表达量。
The development of insect cell lines have been played a significant role in research and application of virology, medicine, agriculture, and biology since the first insect cell line was established in 1962. Lepidopteran insect cell lines are used broadly in insect virology research and recombinant protein expression. With the advent of the baculovirus-insect cell expression system a new exciting application for insect cells in biotechnology was realized. Insect cell lines have become more important as a new bioreactor for the production of virus biopesticides and recombinant proteins. In this study establishment of two new cell lines from two important agricultural pest insects, Helicoverpa armigera and Mythimna separata, identification of the biological characterization, screening of cell clones with higher production of virus and recombinant protein from Trichoplusia ni cell line QB-Tn9-4s were performed. These rerults can provide new resources in studies of apoptosis, biochemical mechanisms and virology, and the basis for potential application and development of insect cell lines.
     1. Two new cell lines, QB-Ha-E-1 and QB-Ha-E-5, were established from the embryonic tissue of Helicoverpa armigera (Lepidoptera: Noctuidae). The cell lines have been subcultured over 60 passages in TNM-FH medium supplemented with 10% FBS. Each cell line consists of two major morphological types: round cells and spindle-shaped cells. The analyses of DNA amplification fingerprinting (DAF) and random amplified polymorphic DNA (RAPD) showed similar DNA profiles between the two cell lines and the embryonic tissue of Helicoverpa armigera. Two cell lines had a typical lepidopteran chromosomes pattern. The cell doubling times of QB-Ha-E-1 and QB-Ha-E-5 were 63.7 h and 66.9 h at the 30th passage, respectively, and they can be infected by Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) with infection rates of 86.6% and 56.5%, respectively, at 4 d postinfection (p.i.). Approximately 15% of both cell lines were infected by Mamestra brassicae nucleopolyhedrovirus (MbNPV) at 7 d p.i.. Two cell lines had differential responses to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection. The results from the fluorescent staining with DAPI and electrophoresis of genomic DNA indicated that QB-Ha-E-5 cell line had typical apoptotic response following AcMNPV infection, but QB-Ha-E-1 cell line with AcMNPV infection rate of 55.3% appeared anti- apoptosis. Actinomycin D could induce apoptosis of the both cell lines at the concentrations of 1.25μg/mL.
     2. Four cell lines, QB-Ms-E-1, QB-Ms-E-2, QB-Ms-E-3, and QB-Ms-E-4,were established from the embryonic tissue of Mythimna separata (Lepidoptera: Noctuidae). The cell lines have been subcultured over 50 passages in TNM-FH medium supplemented with 10% fetal bovine serum (FBS). Four cell lines consist of two major morphological types: round cells and spindle-shaped cells. The DAF and RAPD analyses indicated similar DNA profiles between the four cell lines and the embryonic tissue of Mythimna separata. The four cell lines showed a typical chromosomes pattern of lepidopteran insect. The cell population doubling times of QB-Ms-E-1, QB-Ms-E-2, QB-Ms-E-3, and QB-Ms-E-4 were 44.9 h, 46.6 h, 46.5 h, and 47.1 h, respectively, and they can be infected by Mythimna separata nucleopolyhedrovirus (MsNPV) with infection rates of 56.6%, 53.6%, 49.3%, and 62.5%, respectively, at 7 d p.i.. Less than 5% of four cell lines were infected by Mamestra brassicae nucleopolyhedrovirus (MbNPV) at 10 d p.i.. Four cell lines were highly susceptible to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) with infection rates of over 90% at 4 d p.i..
     3. Nine cell clones were successfully derived from the established Trichoplusia ni cell line QB-Tn9-4s and designated QB-Tn-Ⅰ, QB-Tn-Ⅱ, QB-Tn-Ⅲ, QB-Tn-Ⅳ, QB-Tn-Ⅴ, QB-Tn-Ⅵ, QB-Tn-Ⅶ, QB-Tn-Ⅷ, and QB-Tn-Ⅸ, respectively. RAPD analysis of the genomic DNA of these clones confirmed their genetic identity as their parent cell line QB-Tn9-4s. Each clone was highly susceptible to AcMNPV virus with infection rates of over 87% cells with production of around 70-87 OBs per cell. The clone QB-Tn-Ⅰproduced 86.7±1.5 OBs per cell, which was higher than BTI-Tn-5B1-4, QB-Tn9-4s and Sf-9. The expression ofβ-galactosidase (β-gal) was determined and compared at 6 d p.i., the clone QB-Tn-Ⅴshowed the highest expression level (3.06×104 IU/mL), closely followed by QB-Tn-Ⅰ(2.70×104 IU/mL), both cells were higher than BTI-Tn-5B1-4, QB-Tn9-4s and Sf-9 cells. The expression of secreted alkaline phosphatase (SEAP) at 7 d p.i. clone QB-Tn-Ⅴwas highest (2.96 IU/mL) among the cell lines, followed by QB-Tn-Ⅰ(2.41 IU/mL), both cells were higher than BTI-Tn-5B1-4, QB-Tn9-4s and Sf-9 cells.
     4. The cell line QB-Tn9-4s and its clones QB-Tn-Ⅰand QB-Tn-Ⅴwere successfully adapted to a serum-free medium, Sf-900Ш, but one clone QB-Tn-Ⅴwas successfully adapted to a serum-free medium, EX-CELL 420, only.
     Their morphology and size in serum-free medium differed greatly from serum-containing medium, the results of growth kinetics showed that their cell population doubling times in Sf-900Шwere shorter than the cultures in serum-containing medium TNM-FH, the densities of all cells in Sf-900Шwere higher also than the cultures in serum-containing medium. But the clone QB-Tn-Ⅴgrew slower in EX-CELL 420 medium, its cell population doubling time was longer, and the density was lower than in serum-containing medium. The cell population doubling times of QB-Tn9-4s and its clones QB-Tn-Ⅰand QB-Tn-Ⅴin serum-containing medium were 27.4 h, 28.0 h, and 27.0 h, respectively, and in Sf-900ШSFM were 24.1 h, 26.1 h, 25.4 h, respectively, the doubling times of QB-Tn-Ⅴin EX-CELL 420 medium was 28.8 h. The maximum densities of QB-Tn9-4s and its clones QB-Tn-Ⅰand QB-Tn-Ⅴin Sf-900ШSFM were higher than in serum-containing medium (TNM-FH) by factors of 1.8, 1.8, and 1.7-fold, respectively.
     The virus infection rate of QB-Tn-Ⅰwas 80.3% with production of 33.9 OBs per cell in Sf-900ШSFM, the remainder of the cell lines were highly susceptible to AcMNPV with an infection rates of over 90% cells with production of around 81-87 OBs per cell, no significant difference were observed between in both Sf-900ШSFM and serum-containing medium TNM-FH.
     The expression ofβ-galactosidase (β-gal) of QB-Tn9-4s, QB-Tn-Ⅰ, QB-Tn-Ⅴand BTI-Tn5B1-4 in Sf-900ШSFM medium was higher than in serum-containing cultures, the clone QB-Tn-Ⅴexpressed the highest level (3.27×104 IU/mL) among these cell lines in Sf-900ШSFM medium at 6 d p.i.. The expression of secreted alkaline phosphatase (SEAP) of QB-Tn9-4s, QB-Tn-Ⅰ, QB-Tn-Ⅴand BTI-Tn5B1-4 in Sf-900ШSFM medium was higher than in serum-containing cultures also, BTI-Tn5B1-4 showed the highest expression level (4.43 IU/mL) in Sf-900ШSFM medium at 7 d p.i., closely followed by QB-Tn-Ⅴ(4.30 IU/mL) in Sf-900ШSFM medium. Whereas the expression levels ofβ-gal and SEAP of QB-Tn-Ⅴin EX-CELL 420 medium were lower than in Sf-900ШSFM and serum-containing medium TNM-FH.
引文
1.艾永兴,肖昌,郝军元,胡薇,潘风光,郑梅竹,张玉静. p15在杆状病毒-昆虫细胞表达系统中的表达.中国兽医学报, 2009, 29(5): 632-636.
    2.包人月,吴金美,吴小锋.昆虫杆状病毒细胞凋亡抑制基因.细胞生物学杂志, 2006, 28: 676-680.
    3.曹翠平,吴小锋,鲁兴萌.昆虫细胞无血清培养.细胞生物学杂志, 2005, 27: 127-132.
    4.曹建斌,范晓军,梁爱华.杆状病毒及其应用.科技情报开发与经济, 2007, 17(18): 131-132.
    5.常韶华,孙洪亮,李佐虎.降低血清用量对昆虫细胞培养增殖杆状病毒的影响.中国生物防治, 1998, 14(2): 62-64.
    6.陈默.紫外线诱导家蚕卵巢细胞(BmN-SWUI)凋亡的研究.西南大学硕士学位论文, 2008.
    7.陈曲侯,洪华珠,肖明.苏云金杆菌蜡螟变种制剂毒力的离体生物测定.中国生物防治, 1990, (S1): 36-40.
    8.陈曲侯,麦克塔希,伊格洛佛.黄条行军虫(Spoptera omithogalle)二个传代细胞系的建立.华中师范大学学报, 1984, (3): 101-108.
    9.陈曲候,谢荣栋.棉铃虫(Helicoverpa armigera)一个新细胞系的建立.昆虫学研究集刊, 1983, (3): 129-136.
    10.陈晓红,陈广文.我国已建立的昆虫细胞系及其生物学特性与应用.昆虫知识, 1999, 36(4): 233-238.
    11.程东美,张志祥,胡美英,徐汉虹.昆虫细胞在杀虫剂研究上的应用.世界农药, 2002, 24(4): 28-30.
    12.崔巍,唐炳华,王硕仁.细胞凋亡检测方法探讨.细胞生物学杂志, 2007, 29: 777-782.
    13.戴琥,赵佼,谭文松,杨曜中.无血清培养昆虫细胞(BTI-Tn5B1-4)的适应过程.生物工程学报, 2000, 16(2): 232-234.
    14.单士刚.紫外线诱导斜纹夜蛾细胞SL-1凋亡的研究.华中师范大学硕士学位论文, 2006.
    15.邓宁,陈曲侯,洪华珠.昆虫细胞大规模培养和杆状病毒生产.昆虫知识, 1995, 32(4): 236-239.
    16.范国昌.细胞培养技术在病毒学研究中的应用.生物学杂志, 1997, 14(75): 33,40.
    17.冯振月.家蚕丝腺细胞系BmSG-SWU1的建立及其RAPD和ISSR的指纹图谱分析.西南大学硕士学位论文, 2006.
    18.顾涵英,冯佑民.无血清细胞培养基及其主要补充因子.生物化学与生物物理进展, 1995, 17(4): 255-259.
    19.何雯,张蓓,刘无逸.四种细胞凋亡检测方法的比较.中外医疗, 2007, 24: 1-2.
    20.贺莉芳,万启惠,刘晖,张曦,徐大纲.影响家蝇胚胎细胞系建立的相关因素研究.热带医学杂志, 2008, 8(3): 238-240.
    21.洪华珠,彭建新.一株高水平表达重组蛋白昆虫细胞系的建立.昆虫学报, 2001, 144(3): 276-279.
    22.胡森,王喜军,王清华,吴东来,邓国华,王笑梅,步志高.杆状病毒表达SARS冠状病毒核蛋白抗原性的研究.中国人兽共患病杂志, 2005, 21(4): 301-303, 319.
    23.黎路林,余泽华,彭建新,陈曲侯.家蚕胚胎细胞系Bm-21E-HNU5的生物学特征研究.华中师范大学学报, 1991, 25(4): 469-473.
    24.李长友,郑桂玲,王晓云,宋捷,李国勋.八字地老虎血球细胞系的建立.昆虫学报, 2002, 45(2): 279-282.
    25.李辉,汤历,陈其津.昆虫病毒的研究进展.安徽农学通报, 2007, 13(13): 150-152.
    26.李君浩,祁志军,陈华保,钱勇,姬志勤.粘虫细胞培养及苦皮藤素Ⅳ,Ⅴ对其毒力的研究.西北农林科技大学学报(自然科学版), 2006, 34(11): 215-219.
    27.李文欧,徐汉虹,张志祥,廖绍裕.印楝素A对粉纹夜蛾Hi-5细胞的毒性机理.昆虫学报, 2008, 51(8): 824-829.
    28.李小峰,齐义鹏,林宏, Mallam Nock Joshua,李燕,李志达.杆状病毒p35基因延缓昆虫细胞凋亡.武汉大学学报, 1998, 44(4): 501-505.
    29.李艺丹,程罗根,张晓飞.鳞翅目昆虫细胞株的建立与应用.植物保护, 2001, 27(4): 38-40.
    30.李银花,郑桂玲,李长友,马明,李国勋.昆虫细胞BTI-Tn-5B1-4和Sf-9的无血清培养及其特性研究.青岛农业大学学报, 2009, 26(2): 131-135.
    31.梁昌镛, He Bin,胡志红,王汉中,陈新文.丙型肝炎病毒Ns5A基因的克隆以及在原核和昆虫细胞中表达的研究.华中师范大学学报, 2003, 37(2): 236-241.
    32.刘戈飞,黄东阳.无血清悬浮培养昆虫细胞表达人纤溶酶原Kringle5的研究.汕头大学医学院学报, 2006, 19(1): 1-5.
    33.刘海峰,孙文汇,高洪,严玉霖.细胞凋亡的特征及其检测方法.动物医学进展, 2008, 29(3): 106-108.
    34.刘凯于,邓玉杰,张许平,彭建新,李毅,洪华珠.昆虫细胞程序性死亡的研究进展.昆虫学报, 2008, 51(6): 652-658.
    35.刘凯于,杨红,蒋才富,彭建新,洪华珠.抗苏云金杆菌毒素Cry1Ac粉纹夜蛾细胞系的特性研究.实验生物学报, 2003, 37(3): 205-211.
    36.刘栖干,胡有键,沈立美.茶尺蠖蛹卵巢细胞株的建立.昆虫学研究集刊, 1981, 23(2): 123-128.
    37.刘淑珊,王林美,范琦,李文利,柏昊.樗蚕蛹精巢细胞系的建立.蚕业科学, 1999, 25(1): 41-45.
    38.刘亚强,彭大勇,祁志军.三种植物源杀虫活性成分对东方粘虫中肠细胞的毒力测定.昆虫知识, 2007, 44(5): 676-679.
    39.刘永平,王方海,苏志坚,李广宏,庞义.昆虫杆状病毒表达载体系统的研究及应用.昆虫知识, 2006, 43(1): 1-5.
    40.吕鸿声,张志芳,吴金美.细胞凋亡:昆虫抗病毒感染的重要机制.中国蚕业, 2003, 24(3): 4-12 .
    41.马江涛,卢曾军,曹轶梅,郭慧琛,郭建宏,祝秀梅,杨孝朴,刘在新.口蹄疫病毒NSP3ABC基因在昆虫细胞中的分泌表达及其活性检测.生物工程学报, 2007, 23(3): 540-545.
    42.潘敏慧,肖仕全,洪锡钧,鲁成.家蚕胚胎细胞系BmE-SWU1的建立及其生物学特性.细胞生物学杂志, 2005, 27: 708-712.
    43.潘耀谦,于艳,夏志平.检测细胞凋亡的常用方法.动物医学进展, 2001, 21(2): 32-36.
    44.潘李珍,孔德芳,王凤芸,石梦辉.白纹伊蚊( Aedes albopictus )细胞株的建立及其特征.北京第二医学院学报. 1980, 1: 13-21+ 96-97.
    45.潘李珍,石梦辉,张漪,张志敏.中华按蚊(Anopheles sinensis)细胞系的建立和特征.细胞生物学杂志, 1989, 11(2): 78- 82.
    46.庞义,代小江,施先宗,龙綮新,王珣章.两种昆虫杆状病毒诱导的细胞凋亡.中山大学学报, 1998, 37(3): 1-6.
    47.彭建新,洪华珠,Granados R R.粘虫PuA7S细胞的悬浮培养、病毒增殖及其细胞克隆.华中师范大学学报, 1999, 33(4): 570-574.
    48.彭建新,杨红,洪华珠,潭文松.粉纹夜蛾5B1细胞的悬浮培养.华中师范大学学报, 1996, 30(4): 472-475.
    49.浦秋文,胡敏,卢文绮.蓖麻蚕蛹卵巢细胞株的建立及其对核型多角体病毒敏感性的研究.武汉大学学报, 1997, 43: 221-226.
    50.三桥淳,缪云根.昆虫细胞的无血清培养.国外农学:蚕业, 1990, 2: 16-18,32.
    51.尚继军,项金忠,谢云,张国强,冯素英,张鹤飞.乙型肝炎病毒表面抗原中蛋白基因在昆虫细胞中的表达及其初步鉴定.中国生物制品学杂志, 1997, 10(4): 196-199.
    52.沈立美.棉铃虫(Helicoverpa armigera)血细胞株的建系报导.细胞生物学杂志, 1984, 6(2): 94-99.
    53.沈中建,陈梅琴,吴祥甫.蓖麻蚕血细胞系的建立及同源核型多角体病毒的体外复制.病毒学报, 1997, 13: 382-385.
    54.宋德伟,马艳,冯颖,陈晓鸣.昆虫细胞工程研究进展.林业科学研究, 2004, 17(1): 116- 124.
    55.孙洪亮,常韶华,李佐虎.昆虫细胞—杆状病毒表达系统表达尿激酶原.生物工程学报, 1999, 15: 373-37.
    56.唐莹,冯君.动物细胞培养基的发展及应用.中国临床康复, 2006, 10(41): 146-148.
    57.田兆菊,郑玉姝,胡敬东,赵宏坤.牛IL218成熟蛋白基因在昆虫细胞中的表达及其活性.细胞与分子免疫学杂志, 2007, 23(3): 89-91.
    58.王新建,余泽华,姚汉超,陈曲侯.一种适合粉纹夜蛾5B1细胞生长的无血清培养基的研究.华中师范大学学报, 2001, 35(2): 206-208.
    59.王彦彬,崔保安,陈红英,王亚宾,张红英,魏战勇.猪干扰素α在昆虫细胞中分泌表达及其抗病毒活性检测.中国农业科学, 2009, 42(4): 1435-1441.
    60.王业富,齐义鹏,朱应,李小峰,李志达.棉铃虫核型多角体病毒凋亡抑制基因对p35基因失活病毒的功能拯救.中国病毒学, 1998, 13(3): 251-256.
    61.温坤,丘立文,王压娣,车小燕.禽流感病毒H5N1血凝素基因在昆虫细胞中的表达及鉴定.南方医科大学学报, 2007, 27(1): 20-23.
    62.谢荣辉,朱函坪,程胤凯,徐芳,姚苹苹,翁景清,朱智勇. II型登革病毒NS1基因的克隆及其在昆虫细胞中的表达.中国人兽共患病学报, 2008, 24(12): 1114-1117.
    63.谢天恩,兰萍章,张光裕,刘军,王录明.棉铃虫(Heliothis armigera Hubn)血球细胞单层培养.科学通报, 1980, 25(5): 232-233.
    64.谢伟东,曲士芮,庞义.斜纹贪夜蛾( Spodoptera litura Fabricius)细胞系的建立.中山大学学报, 1988, (4): 113-116.
    65.徐红星,俞晓平,陈建明,吕仲贤,郑许松,张珏锋,陈列忠.昆虫离体细胞生测法在杀虫剂研究中的应用.第三届全国绿色环保农药新技术、新产品交流会暨第二届全国生物农药研讨会, 2004, 227-230.
    66.杨红,周青春,王家坤,洪华珠,陈曲侯.利用菜青虫细胞检测几种有机溶剂和有机磷农药的毒力.植物保护学报, 1996, 23(1): 79-83.
    67.杨青,刘建茹,张晓丹,张志强,冯立,张丽华,张玉奎.用昆虫细胞表达系统表达人组织激肽释放酶原.生物技术, 2006, 16(6): 7-9.
    68.杨淑艳,谢荣栋.棉铃虫细胞株SIEHa-198和SIE-Ha-806的建立及其特性的研究.昆虫学研究集刊(第三集), 1983, 126-136.
    69.杨宇泽,师如意,谷传慧.细胞凋亡的特征、检测方法及生物学意义.上海畜牧兽医通讯, 2008, 5: 68.
    70.姚伦广,杜昌升,彭建新,洪华珠.杆状病毒诱导昆虫细胞凋亡的初步研究.微生物学报, 2002, 42(3): 380-383.
    71.于洪春,王晓云,李国勋.四株昆虫细胞系对粘虫核型多角体病毒敏感性的毒力测定.东北农业大学学报, 2000, 31(4): 342-345.
    72.于洪春,郑桂玲,王晓云,李国勋,赵奎军.粘虫胚胎细胞系的建立及对MsNPV敏感性的测定.中国病毒学, 2003, 18(1):31-34.
    73.曾庆韬,钱远槐,黄红,严冰.不同品系黑腹果蝇细胞系的建立(Ⅱ)—黑条体突变型(BSR)细胞系的建立和生物学特征.湖北大学学报, 1998, 20(4): 373-376.
    74.詹爱军,王新卫,王宪文,覃健萍,毕英佐,于康震,曹永长. H5亚型AIV NS1基因的克隆及其在昆虫细胞中的表达.生物技术通报, 2008, 2: 191-198.
    75.张寰,张永安,秦启联,王玉珠,曲良建,李苗麟,殷珍仙,张爱君,温发园.昆虫细胞系的培养和建立技术.昆虫学报, 2007, (8): 834-839.
    76.张瑞,彭建新.放线菌素D诱导的SL-1细胞凋亡的初步研究.武汉工业学院学报, 2008, 27(3): 10-14.
    77.张文杰,李向东,赵铁柱,邓小雨,胡冬梅,孙明,遇秀玲,陈西钊,田克恭.猪瘟病毒E2基因在昆虫细胞/杆状病毒中的表达.中国试验动物学报, 2007, 15(1): 31-34.
    78.张欣,冯颖,马涛,马艳,丁伟峰.五种双翅目昆虫细胞系染色体分析.林业科学研究, 2007, 20(4): 551-555.
    79.张欣,冯颖,丁伟峰,马涛,马艳. 7种鳞翅目昆虫细胞系染色体分析.林业科学研究, 2008, 21(4): 493-499.
    80.张佑红,朱雄伟,陈燕.昆虫细胞培养及其应用进展.武汉化工学院学报, 2006, 28(3): 20-24.
    81.赵佼,周燕,谭文松,俞俊棠.贴壁培养方式中昆虫细胞的生长限制性因素研究.生物工程学报, 1999, 15(3): 383-387.
    82.赵莉,步志高,鲍恩东.鸡IgMu链在杆状病毒-昆虫细胞系统中的表达及其反应原性的测定.农业生物技术学报, 2007, 15(3): 535-536.
    83.赵振军,张丽杰,易小兵,李燕群.几种凋亡细胞检测方法的比较.医学综述, 2003, 9(7): 387-389.
    84.钟江,肖溆琳,苏德明.棉铃虫细胞系SFE-Ha-8212的克隆化及对HaSNPV受纳性提高的克隆系的建立.复旦大学学报, 1994, 33(2): 148-156.
    85.周青春,洪华珠,罗勤,万树青,汪虹,彭建新.测定昆虫细胞存活死亡的MTT法的改进.昆虫知识, 1998, 35(3): 165-167.
    86.周亚竞,张志芳,张元兴,何家禄.昆虫细胞培养研究进展.蚕业科学, 2000, 26(增刊):74-78.
    87.朱江,吴祥甫.昆虫杆状病毒表达系统研究进展及应用展望.蚕业科学, 2003, 29(2): 114-119.
    88. Akita H., Suzuki H., Hirohashi T., Takikawa H., Sugiyama Y. Transport activity of human MRP3 expressed in Sf9 cells: Comparative studies with Rat MRP3. Pharmaceutical Research, 2002, 19 (10): 34-41.
    89. Brunner D., Frank J., Appl H., Sch?ffl H., Pfaller W., Gstraunthaler G. Serum-free cell culture: the serum-free media interactive online database. ALTEX. 2010, 27(1): 53-62.
    90. Catarina B., Ricardo G., Julia C. Stable expression of an active soluble recombinant form of human fucosyltransferase IX in Spodoptera frugiperda Sf9 cells. Biotechnol. Lett., 2007, 29: 1623-1630.
    91. Chejanovsky N., Gershburg E. The wild-type Autographa californica nuclear polyhedrosis virus induces apoptosis of Spodoptera littoralis cells. Virology, 1995, 209:519-525.
    92. Calles K., Eriksson U., H?ggstr?m L. Effect of conditioned medium factors on productivity and cell physiology in Trichoplusia ni insect cell cultures. Biotechnol. Prog., 2006, 22: 653-659.
    93. Chen Q., Mclntosh A. H., Yu Z., Hong H., Goodman C. L., Grasela J. J., Ignoffo C. M. The replication of Autographa californica baculovirus (AcMNPV) in two lepidopteran cell lines grown in serum-free media. Journal of Invertebrate Pathology, 1993, 62(3): 216-219.
    94. Clem R. J., Fechheimer M., Miller L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science, 1991, 254:1388-1390.
    95. Clem R. J, Miller L. K. Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol, 1993, 67: 3730-3738.
    96. Davis T. R., Trotter K. M., Granados R. R., Wood H. A. Baculovirus expression of alkaline phosphatase as a reporter gene for evaluation of production, glycosylation and secretion. Bio/Technology, 1992, 10: 1148-1150.
    97. Dougherty E. M., Narang N., Loeb M., Lynn D. E., Shapiro M. Fluorescent brightener inhibits apoptosis in baculovirus-infected gypsy moth larval midgut cells in vitro. Biocontrol Science and Technology, 2006, 16(2): 157-168.
    98. Eide P. E., Caldwell J. M., Marks E. P. Establishment of two cell lines from embryonic tissue of the tobacco hornworm, Manduca sexta (L.). In Vitro, 1975, 11: 395-399.
    99. Ezoe H., Fatt R. B. L., Mak S. Degradation of intracellular DNA in KB cells infected with cyt mutants of human adenovirus-type-12. J. Virol., 1981, 40: 20-27.
    100. Gaw Z. Y., Liu N. T., Zia T. U. Tissue culture methods for cultivation of virus grasserie. Acta. Virol., 1959, 3 (Suppl): 55-60.
    101. Glaser R. W. The growth of insect blood cells in vitro. Psyche., 1917, 24: 1-7.
    102. Godwin G., Blisle B., Giovanni A. D., Kohler J., Gong T., Wojchowski D. Serum-free growth and recombinant EPO expression in Spodoptera frugiperda (Sf9) insect cells. In Vitro, 1989, 25(3): 19.
    103. Goldshmidt R. Some experiments on spermatogenesis in vitro. Proc. Natl. Acad. Sci. USA, 1915, 1: 220-222.
    104. Goodman C. L., Ssyed G. N., Mcintosh A. H., Grasela J. J., Stiles B. Establishment and characterization of insect cell lines from 10 lepidopteran species. In Vitro Cell Dev. Biol., 2001, 37: 367-373.
    105. Gotoh T., Miyazaki Y. Investigation of sequential behavior of carbosyl protease and cysteine protease activities in virus infected Sf9 insect cell culture by inhibition assay. Appl. Microbiol. Biotechnol., 2001, 56(5/6): 742-749.
    106. Grace T. D. C. Establishment of four strains of cells from insect tissues grown in vitro. Nature, 1962, 195: 788-789.
    107. Granados R. R., Li G. X., Derksen A. C. G., Mckenna K. A. A new insect line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus. J. Invert. Pathol., l994, 64: 260-266.
    108. Granados R. R, Derksen C. G., Dwyer K G. Replication of the Trichoplusia ni granulosis and nuclear polyhedrosis viruses in cell cultures. Virology, 1986, 152: 472-476.
    109. Granados R. R., Li G. X., Blissard G. W. Insect cell culture and biotechnology. Virologica Sinica, 2007, 22(2): 83-93.
    110. Gringorten J. L., Sohi S. S., Masson L. Activity spectra Bacillus thuringensisδ-endotoxins against eight insect cell lines. In Vitro Cell Dev. Biol., 1999, 35: 299-303.
    111. Gstraunthaler G. Alternatives to the use of fetal bovine serum: Serum-free cell culture. ALTEX, 2003, 20: 275-281.
    112.Hara K. K., Funakoshi T. M., Kawarabata T. New Spodoptera exigua cell lines susceptible to Spodoptera exigua nuclearpolyhedrosis virus. In Vitro Cell. Dev. Bio., 1993, 29A: 904–907.
    113. Hara K. K., Funakoshi M., Kawarabata T. A cloned cellline of Spodoptera exigua has a highly increased susceptibility to the Spodoptera exigua nuclearpolyhedrosis virus. Can. J. Microbiol. 1995, 4: 1111–1116.
    114. Homma K. J., Tanaka Y., Matsushita T., Yokoyama K., Matsui H., Natori S. Adenosine deaminase activity of insect-derived growth factor is essential for its growth factor activity. The Journal of Biological Chemistry, 2001, 276(47): 43761-43766.
    115. Hayflick L. Subculturing human diploid fibroblast cutures. In: Kruse P. F., Patterson M. K. eds. Tissue culture methods and application. Academic Press, NY. 1973, 220-223.
    116. Heinandez-Crespo P., Bergoin M., Lopez-Blachere C., Quiot J. M. Establishment of two new Othopteran cell lines. In Vitro Cell Dev. Biol. Anim., 2000,36: 559-562.
    117. Hoshino K., Hirose M., Iwabuchi K. A new insect cell line from thelongicorn beetle Plagionotus christophi (Coleoptera: Cerambycidae). In Vitro Cell. Dev. Biol. Anim., 2009, 45: 19–22.
    118. Ikonomou L., Bastin G., Schneider Y. J., Agathos S. N. Design of an efficient medium for insect cell growth and recombinant protein production. In Vitro Cell. Dev. Biol., 2001, 37: 549-559.
    119. Ikonomou L., Schneider Y. J., Agathos S. N. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol., 2003, 62: 1-20.
    120. Inlow D., Shanger A., Maioralla B. Insect cell culture and baculovirus propagation in protein free medium. J. Tissue Culture Methods. 1989, 12: 13-16.
    121. Iwabuchi K. An establishment cell line from the beetle Xylotrechus pyrrhoderus (Coleoptera:cerambycidae). In Vitro Cell. Dev. Biol. Anim., 1999, 35: 612-615.
    122. Jason R. H., Joel H. S., Donald L. J. Stable expression of mammalianβ1,4-galactosyltransferase extends the N-glycosylation pathway in insect cells. Glycobiology, 1998, 8(5): 473-480.
    123. Kerr J. F. R., Winterford C. M., Harmon B. V. Apoptosis its significance in cancer and cancer therapy. Cancer, 1994, 73: 2013-2026.
    124. Kerr J. F. R., Wyllie A. H., Currie A. R. Apoptosis: a basis biological phenomenon with wide- ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26: 239-257.
    125. Khurad A. M., Kanginakudru S., Qureshi S. O., Rathod M. K., Rai M. M., Nagaraju J. A new Bombyx mori larval ovarian cell line highly susceptible to nucleopolyhedrovirus. J. Invertebr. Pathol., 2006, 92(2): 59-65.
    126. Kim E. J., Rhee W. J., Park T. H. Inhibition of apoptosis by a Bombyx mori gene. Biotechnol. Prog., 2004, 20(1): 324-329.
    127. Kloppinger J., Fertig G., Fraune E. Multistage production of Autographa californica nuclear polyhedrosis virus in insect cell cultures. Cytotechnology, 1990, (4): 217-278.
    128. Kolokol'tsova T. D., Gerasimova N. G., Tsareva A. A. A new cell line from Heliothis armigera (Hubn.) pupa ovaries. Voprosy virusologii, 1995, 40(3): 135-138.
    129. Kompier R., Tramper J., Vlak J. M. A continuous process for the production of baculovirus using insect cell cultures. Biotechnol. Lett., 1988, (10): 849-854.
    130. Kurstak E., Maramorosch K., Dübendorfer A. ed. Invertebrate systems in vitro. Amsterdam: Elsevier, 1980, 27.
    131. Lee G. Y., Jung W. W., Kang C. S., Bang I. S. Expression and characterization of human vascular endothelial growth factor (VEGF165) in insect cells. Protein ExPr Purif., 2006, 46(2): 503-509.
    132. Lertworasirikul T., Bunyaratvej A. A rapid measurement of apoptosis associated light scatter changes using a hematology analyzer. Cytometry, 2000, 42(3): 215-217.
    133. Li G. X., Hashimoto Y., Granados R. R. Growth characteristics and expression of recombinant proteins by new clones derived from Trichoplusia ni (BTI-Tn5B1-4) High Five cells. Bioprocessing, 2003, 1: 1-4.
    134. Li G. X., Yu H. C., Song J., Li C. Y., Wang X. Y. New cell line from embryos of Mythimna separata (Lepidoptera: Noctuidae). Entomologia Sinica, 1998, 5(1): 89-94.
    135. Lin G. Y., Li G. X., Granados R. R., Blissard G. W. Stable cell lines expressing baculovirus P35: resistance to apoptosis and nutrient stress, and increased glycoprotein secretion. In Vitro Cell Dev Biol Anim., 2001, 37:293–302.
    136. Luckow V. A., Summers M. D. Trends in the development of baculovirus expression vectors. Bio/Technology, 1988, 6: 47-55.
    137. Lynn D. E. A new insect cell line from the Colorado potato beetle. In Vitro Cell Dev. Biol.Anim., 1995, 31: 91-93.
    138. Lynn D. E. Insect cell culture. Biology and applications for biological control, 2001, 7 : 110-115.
    139. Lynn D. E. Lepidopteran insect cell line isolation from insect tissue. In: Murhammer D. W. ed. Methods in molecular biology, vol. 338: Baculovirus and insect cell expression protocols, 2/e. Humana Press Inc., Totowa, NJ. 2007, 139-154.
    140. Lynn D. E. Novel techniques to establish new insect cell lines. In Vitro Cell. Dev. Biol. Animal, 2001, 37: 319-321.
    141. Maiorella B., Inlow D., Shauger A. Harano D. Large-scale insect cell-culture for recombinant protein production. Nature Biotechnology, 1988, 6: 1406-1410.
    142. McKenna K. A., Hong H. Z., vanNanen E., Granados R. R. Establishmant of new Ttrichoplusia ni cell line in serum-free medium for baculovirus and recombinant protein production. J. Invetebr. Pathol., 1998, 71: 82- 90.
    143. Mclntosh A. H., Grasela J. J., Matteri R. L. Identification of insect cell lines by DNA amplification fingerprinting (DAF). Insect Molecular Biology, 1996, 5(3): 187-195.
    144. Mclntosh A. H., Ignoffo C. M., Chen Q. H., Pappas M. Establishment of a cell line from Heliothis armigera (Hbn.) (Lepidoptera: Noctuidae). In Vitro, 1983, 19(8):589-590.
    145. Mclntosh A. H., Grasela J. J., Goodmna C. L. Replication of Helieoverpa zea nuclear polyhedorsis virus in homologous cell lines grown in serum-free medium. J. Invertebr. Pathol., 1995, 66: 121-124.
    146. Meng M. J., Li T. L., Li C. Y., Li G. X. A suspended cell line from Trichoplusia ni (Lepidoptera): Characterization and expression of recombinant proteins. Insect Science, 2008, 15: 423-428.
    147. Miltenburger H. G., Dvaid D. Massproduction of insect cell in suspension. Develop. Biol. Standard, 1980, 46: 183-186.
    148.Miyanoshita A., Hara S., Sugiyama M., Asaoka A., Taniai K., Yukuhiro F., Yamakawa M. Isolation and characterization of a new member of the insect defensin family from a beetle, Allomyrina dichotoma. Biochemical and Biophysical Research Communications, 1996, 220(3): 526-531.
    149. Mitsuhashi J. Invertebrate tissue culture methods. Springer-Verlag, Tokyo, 2002, (5): 23-29.
    150. Mitsuhashi J. Development of insect cell culture media for biotechnology. World Congresson Cell & Tissue Culture, Anaheim, CA. 1991.
    151. Murhammer D. W. The use of insect cell cultures for recombinant protein synthesis: Engineering aspects. Applied Biochemistry and Biotechnology, 1999, 3: 283-292.
    152. Palli S. R., Caputo G. F., Sohi S. S., Brownwright A. J., Ladd T. R., Cook B. J., Primavera M., Arif B. M., Retnakaran A. CfMNPV blocks AcMNPV-induced apoptosis in a continuous midgut cell line. Virology, 1996, 222(1): 201-213.
    153. Pant U., Athavale S. S., Vipat V. C. A new continuous cell line from larval hemoeytes of Spodoptera litura (F.). Indian J. Exp. Biol., 2000, 38: 1201-1206.
    154. Papathanassoglou E. D. E., Moynihan J. A., Aekerman M. H. Does Programmed cell death apoptosis play a role in the development of multiple organ dysfunetion in eritieally ill Patients?. Crit. Care. Med., 2000, 28(2): 537-549.
    155. Renner W. A., Jordan M., Eppenberger H. M., Leist C. Cell-cell adhesion and aggregation: Influence on the growth behavior of CHO cells. Biotechnol. Bioeng., 1993, 41: 188-193.
    156. Reed L. J., Muench H. A. A simple method of estimation fifty percent end-points. Am. J. Hyg., 1938, 27: 493-497.
    157. Rhee W. J., Kim E. J., Park T. H. Silkworm hemolymph as a potent inhibitor of apoptosis in Sf9 cells. Biochem. and Biophys. Res. Commun., 2002, 295: 779-783.
    158. Rhee W. J. Park T. H. Silkworm hemolymph inhibits baculovirus-induced insect cell apoptosis. Biochem. and Biophys. Res. Commun., 2000, 271(1): 186-190.
    159. Shao H. L., Zheng W. W., Liu P. C., Wang Q., Wang J. X., Zhao X. F. Establishment of a new cell line from lepidopteran epidermis and hormonal regulation on the genes. PLoS ONE, 2008, 3(9): e3 127.
    160. Sheng-Tanner X., Bump E. A., Hedley D. W. An oxidative stress-mediated death pathway in irradiated human leukemia cells mapped using multilaser flow cytometry. Radiat. Res., 1998, 150: 636-647.
    161. Smagghe G., Goodman C. L., Stanley D. Insect cell culture and applications to research and pest management. In Vitro Cell Dev. Biol. Anim., 2009, 45(3-4): 93-105.
    162. Smith G. E., Summers M. D., Fraser M. J. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell Biol., 1983, 3: 2156-2165.
    163. Smith G. E., Vlak J. M., Summers M. D. Physical analysis of Autorapolha californica nuclear polyhedrosis virus and 10000 molecular-weight protein. Virol., 1983, 45: 215-225.
    164. Smith G. E., Ju G., Erieson B. L. Moschera J., Lahm H. W., Chizzonite R, Summers M. D. Modification and secretion of human interleukin 2 produced in insect cells by baculoviurs expression vector. Porc. Natl. Acad. Sci. USA, 1985, 82(24): 8404-8408.
    165. Spiros N. A. Development of Serum-free media for Lepidopteran insect cell lines. baculovirus and insect cell expression protocols. Series: Methods in Molecular Biology. 2007, 388: 155-185.
    166. Stiles B., McDonald I. C., Gest J. W., Adams T. S., Newman S. M. Initiation and characterization of five embryonic cell lines from the cotton boll weevil Anthonomus grandis in a commercial serum-free medium. In Vitro Cell Dev. Biol.Anim., 1992, 28A: 355-363.
    167. Su D. M., Shen Z. J., Yue Y. X. Establishment of an ovarian cell line in the cotton bollworm Heliothis armigera and in vitro replication of its cytoplasmic polyhedrosis. In: Maramorosh K. ed. Biotechnology in invertebrate pathology and cell culture. Academic Press, NY. 1987, 375-383.
    168. Sudeep A. B., Mourya D. T., Shouche Y. S., Pidiyar V., Pant U. A new cell line from the embryonic tissue of Helicoverpa armigera Hbn. (Lepidoptera: Noctuidae). In Vitro Cell Dev. Biol. Anim., 2002a, 38(5): 262-264.
    169. Sudeep A. B., Shouche Y. S., Mourya D. T., Pant U. New Helicoverpa armigera Hbn cell line from larval hemocyte for baculovirus studies. Indian Journal of Experimental Biology, 2002b, 40(1): 69-73.
    170. Sulston J., Horvitz H. R. Postembryonic cell lineages of the nematode C. elegans. Dev. Biol., 1977, 82: 110-156.
    171. Sun X. L., Peng H. Y. Recent advance in biological control of pest insects by using viruses in China. Virologica Sinica, 2007, 22(2): 158-162.
    172. Shishido T., Muraoka M., Ueda M., Seno M., Tanizawa K., Kuroda S., Fukuda H. Kondo A. Secretory production system of bionanocapsules using a stably transfected insect cell line. Appl. Microbiol. Biotechnol., 2006, 73: 505-511.
    173. Tatieek R. A.,Choi C.,Phan S. E.,Palomares L. A.,Sholer M. L. Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture. Biotechnol Prog., 2001, 17: 676-684.
    174. Trager W. Cultivation of the virus of grasserie in silkworm tissue cultures. J. Exp. Med., 1935, 61: 501-514.
    175. van der Valk J., Mellor D., Brands R., Fischer R., Gruber F., Gstraunthaler G., Hellebrekers L., Hyllner J., Jonker F. H., Prieto P., Thalen M., Baumans V. The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicol In Vitro, 2004, 18: 1-12.
    176. van Oers M M. Vaccines for viral and parasitic diseases produced with baculovirus vectors. Adv. Virus Res., 2006, 68: 193-253.
    177. Vughn J. L., Goodwin R. H., Tompkins G. J. McCawley P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro, 1977, 13: 213-217.
    178. Wang P., Grandod R. R. Studieson serum free culture of insect cells for virus propagation and recombinant protein production. J. Invertebr. Pathol., 1992, 59: 46-53.
    179. Wang P., Toung R., Granados R. R. The establishment of new cell lines from Pseudaletia unipuncta with differential responses to baculovirus infection. In Vitro Cell Dev. Biol. Anim., 1999, 35(6): 333-338.
    180. Weiss S. A., Smith G. C., Kalter S. S., Vaughn J. L. Improved method for the production of insect cell cultures in large volume. In Vitro, 1981, 17: 495-502.
    181. Wilkie G. E. I., Stockdale H., Pirt S. V. Chemically-defined media for production of insect cells and viruses in vitro. Dev. Biol. Stand., 1980, 46: 29-37.
    182. Wood H. A. An agaroverlay plaque assay method for Autographa californica nuclear polyhedrosis virus. J. Invertebr. Pathol., 1977, 29: 304-307.
    183. Wu J., Ruan W., Lam H. Y. P. Evaluation of spent medium recycle and nutrient feeding strategies for recombinant protein production in the insect-cell baculovirus process. J. Biotechnol., 1998, 66: 109-116.
    184. Wyatt S. S. Culture in vitro of tissue from the silkworm, Bombyx mori L. J. Gen. Physiol., 1956, 39: 841-852.
    185. Yasunaga-Aoki C., Imanishi S., Iiyama K., Kawarabata A. Establishment of phagoeytic cell lines from larval hemoeytes of the beet armyworm, Spodoptera exigua. In Vitro Cell Dev. Biol. Anim., 2004, 40: 183-186.
    186. Yearian W. C., Young S. Y. Control of insect pest of agricultural Importance by viral insecticides. In: Kurstak E. ed., Microbial and Viral Pesticides. Marcel Dekker Impress., 1982, 287-423.
    187. Zhang H., Zhang Y. A., Qin Q. L., Li X., Miao L., Wang Y. Z., Yang Z., Ding C. New cell lines from larval fat bodies of Spodoptera exigua : characterization and susceptibility to baculoviruses (Lepidoptera: Noetuidae). J. Invertebr. Pathol., 2006a, 91:9-12.
    188. Zhang H., Zhang Y. A., Qin Q. L., Wang Y. Z., Li X., Miao L., Yin Z., Zhang A. J., Qu L. J. Ding C. A new cell line from larval fat bodies of the bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). In Vitro Cell Dev. Biol. Anim., 2006b, 42(10): 290-293.
    189. Zhang H., Zhang Y. A., Qin Q. L., Li X., Miao L., Wang Y. Z., Qu L. J., Zhang A. J., Yang Q. A cell strain cloned from Spodoptera exigua cell line (IOZCAS-Spex-II) highly susceptible to S.exigua nucleopolyhedrovirus infection. In Vitro Cell. Dev. Biol. Anim., 2009, 45: 201–204.
    190. Zheng G. L., Li C. Y., Li G. X., Wang P., Granados R. R. Construction and characteristics of a transformed lepidopteran cell clone expressing baculovirus p35. Chinese Science Bulletin, 2005, 50(23): 2728-2732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700