中国猪瘟兔化弱毒(脾淋毒)全长感染性cDNA的分子克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国猪瘟兔化弱毒(脾淋毒)全长感染性cDNA的克隆和构建,可以使我们得到纯粹的CSFV C-株RNA病毒基因组,在DNA水平上研究和利用CSFV的基因突变、缺失、插入和替换。为进一步研究CSFV的复制机理、毒力及其决定因素、致弱机制、致病机理、基因产物的功能、特异性诊断、宿主嗜性以及DNA疫苗开发、标记疫苗的生产等方面的研究,打下了坚实的基础,并为众多病毒分子生物学研究工作者提供极为有价值的研究工具。主要研究内容包括:
     1.中国猪瘟兔化毒(脾淋毒)基因组cDNA文库的构建、序列分析:根据已发表的猪瘟病毒(CSFV)核苷酸序列,借助计算机软件分析,选择高保守区段和基因组中的单一限制性酶切位点,利用RT-PCR及nested-PCR和Helf-nested PCR技术,成功地扩增出了覆盖C-株全基因组的7个cDNA重叠片段F1~F7,分别克隆到pMD-18T或pGEM-T Easy载体进行测序后,拼接出了其核苷酸序列。与国内外已发表的CSFV Shimen株、Berscia株、Cap株、Eystrup株、F114株、Glentorf株、Riems株、Russia C株和Alfort株进行了序列比较。
     2.中国猪瘟兔化毒(脾淋毒)全长-cDNA的分子克隆:通过基因改造,将T7 RNA聚合酶启动子和目的片段连接过程中起辅助作用的限制性内切酶识别位点各自导入相应的cDNA重叠片段末端。将F3、F4 PCR产物,采用Acc Ⅲ酶切后与pMD-18T载体置同一体系中连接,获得连接片段F3-F4的重组质粒pMD-18T/F34。再将重组质粒pMD-18T/F1采用NotⅠ和PvuⅠ双酶切,重组质粒pGEM-T Easy/F2采用PvuⅠ和NsiⅠ双酶切,重组质粒pMD-18T/F34采用NsiⅠ和SalⅠ双酶切,载体pGEM-5zf(+)采用NotⅠ和SalⅠ双酶切,分别回收各目的片段,于同一体系中连接,获得5′半长cDNA重组质粒pGEM-5zf(+)/F1-4,长度为6517bp。将重组质粒pMD-18T/F5采用NotⅠ和FspⅠ双酶切,重组质粒pMD-18T/F6采用FspⅠ和Csp45Ⅰ双酶切,重组质粒pMD-18T/F7采用Csp45Ⅰ和SalⅠ双酶切,载体pGEM-5zf(+)采用NotⅠ和SalⅠ双酶切,分别回收各目的片段,于同一体系中连接,获得3′半长cDNA重组质粒pGEM-5zf(+)/F5-7,长度为5940bp。最后,将重组质粒pGEM-5zf(+)/F1-4采用NotⅠ和SplⅠ双酶切,重组质粒pGEM-5zf(+)/F5-7采用SplⅠ和SalⅠ双酶切,载体pGEM-5zf(+)采用NotⅠ和SalⅠ双酶切,分别回收各目的片段,于同一体系中连接,得到基因组全长cDNA重组质粒pGEM-5zf(+)/F1-7。T-A克隆的巧妙运用和多片段一步连接法的成功运用是全长cDNA得以快速构建的主要原因。
     3.中国猪瘟兔化毒(脾淋毒)全长cDNA感染性的初步鉴定:利用限制性内切酶SrfⅠ将重组质粒pGEM-5zf(+)/F1-7线性化,以产生精确的基因组3′末端。以线性化的全长cDNA为模板,体外转录得到了CSFV基因组RNA。采用TransFast~(TM) Reagent脂质体转染试剂将基因组RNA转染到SK-6贴壁细胞。连续传代5代以后,收集各
    
    W摘要
    代细胞至第10代,采用RT一PCR、直接荧光抗体染色和夹心ELISA技术进行鉴定,
    结果均为阳性。表明利用反向遗传技术,可以从猪瘟病毒C一株的基因组RNA获得
    C一株重组病毒。这一技术为众多病毒分子生物学研究领域提供了极为有价值的研究工
    具。
Successfully cloned and constructed infectious full-length cDNA of attenuated lapinized CSFV Chinese-strain (derived from spleen) could make us get pure RNA virus genome of CSFV C-strain, and further study and utilize mutation, deletion, insertion and substitution of CSFV gene on DNA molecular level. It has made the strong basis for further studying mechanism of replication, virulence and determinant, attenuation, pathogenesis, functions of genetic products, specific diagnosis, cell and host tropism, development of DNA vaccine and marker vaccine of CSFV, and provided an excellent tool for molecular virology. Main research contents include:
    Based on published nucleotide sequences of CSFV and by the help of computer analysis software, high conservative regions and single restriction enzyme sites of genome were selected. Utilizing RT-PCR and nested-PCR techniques, 7 overlapping cDNA fragments covering the full genome of CSFV C-strain were successfully amplified. After 7 fragments were cloned into pMD-18T or pGEM-T Easy vectors and transformed into E.coli JM109 respectively, genomic cDNA library were constructed. Genomic nucleotide sequence was spliced after 7 fragments were sequenced. Sequence comparison with other strains of CSFV revealed that the overall nucleotide sequence homologies of self-sequenced C-strain are 95.3% with Shimen, 94.9% with Berscia, 95.1% with Cap, 96.0% with Eystrup, 95.6% with F114, 95.2% with Glentorf, 98.9% with Riems, 93.6% with Russia C-strain and 85.4% with Alfort, the overall deduced amino acid sequence homologies of self-sequenced C-strain are 96.6% with Shimen, 96.7% with Berscia, 96.2% with Cap, 97.1% with Eystrup, 97.0% with F114, 96.1% with Glentorf, 98.9% with Riems, 95.5% with Russia C-strain and 92.4% with Alfort.
    T7 RNA polymerase promoter and helper restriction enzyme site were introduced into 7 overlapping cDNA fragments severally using gene modification techniques. Recombinant plasmid pMD-18T/F34 of connected fragment F3-F4 had been obtained after PCR amplified fragments F3 and F4 were both digested by restriction enzyme Ace III and further connected and cloned into pMD18-T vector by T4 DNA ligase. Recovery fragments from recombinant plasmid pMD-18T/Fl double-digested by Not I & Pvu I, pGEM-T Easy/F2 by Pvu I & Nsi I, pMD-18T/F34 by Nsi I & Sal I, and pGEM-5zf(+) by Not I & Sal I were put into one ligation system to construct 5'half-length cDNA pGEM-5zf(+)/Fl-4 whose length is 6 517bp. Recovery fragments from recombinant plasmid pMD-18T/F5 double-digested by Not I & Fsp I, pMD18T-18T/F6 by Fsp I & Csp45 I, pMD-18T/F7 by Csp45 I & Sal I, and pGEM-5zf(+) by Not I & Sal I were put into one ligation system to construct 3'half-length cDNA pGEM-5zf(+)/F5-7 whose length
    
    
    
    is 5 940bp. Finally recovery fragments from pGEM-5zf(+)/F1-4 double-digested by Not I & Spl I, pGEM-5zf(+)/F5-7 double-digested by Spl I & Sal I and pGEM-5zf(+) by Not I & Sal I were put into one ligation system to construct full-length cDNA pGEM-5zf(+)/F1-7. artificially using T-A cloning techniques and initiated one-step ligation of multi-fragments method were the main factors in the process of full-length cDNA construction.
    Constructed full-length cDNA pGEM-5zf(+)/Fl-7 was linearized by Srf I so as to obtain the exact 3'terminal of genome. Linearized full-length cDNA was used as template then genomic RNA of CSFV was in vitro transcriped by T7 RNA polymerase. Genomic RNA was transfected into plating cells SK-6 by liposome transfection reagent and transfected cells were passaged 10 times continuously. Cells were collected after being passaged 5 times and used to identify infection by RT-PCR, direct fluorescent antibody, sandwich ELISA. Results indicated that integrated particles of CSFV could be obtained from constructed full-length cDNA. Successful construction of infectious full-length cDNA of CSFV C-strain has provided an excellent tool for further study CSFV C-strain on level of molecular biology.
引文
1. A. Zibert, G. Maass, and K. Strebel. Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA. Journal of Virology. 1990. 64:2467-2473
    2. Ahrens U, Kaden V, Drexler C et al. Efficacy of the classical swine fever (CSF) marker vaccine Porcilis Pesti in pregnant sows. Vet Microbiol. 2000, 77 (1-2) : 83-97
    3. Albert Zimmermann, Birgit Nelsen-Salz. Johannes P. Kruppenbacher and Hans J. eggers. Short communications: The complete nucleotide sequence and construction of an infectious cDNA clone of a highly virulent Encephalomyocarditis Virus. Virology. 1994. 203: 366-372
    4. Alexander A. Khromykh and Edwin G. westaway. Completion of Kunjin Virus RNA sequence and recovery of an infectious RNA transcribed from stably cloned full-length cDNA. J.Virol. 1994. 68:4580-4588
    5. Andrew ME, Morrissy CJ, Lenghaus C et al. Protection of pigs against classical swine fever with DNA-delivered gp55. Vaccine. 2000, 18(18) : 1932-1938
    6. Anonymous. Report of the scientific veterinary committee (adopted 17 September 1997) : the use of marker vaccines in the control of infectious disease in particular, classical swine fever. Document Ⅵ/8119/97-AL, commission of the European communites, 1997
    7. Aoki H, Ishikawa K, Sakoda Y et al. Characterization of classical swine fever virus associated with defective interfering particles containing a cytopathogenic subgenomic RNA isolated from wild boar. J Vet Med Sci. 2001,63(7) : 751-758
    8. Armengol E, Wiesmuller KH, Wienhold D et al. Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J Gen Virol, 2002,83(Pt 3) :551-60
    9. Aynaud J M et al. (1977) CEC, Seminar: Hog cholera/Classical swine fever and African swine fever. Hannover, 1976 EUR 5904, P273
    10. Bakkali Kassimi L, Gonzague M, Boutrouille A et al. Expression and characterization of part of hog cholera virus non-structural proteins. Zentralbl Veter inarmed [B]. 1996, 43(3) : 167-177
    11. Barlic-Maganja D, Grom J. Highly sensitive one-tube RT-PCR and microplate hybridisation assay for the detection and for the discrimination of classical swine fever virus from other pestiviruses. J Virol Methods. 2001, 95 (1-2) : 101-110
    12. Becher P, Orlich M, Kosmidou A et al. Genetic diversity of pestiviruses: identification of novel groups and implications for classification. Virology. 1999, 262(1) :64-71
    13. Behrens SE, Grassmann CW, Thiel HJ et al. Characterization of an autonomous subgenomic pestivirus RNA replicon. J Virol, 1998,72:2364-2372
    14. Biagetti M, Greiser-Wilke I, Rutili D. Molecular epidemiology of classical swine fever in Italy. Vet Microbiol. 2001, 83(3) : 205-215
    15. Biorklund H, Lowings P, Paton D. et al. Phylogenetic comparison and molecular
    
    epidemilogy of classical swine fever virus. Virus Genes, 1999, 19: 189-195
    16. Bjorklund HV, Stadejek T, Vilcek S et al. Molecular characterization of the 3' noncoding region of classical swine fever virus vaccine strains. Virus. 1998, 16 (3) : 307-312
    17. Bouma A, De Smit AJ, De Jong MC M et al. Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus. Vaccine, 2000, 18: 1374-1381
    18. Bouma A, de Smit AJ, de Kluijver EP et al. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus. Vet Microbiol. 1999, 66 (2) : 101-14
    19. Bruschke CJM, Hulst MM, Moormann RJM et al. Glycoprotein Erns of pestivirus induces apoptosis in lymphocytes of several species. J Virol. 1997, 71:6692-6696
    20. C. Terpstra. Special Review Series: Hog Cholera: An Update of Present Knowledge [J]. Br. Vet. J, 1991, 147:397-406 [1]
    21. Canal CW, Hotzel I, de Almeida LL et al. Differentiation of classical swine fever virus from ruminant pestiviruses by reverse transcription and polymerase chain reaction (RT-PCR). Vet Microbiol. 1996, 48(3-4) : 373-379
    22. Changchun Tu, Zongji, Hongwei Li et al. Phylogenetic comparison of classical swine fever virus in China, Virus Res, in press, 2001
    23. Charles M. Rice, Robin Levis and James H. Strauss. Production of infectious RNA transcripts from Sindbis Virus cDNA clones: Mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J. Virol, 1987. 61:3809-3819
    24. Chenut G, Saintilan AF, Burger C et al. Oral immunisation of swine with a classical swine fever vaccine (Chinese strain) and transmission studies in rabbits and sheep. Vet Microbiol. 1999, 64(4) : 265-276
    25. Christianne J. M. Bruschke, Marcel M. Hucst and Rob J. M. Moormann, et al. Glycoprotein Erns of Pestiviruses Induces Apoptosis in Lymphocytes of Several Species. Journal of Virology. 1997. 71:6692-6696
    26. Clavijo A, Lin M, Riva J et al. Application of competitive enzyme-linked immunosorbent assay for the serologic diagnosis of classical swine fever virus infection. J Vet Diagn Invest. 2001, 13(4) : 357-360
    27. Clavijo A, Lin M, Riva J, Mallory M et al. Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus. Res Vet Sci. 2001, 70(1) :1-7
    28. Clavijo A, Zhou EM, Vydelingum S et al. Development and evaluation of a novel antigen capture assay for the detection of classical swine fever virus antigens. Vet Microbiol. 1998,60(2-4) : 155-168
    29. Cole CG, Henley RR, Dale CN et al. History of hog cholera research in the US Department of Agriculture 1884-1960. Agriculture Information Bulletin, (241) USDA, Washington DC
    30. Corthier G. Cellular and humoral immune response in pigs given vaccinal and chronic hog cholera viruses. Am J Vet Res. 1978,39(11) : 1841-1844
    
    
    31. Cruciere C, Bakkali L and Gonzague M. cDNA Probes for the Detection of Pestiviruses. Arch Virol Suppl 1991, 3:191-197
    32. Dable J, Krietsch T and Kaaden OR. Differentiation of pestiviruses by a hog cholera virus-specific genetic probe. SchelpC. Arch Virol Suppl 1991,3:209-215
    33. Dahle J, Liess B. A review on classical swine fever infections in pigs: epizootiology, clinical disease and pathology. Comp Immunol Microbiol Infect Dis. 1992,15(3) : 203-211
    34. De Arce HD, Frias MT, Barrera M et al. Analysis of genomic differences between Cuban classical swine fever virus isolates. Poster presentation, OIE symposium on classical swine fever, Biruingham, United Kingdom, 1998,9-10 July
    35. De Smit AG, Bouna A, De Kluijver EP et al. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination. Vet Microgiology, 2001, 78:307-317
    36. de Smit AJ, Bouma A, de Kluijver EP et al. Prevention of transplacental transmission of moderate-virulent classical swine fever virus after single or double vaccination with an E2 subunit vaccine. Vet Q. 2000,22(3) : 150-153
    37. de Smit AJ, Bouma A, Terpstra C et al. Transmission of classical swine fever virus by artificial insemination. Vet Microbiol. 1999, 67(4) :239-249
    38. de Smit AJ, Bouma A, van Gennip HG et al. Chimeric (marker) Ostrain viruses induce clinical protection against virulent classical swine fever virus (CSFV) and reduce transmission of CSFV between vaccinated pigs. Vaccine. 2001, 19 (11-12) : 1467-1476
    39. De Smit AJ, van Gennip HG and Miedema GK. Recombinant Classical Swine Fever (CSF) viruses derived from the Chinese Vaccine Strain (C-Strain) of CSF Virus retain their avirulent and immunogenic characteristics. Vaccine 2000 May 8, 18 (22) : 2351-2358
    40. de Smit AJ.Laboratory diagnosis, epizootiology, and efficacy of marker vaccines in classical swine fever: a review. Vet Q. 2000,22(4) : 182-188
    41. Dewulf J, Laevens H, Koenen F et al. An experimental infection with classical swine fever virus in pregnant sows: transmission of the virus, course of the disease, antibody response and effect on gestation. J Vet Med B Infect Dis Vet Public Health. 2001, 48(8) :583-591
    42. Dewulf J, Laevens H, Koenen F, et al. An experimental infection with classical swine fever in E2 sub-unit marker-vaccine vaccinated and in non-vaccinated pigs [J]. Vaccine, 2000, 19(4-5) : 475-82
    43. Edwards, Moennig V, Wensvoort G. the development of an international reference panel of monoclonal antibodies for the differentiation of hog cholera virus from other pestiviruses. Vet Microbiol, 1991,29:101-108
    44. Elbers AR, Stegeman JA, de Jong MC. Factors associated with the introduction of classical swine fever virus into pig herds in the central area of the 1997/98 epidemics in The Netherlands. Vet Rec. 2001,149(13) : 377-382
    45. Elbers K, N Tautz, P Becher et al. Processing in the pestivirus E2-p7 region: identifacation of protein p7 and E2p7. J Virol. 1996, 70:4131-4135.
    
    
    46. Elizabeth Rieder, Thomas Bunch, and Fred Brown. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. Journal of Virology. 1993. 67:5139-5145
    47. Fletcher SP, Jackson RJ. Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5' untranslated region important for IRES function. J Virol. 2002, 76(10) : 5024-33
    48. Flores E F, et al. Swine and ruminant pestiviruses require the same cellular factors to enter bovine cells. J Gen Virol, 1996, 77:1295-1303
    49. Freitas T R, Caldas L A, Rebello M A. Protaglandin Al inhibits replication of classical swine fever virus. Mem Inst Oswaldo Cruz, 1998, 93(6) :815-818.
    50. Fritzemeier J, Teuffert J, Greiser-filke I et al. Epidemiology of classical swine fever in Germany in the 1990s. Vet Microbiol. 2000, 77(1-2) :29-41
    51. Gisler AC, Nardi NB, Nonnig RB et al. Classical swine fever virus in plasma and peripheral blood mononuclear cells of acutely infected swine. Zentralbl Veterinarmed [B]. 1999, 46(9) : 585-593
    52. Gomez-Villamandos JC, Ruiz-Villamor E, Bautista MJ et al. Pathogenesis of classical swine fever: renal haemorrhages and erythrodiapedesis. J Comp Pathol. 2000, 123(1) : 47-54
    53. Gregor Meyers, Heinz-Jurgen Thiel and Tillmann Rumenapf. Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. Journal of Virology. 1996. 70:1588-1595
    54. Greiser-Wilke I, Fritzemeier J, Koenen F et al. Molecular epidemiology of a large classical swine fever epidemic in the European Union in 1997-1998. Vet Microbiol. 2000, 77(1-2) : 17-27
    55. Gtrfrtiv Tangy, Andres Meal lister, and Michel Brahic. Molecular cloning of the complete genome of Strain GDVII of Theiler' s Virus and production of infectious transcripts. J. Virol. 1989. 63:1101-1106
    56. Gualandi GL, Ferrari M, Cardeti G et al. Protection tests in pigs vaccinated with the lapinized Chinese strain of hog cholera virus (HCV) previously adapted in a minipig kidney (MPK) cell line, to challenge infection with virulent HCV. Microbiologica. 1991, 14(3) :213-217
    57. Hahn J, Park SH, Song JY et al. Construction of recombinant swinepox viruses and expression of the classical swine fever virus E2 protein. J Virol Methods. 2001,93(1-2) :49-56
    58. Hammond JM, Jansen ES, Morrissy CJ et al. A prime-boost vaccination strategy using naked DNA followed by recombinant porcine adenovirus protects pigs from classical swine fever. Vet Microbiol. 2001, 80(2) : 101-119
    59. Hammond JM, McCoy RJ, Jansen ES et al. Vaccination with a single dose of a recombinant porcine adenovirus expressing the classical swine fever virus gp55 (E2) gene protects pigs against classical swine fever. Vaccine. 2000, 18(11-12) : 1040-1050
    60. Harasawa R, Giangaspero M. A novel method for pestivirus genotyping based on palindromic nucleotide substitutions in the 5'-untranslated region. J Virol
    
    Methods. 1998, 70 (2) : 225-230
    61. Harasawa R, Giangaspero M. Genetic variation in the 5' end and NS5B regions of classical swine fever virus genome among Japanese isolates. Microbiol Immunol. 1999, 43 (4) : 373-379
    62. Harkness J W. Classical swine fever and its diagnosis: A current view. Vet Rec, 1985, 16: 288-293,
    63. Hergarten G, Hurter KP, Hess RG. Detection of infection with classical swine fever virus in wild boar: a comparison of different laboratory diagnostic methods. Dtsch Tierarztl Wochenschr 2001, 108(2) :51-54
    64. Hideo Tumiyoshi, Charlesh. Hoke and Dennis w. Trent. Infectious Japanese Encephalitis Virus RNA can be synthesized from in vitro-ligated cDNA templates. J. Virol. 1992. 66:5425-5431
    65. Hofmann MA, Bassy S. Classical swine fever in 1993 in Switzerland:molecular epidemiologic characterization of the virus isolate. Schweiz Arch Tierheilkd, 1998,140:365-370
    66. Hofmann MA, Brechtbuhl K, Stauber N. Rapid characterization of new pestivirus strains by direct sequenceing of PCR-amplified cDNA from the 5'non-coding region. Arch Virol, 1994,139:217-219
    67. Hooft van Iddekinge BJ, de Wind N, Wensvoort G et al. Comparison of the protective efficacy of recombinant pseudorabies viruses against pseudorabies and classical swine fever in pigs; influence of different promoters on gene expression and on protection. Vaccine. 1996, 14(1) : 6-12
    68. Hulst MM, Himes G, Newbigin E et al. Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology. 1994, 200 (2) : 558-565
    69. Hulst MM, Panoto FE, Hoekman A et al. Inactivation of the RNase activity of glycoprotein E(rns) of classical swine fever virus results in a cytopathogenic virus. J Virol. 1998,72(1) :151-157
    70. Hulst MM, Westra DF, Wensvoort G et al. Glycoprotein El of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol. 1993, 67 (9) : 5435-5442
    71. Huslt M M, westra D F, Wenvoort G, et al. Glycoprotein E2 of hog cholera virus expressed in insect cells protects swine from hog cholera[J]. J Virol, 1993, 67:5435-5442
    72. Ishkawa K, Nagai H, Katayama K, Tsutsui M et al. Comparison of the entire nucleotide and deduced amino acid sequence of the attenuated hog cholera vaccine strain GPE-and the wildtype parental strain ALD-. Arch Virology. 1995, 140:1385-1391.
    73. Jean-Christophe Boyer, and Anne-Lise Haenni. Minireview: Infectious transcripts and cDNA clone of RNA viruses. Virology. 1994. 185:415-426
    74. John F. Milligan, Duncan R. Groebe and Gary W. Witherell. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acide Research, 1987,15: 8783-8798
    75. Kaden V, Lange B. Oral immunisation against classical swine fever (CSF): onset
    
    and duration of immunity. Vet Microbiol. 2001, 82(4) :301-310
    76. Kaden V, Schurig U, Steyer H. Oral immunization of pigs against classical swine fever. Course of the disease and virus transmission after simultaneous vaccination a infection. Acta Virol. 2001, 45(1) :23-29
    77. Kern B, Depner KR, Letz W et al. Incidence of classical swine fever (CSF) in wild boar in a densely populated area indicating CSF virus persistence as a mechanism for virus perpetuation. Zentralbl Veterinarmed [B]. 1999,46(1) :63-67
    78. Kimman JG. Cellular immune response to hog cholera virus (HCV) :T cells of immune pigs proliferate in vitro upon stimulation with live HCV, but the El envelope glycoprotein is not a major T-cell antigen. J Virol, 1993, 67:2922-2927
    79. Klinkenberg D, de Bree J, Laevens H et al. Within-and between-pen transmission of Classical Swine Fever Virus: a new method to estimate the basic reproduction ratio from transmission experiments. Epidemiol Infect 2002, 128(2) : 293-9
    80. Klinkenberg D, Moormann RJ, de Smit AJ, Bouma A, et al. Influence of maternal antibodies on efficacy of a subunit vaccine: transmission of classical swine fever virus between pigs vaccinated at 2 weeks of age[J], Vaccine, 2002, 20 (23-24) : 3005-13
    81. Konstantin V. Pugachev, Emily S. Abernathy and Teryl K. Frey. Improvement of the specific infectivity of the Rubella Virus (RUB) infectious Clong: Determinants of cytopathogenicity induced by RUB map to the nonstructural proteins. J. Virol. 1997. 71:562-568
    82. Kosmidou A, Buttner M, Meyers G. Isolation and characterization of cytopathogenic classical swine fever virus (CSFV). Arch Virol. 1998, 143 (7) :1295-1309
    83. Kosmidou AR, Ahl R, Thiel H-J et al. Differentiation of classical swine fever virus (CSFV) strains using monoclonal antibodies against structural glycoprotein. Vet Microbiol, 1995, 47: 111-118
    84. Kummerer BM, Tautz N, Becher P et al. The genetic basis for cytopathogenicity of pestiviruses. Vet Microbiol. 2000, 77(1-2) : 117-128
    85. Laevens H, Koenen F, Deluyker H et al. Experimental infection of slaughter pigs with classical swine fever virus: transmission of the virus, course of the disease and antibody response. Vet Rec. 1999,145(9) : 243-248
    86. Langedijk JP, Middel WG, Meloen RH et al. Enzyme-linked immunosorbent assay using a virus type-specific peptide based on a subdomain of envelope protein E(rns) for serologic diagnosis of pestivirus infections in swine. J Clin Microbiol. 2001, 39(3) :906-912
    87. Liess B et al. (1977) CEC, Seminar: Hog cholera/Classical swine fever and African swine fever. Hannover, 1976 EUR 5904, P200
    88. Lin M, Lin F, Mallory M et al. Deletions of structural glycoprotein E2 of classical swine fever virus strain Alfort/187 resolve a linear epitope of monoclonal antivody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antivodies of a pig hyperimmune serum. J Virol, 2000, 74(24) : 11619-11625
    
    
    89. Lipowski A, Drexler C, Pejsak Z. Safety and efficacy of a classical swine fever subunit vaccine in pregnant sows and their offspring. Vet Microbiol. 2000,77(1-2) :99-108
    90. Lorena J, Barlic-Maganja D, Lojkic et al. Classical swine fever virus (C strain) distribution in organ samples of inoculated piglets. Vet Microbiol. 2001, 81(1) : 1-8
    91. Lowing P, Ibrate G, Needham J et al. Classical swine fever virus diversity and evolution. J Gen Virology, 1996,77:1311-1321
    92. Lowings JP, Paton DJ, Sands JJ et al. Classical swine fever: genetic detection and analysis of differences between isolates. J Gen Virol, 1994, 75:3461-3468
    93. Lowings P, IbataG, De Mia et al. Classical swine fever in Sardinia epidemiology of recent outbreaks. Epidemiol Infect, 1999,122:553-559
    94. M. M. Hulst and R. J. M. Moormann. Inhibition of Pestivirus Infection in Cell Culture by Envelope Proteins Erns and E2 of Classical Fever Virus: Eras and E2 Interact with Different Receptors. Journal of General Virology. 1997. 78:2779-2787
    95. Markowska-Daniel I, Collins RA, Pejsak Z. Evaluation of genetic vaccine against classical swine fever. Vaccine. 2001, (17-19) :2480-2484
    96. Markus Duechler, Tim Skern, and Dieter Blaas. Short communications: Human Rhinovirus serotype 2: In virto synthesis of an infectious RNA. Virology. 1989. 168:159-161
    97. McGoldrick A, Bensaude E, Ibata G et al. Closed one-tube reverse transcription nested polymerase chain reaction for the detection of pestiviral RNA with fluorescent probes. J Virol Methods. 1999, 79(1) : 85-95
    98. McGoldrick A, Lowings JP, Ibata G et al. A novel approach to the detection of classical swine fever virus by RT-PCR with a f luorogenic probe (TaqMan). J Virol Methods. 1998, 72(2) : 125-135
    99. Meyers G, Rumenapf T and Thiel H J. Molecular Cloning and nucleotide sequence of the genome of hog cholera virus. Virology. 1987, 171:555-567
    100. Meyers G, Saalmuller A, Buttner M. Mutations abrogating the RNase activity in glycoprotein Erns of the pestivirus classical swine fever virus. J Virol, 1999, 73 (12) : 10224-10235
    101. Meyers G, Thiel H J. Cytopathogenicity of classical swine fever virus caused by defective interfering particles. J Viol, 1995, 69:3683-3689
    102. Meyers G, Thiel H J. Molecular characterization of pestivirus. Advance in virus reseach, 1996, 47:53-118.
    103. Meyers. G, T Rumenapf, H J Thiel. Molecular cloning and nucleotide sequence of the genome of Hog Cholera virus. Virology. 1987, 171:555-567.
    104. Milev N, Peev la, Gergov P et al. Cultivation and demonstration of the classic swine fever virus. Vet Med Nauki. 1987, 24(4) :21-26
    105. Mini Kapoor, Luwen Zhang and Maruthi Mohan. Synthesis and characterization of an infectious Dengue Virus Type-2 RNA genome(New Guinea C strain). Gene. 1995. 162:175-180
    106. MintiensK, DeluykerH, Laevens H et al. Descriptive epidemiology of a classical
    
    swine fever outbreak in the Limburg Province of Belgium in 1997. J Vet Med B Infect Dis Vet Public Health. 2001, 48(2) : 143-149
    107. Mittelholzer C, Moser C, Tratschin JD et al. Analysis of classical swine fevfr virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol. 2000, 74(4) : 293-308
    108. Mittelholzer C, Moser C, Tratschin JD et al. Porcine cells persistently infected with classical swine fever virus protected from pestivirus-induced cytopathic effect. J Gen Virol. 1998,79 ( Pt 12) :2981-2987
    109. Moennig V. Introduction to classical swine fever: virus, disease and control policy. Vet Microbiol. 2000, 73(2-3) : 93-102
    110. Moenning V , P G W Plagemann. The pestivirus. Adv Virus Res, 1992, 41:53-98.
    111. Moenning V. The hog cholera virus. Comp Iramun Microbiol Infect Disease, 1992, 15(3) : 189-201.
    112. Moormann R G M, P A M Warmendarm, VanderMer, W M M Schaaper, G Wensvoort, and M M Hust. Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelop glycoprotein E1. Virology. 1990,177:184-198.
    113. Moormann R J M, Bouma A, Kramp S J A et al. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. J Virol, 2001, 132:763-770.
    114. Moormann R J M, H J P Van Gennip, G K W Midema et al. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J Virol. 1996, 70:763-770.
    115. Moormann RJ, Bouma A, Kramps JA et al. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol. 2000,73(2-3) : 209-219
    116. Moser C, Bosshart A, Tratschin JD et al. A recombinant classical swine fever virus with a marker insertion in the internal ribosome entry site. Virus Genes. 2001, 23(1) :63-68
    117. Moser C, Ruggli N, Tratschin JD et al. Detection of antibodies against classical swine fever virus in swine sera by indirect ELISA using recombinant envelope glycoprotein E2. Vet Microbiol. 1996, 51 (1-2) :41-53
    118. Moser C, Stettler P, Tratschin J-D et al. Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol, 1999, 73(9) :7781-7794
    119. Moser C, Tratschin JD and Hofmann Ma. A recombinant Classical Swine Fever Virus stably expresses a marker gene. J Virol 1998, 72(6) : 5318-5322
    120. MullerA, Depner KR, Liess B. Evaluation of a gp 55 (E2) recombinant-based ELISA for the detection of antibodies induced by classical swine fever virus. Dtsch Tierarztl Wochenschr. 1996, 103(11) :451-453
    121. N Ruggli, Jon-Due Tratschin, Christian Mittelholzer, M A Hoffmann. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol. 1996, 70:3478-3487.
    
    
    122. Nancyl. Davis, Loretta V.Willis, and Jonathan F. Smith. In vitro synthesis of infectious Venezuelan Equine Encephalitis Virus RNA from a cDNA clone: Analysis of a viable deletion mutant. Virology. 1989. 171:189-204
    123. Narita M, Kawashima K, Shimi M. Viral antigen and B and T lymphocytes in lymphoid tissues of gnotobiotic piglets infected with hog cholera virus. J Comp Pathol. 1996,114(3) : 257-263
    124. Nicolas Ruggli, Jon-Duri Tratschin and Christian Mittelholzer. Nucleotide sequence of Classical Swine Fever Virus Strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J. Virol. 1996. 70:3478-3487
    125. Nicolas Ruggli, Jon-Duri Tratschin, and Christian Mittelholzer. Nucleotide Sequence of Classical Swine Fever Virus Strain Alfort/187 and Transcription of Infectious RNA from Stavly Cloned Full-length cDNA. J. Virol. 1996. 70:3478-3487
    126. Nishimori T, Yamada S, Shimizu M. Production of monoclonal antibodies against classical swine fever virus and their use for antigenic characterization of Japanese isolates. J Vet Med Sci. 1996,58(7) : 707-710
    127 Par char iy anon S, Damrongwatanapokin S, Inui K et al. Different genetic spectrum of classical swine fever firus in Thsiland. Proceedings of the 15th IPUS congress, Birmingham, England, 5-9 July, 1998,p358
    128. Paton DJ, McGoldrick A, Greiser-Wilke I et al. Genetic typing of classical swine fever virus. Vet Microbiol, 2000, 73(2-3) : 135-157
    129. Peeters B, Bienkowska-Szewczyk K, Hulst M et al. Biologically safe, non-transmissible pseudorabies virus vector vaccine protects pigs against both Aujeszky' s disease and classical swine fever. J Gen Virol. 1997, 78 ( Pt 12) :3311-3315
    130. Pur B, Polo S and Hayes CG. Construction of a full-length infectious clone for Dengue-1 Virus Western Pacific, 74 Strain. Virus Genes. 2000. 20(1) : 57-63
    131. R. J. M. moormann, H. P. VAN Gennip and G. K. W. Miedema. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J. Virol. 1996. 70: 763-770
    132. Raymond P. Roos, Steven Stein, and Yoshiro Ohara. Infectious cDNA clones of the DA strain of Theiler' s Murine Encephalomyelitis Virus. J. Virol. 1989. 63:5492-5496
    133. Richard J. Kuhn, Hubert G. M. Niesters, and Zhang Hong. Infectious RNA transcripts from Ross River Virus cDNA clones and the construction and characterization of defined chimeras with Sindbis Virus. Virology. 1991. 182:430-441
    134. Robert Stark, Tillmann Rumenapf and Gregor Meyers. Short Communications: Genomic Localization of Hog Cholera Virus Glycoproteins. Virology. 1990. 174:286-289
    135. Ruitang Deng and Kennyv. Brock. Molicular cloning and Nucleotide Sequence of a Pestivirus Genome: Noncytopathic Bovine Viral Diarrhea Virus Strain SD-1. Virology. 1992,191:867-879
    
    
    136. Rumenapf T, Stark R, Heimann M et al. N-terminal proteinase of pestivirus: identification of putative catalytic residues by site-directed mutagenesis. J Virol, 1998, 72(3) :2544-2547
    137. Rumenapf T. structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. J Virol, 1991,67:589-597
    138. Rumenapf Y, et al. Processing of the envelope glycoproteins of pestivirus. J Virol, 1993, 67:3288-3294
    139. Saatkamp HW, Horst HS. Economic aspects of the control of classical swine fever. Vet Microbiol, 2000, 73(2-3) :221-238
    140. Sakoda Y, Hikawa M, Tamura T et al. Establishment of a serum-free culture cell line, CPK-NS, which is useful for assays of classical swine fever virus. J Virol Methods. 1998, 75(1) :59-68
    141. Sakoda Y, Yamaguchi O, Fukusho A. A new assay for classical swine fever virus based on cytopathogenicity in porcine kidney cell line FS-L3. J Virol Methods. 1998, 70(1) :93-101
    142. Schneider R, Identification of a structural glycoprotein of an RNAvirus as a ribonuclease. Science, 1993,261:1169-1171
    143. Schneider R, UngerG, Stark R et al. Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science, 1993, 261: 1169-1171
    144. Schri jver RS, Kramps JA. Critical factors affecting the diagnostic reliability of enzyme-linked immunosorbent assay formats. Rev Sci Tech. 1998, 17(2) :550-561
    145. Semenikhin VI, Puzyrev AT, Oreshkova SF et al. Detection of the hog cholera virus using the polymerase chain reaction. Mol Gen Mikrobiol Virusol. 1999,1:27-30
    146. Stade jek T, VilcekS, Lowings JP et al. Genetic heterogenety of classical swine fever virus in central Europe. Virus Res, 1997,52:195-204
    147. Stanislav Sosnovtsev, and Kim Y. Green. RNA transcripts derived from a cloned full-length copy of the Feling Calicivirus genome do not require VpG for infectivity. Virology. 1995. 210: 383-390
    148. Stark R, Rumenapf T, G Meyers, andHJThiel. Genomic localization of hog cholera virus glycoproteins. Virology. 1990, 174:286-289.
    149. Stark R. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol. 1993, 67:7088-7095
    150. Steffeus S, Thiel H-J, Behrens S-E et al. The RNA-dependent RNA polymerase of different members of the family flaviviridae exhibit similar properities in vitro. J Gen Virol, 1999,80:2583-2590
    151. Stegeman JA, Bouma A, Elbers AR et al. The leukocyte count is a valuable parameter for detecting classical swine fever. Tijdschr Diergeneeskd. 2000, 125(17) :511-518
    152. Summerf ield A, HofmannMA, Mccullough K C. Low density blood granulocytic cells induced during classical swine fever are targets for virus infection. Vet
    
    Immunol Immunopathol, 1998, 63(3) :289-301.
    153. Summerf ield A, Knoetig SM, Tschudin R et al. Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology. 2000,272(1) :50-60
    154. Summerf ield A, McNeilly F, Walker I et al. Depletion of CD4(+) and CD8(high+) T-cells before the onset of viraemia during classical swine fever. Vet Immunol Immunopathol. 2001, 78(1) :3-19
    155. Terpstra C, Wensvoort G. The protective value of vaccine induced neutralizing antibody titres in swine fever. Vet Microbiol, 1998, 16:123-128
    156. Terpstra C, Woortmeyer R, Barteling SJ. Development and properties of a cell culture produced vaccine for hog cholera based on the Chinese strain. Dtsch Tierarztl Wochenschr. 1990, 97(2) :77-79
    157. Thiel H-J, Stark R, Weiland E et al. Hog cholera virus: molecular composition of virions from a pestivirus. J Virol, 1991,65:4705-4712
    158. Tratschin JD, Moser C, Ruggli N et al. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol, 1998, 72 (9) : 7681-7684
    159. Trautwein G. Pathology and pathogenesis of the diease, Martins Nijhoff publishing. Boston, USA, 1988, 27-54 .
    160. van Gennip HG, Bouraa A, van Ri jn PA et al. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV. Vaccine. 2002, 20(11-12) : 1544-56
    161. Van Gennip HG, Van Rijn PA, and Widjojoatmodjo MM. Recovery of Infectious Classical Swine Fever Virus (CSFV) from Full-Length Genomic cDNA Clones by a Swine Kidney Cell Line Expressing Bacteriophage T7 RNA Polymerase. J Virol Methods 1999, 78(1-2) : 117-128
    162. Van Gennip HG, van Rijn PA, Widjojoatmodjo MN et al. Chimeric classical swine fever viruses containing envelope protein E(RNS) or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine. 2000,19(4-5) :447-459
    163. Van Rijn PA, Bossers A, Wensvoort G et al. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J Gen Virol. 1996,77 ( Pt 11) :2737-2745
    164. Van Rijn PA, Miedema GKW, Wensvoort G et al. Antigenic structure of envelope enviloprotein El of hog cholera virus. Journal of virology. 1994,68(6) :3934-3942
    165. Van Rijn PA, van Gennip HGP, de Meijer EJ et al. Epitope mapping of envelope glycoprotein El of hog cholera virus strain Brecia. J Gen Virol, 1993,74:2053-2060
    166. Van Rijn PA, vans Gennip HG, Moormann RJ. An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virus (CSFV). Vaccine. 1999, 17(5) :433-440
    167. Vandeputte J, Chappuis G. Classical swine fever: the European experience and a guide for infected areas. Rev Sci Tech. 1999,18(3) : 638-647
    
    
    168. Vannier P, Plateau E, Tillon JP. Congenital tremor in pigs farrowed from sows given hog cholera virus during pregnancy. Am J Vet Res. 1981,42(1): 135~137
    169. Vilcek S, Paton DJ. Application of genetic methods to study the relationship between classical swine fever virus outbreaks. Res. Vet. Sci, 1998,65:89~90
    170. ViIeck S, Paton D, Lowings Pet al. Genetic analysis of pestiviruses at the 3 end of the genome. Virus Genes, 1999,18:107~l14
    171. Vileck S, Stadejek T, Ballagi-Pordany A et al. Genetic variability of classical swine fever virus. Virus Res, 1996,43:137~147
    172. Warrener P, Collectt MS. Pestivirus NS3 (p80) protein possesses RNA helicase activity. J Virol, 1995,69(3):1720~1726
    173. Welland E, Stark R, Haas Bet al. Pestivirus glycoprotein that induces neutralizing antibodies forms part of a disulfide-linked heterodimer. J Virol, 1990,64:3565~3569
    174. Wensvoort G, Terpstra C, de Kluyver EP et al. Antigenic differentiate of pestivirus strains with monoclonal antibodies against hog cholera virus. Vet Microbiol, 1989,21:9~20
    175. Wensvoort G. Topographical and functional mapping of epitopes on hog cholera virus with monocional antibodies. J Gen Virol, 1989,70:2865~2876
    176. Widjojoamodjo MN, van Gennip HGP, de Smit AJ et al. Comparative sequence analysis of classical swine fever virus isolates from the epizootic in the Netherlands in 1997-1998. Vet Microbiol, 1999,66:291~299
    177. Widjojoatmodjo MN, van Gennip HG, Bouma Aet al. Classical swine fever virus E(rns) deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. J Virol. 2000,74(7):2973~2980
    178. Wise GH. Eradication of hog cholera from the united states, in:woods, G T. (Eds),practices in veterinary public health and preventive medicine in the united states. Iowa state university press, 1986,199~223
    179. Wong ML, Peng BY, Liu JJ et al. Cloning and sequencing of full-length cDNA of classical swine fever virus LPC strain. Virus Genes, 2001,23(2):187~92
    180. Wu HX, Wang JF, Zhang CY et al. Attenuated lapinized chinese strain of classical swine fever virus: complete nucleotide sequence and character of 3'-noncoding region. Virus Genes. 2001,23(1):69~76
    181. Yu X, Tu C, Li H, et al. DNA-mediated protection against classical swine fever virus [J], Vaccine, 2001, 19:1520~1535
    182. Zaberezhny AD, Grebennikova TV, Kurinnov VV et al. Differentiation between vaccine strain and field isolates of classical swine fever virus using polymerase chain reaction and restriction test. Dtsch Tierarztl Wochenschr. 1999,106(9):394~397
    183.奥斯泊F,布伦特R,金斯顿RE等.精编分子生物学实验指南.北京:科学出版社,1999
    184.丁明孝,陆宇,陈建国.猪瘟病毒及其疫苗研究[A].谢庆阁,翟中和主编.畜禽重大疫病免疫研究进展[M].北京:中国农业科技出版社,1996,41-50[2]
    185.杜念兴.猪瘟的回顾与展望.中国畜禽传染病,1998,20(5):317~319
    186.付烈振,张楚瑜,朱燕.猪瘟和猪瘟病毒的分子生物学[A].谢庆阁,翟中和主编.畜禽重
    
    大疫病免疫研究进展[M].北京:中国农业科技出版社,1996,32~40
    187.高彦生,陈琨.2002年1月国际动物疫情.中国畜牧兽医(试刊),2002,29(2):48~50
    188.高彦生,兰乃洪.2002年6月国际动物疫情.中国畜牧兽医,2002,29(4):54~56
    189.高彦生,马珊珊.2002年3月国际动物疫情.中国畜牧兽医(试刊),2002,29(3):48~50
    190.高彦生,邵洁环.2002年4月国际动物疫情.国外畜牧科技,2002,29(3):51~53
    191.国际兽疫局编著.诊断试验和疫苗标准手册.农业部畜牧兽医局.1996
    192.韩雪清,李红卫,刘湘涛等.中国猪瘟兔化弱毒(C-株)兔脾组织毒部分基因的序列分析——gp55、P54、P80等基因测序方法的研究和P54基因的序列分析.中国兽医科技,1998,28(6):13~17
    193.韩雪清,李红卫,刘湘涛等.中国猪瘟兔化弱毒株(C-株)兔脾组织毒主要保护性抗原E2(gp55)基因序列分析.畜牧兽医学报,2001,32(1):52~57
    194.韩雪清,刘湘涛,赵启祖等.猪瘟病毒遗传发生关系分析.中国兽医科技,1999,29(6):3~7
    195.胡建和,刘湘涛,张彦明等.中国猪瘟C-株(脾淋毒)全长cDNA的分子克隆.畜牧兽医学报[J],2003(4)
    196.胡建和,刘湘涛,庄淑珍等.中国猪瘟兔化弱毒全基因组cDNA文库的构建和序列分析.中国兽医科技[J],2002,32(12):12~15
    197.花象柏.对“繁殖障碍型猪瘟”的病原发病机理的思考.江西畜牧兽医杂志,1996,2:10~12
    198.黄鉴明.繁殖障碍型猪瘟的诊断与防制.中国畜禽传染病,1995,4:16~18
    199.黄茜华,张楚瑜,王家富等.猪瘟病毒石门株全基因组cDNA文库构建、序列测定及分析.科学通报,1999,44(17):1823~1826
    200.黄茜华,张楚瑜,王宁等.猪瘟病毒石门株NS2-3基因片段的序列测定及比较.中国病毒学,1999,14(2):163~168
    201.黄茜华,张楚瑜.猪瘟病毒石门株NS4A基因的克隆、测序及分析.微生物学杂志,1999,19(2):5~7
    202.黄茜华,张楚瑜.猪瘟病毒石门株NS4B基因的序列测定及分析.湖北农学院学报,1999,19(1):54~55
    203.黄茜华,张楚瑜.猪瘟病毒石门株NS5A基因的序列测定及同源比较.华中农业大学学报,1999,18(2):154~157
    204.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯(美).分子克隆实验指南(第二版),北京:科学出版社,1995,19~22
    205.蒋晓颖,俞秋兰,钱丽英.当前猪瘟流行病因学研究进展.动物科学与动物医学,2002.19(2):29~31
    206.金扩世,涂长春,殷震.猪瘟病毒保护性囊膜糖蛋白E1基因的研究进展.病毒学报,1996,12(3):287~290
    207.李成.应用电镜技术对猪瘟病毒的研究.中国兽医科技,1989,7:24~25
    208.李红卫,刘湘涛,李小兵等.我国猪瘟病毒兔化弱毒株囊膜糖蛋白E0基因的克隆及序列测定.中国病毒学,1999,14(2):169~173
    209.李维东译.关于猪瘟的最新知识.国外兽医学—畜禽传染病,1993,13(1):1~2
    210.林荣泉.非洲猪瘟与猪瘟的鉴定及防控技术.肉类工业,2001,3:25~28
    211.刘伯华,刘湘涛,韩雪清等.急、慢性猪瘟病毒分离株和疫苗株E2基因的序列分析.畜牧兽医学报,2001,32(6):568~575
    
    
    212.刘湘涛,韩雪清,刘伯华等.猪瘟流行毒E~(rns)基因的序列分析.中国农业科学,2000,33(4):75~81
    213.刘湘涛,赵启祖,李忠润等.猪瘟病毒和猪瘟的防制[A].谢庆阁,翟中和主编.畜禽重大疫病免疫研究进展[M].北京:中国农业科技出版社,1996,321~338
    214.卢圣栋主编.现代分子生物学实验技术.北京,中国协和医科大学出版社,1999
    215.陆宇,陈建国,丁明孝.猪瘟病毒及其疫苗研究进展.中国病毒学,1996,11(3):201~207
    216.吕宗吉,李红卫,涂长春等.我国部分地区猪瘟病毒流行株的基因差异.中国兽医学报,2000,20(4):313~316
    217.吕宗吉,涂长春,余兴龙.猪瘟病毒基因组结构与功能的研究进展.广东畜牧兽医科技,2001,26(4):8~12
    218.罗廷荣.猪瘟病毒生物学特性研究的一些新进展.广西农业生物科学,2001,20(1):55~63
    219.孟晓芹,郑明.国内猪瘟研究概况.中国兽药杂志,1995,29(3):56~58
    220.聂玉春,柯叶艳,陈建国等.CSFV中国标准强毒株—石门F114株全长cDNA的构建.微生物学报[J],2001,4l(4):452~456
    221.丘惠深,郎洪武,王在时等.猪瘟兔化弱毒疫苗与我国近年猪瘟野毒的免疫保护相关性试验.中国兽药杂志,1997,31(3):1~3
    222.邵振华,田海燕.多价荧光抗体监测外源病毒污染的研究.中国兽药杂志,1997,31(2):1~6
    223.史国瑞译,陈文樾校.瘟病毒分类.国外兽医学—畜禽传染病,1993,13(1):1~2
    224.王德海译.欧洲野猪古典猪瘟的现状及对策.动物医学进展,2002,23(2):77~79
    225.王家富,张楚瑜,傅烈振等.中国猪瘟兔化弱毒兔脾毒NS2-3基因的序列分析.病毒学报,2000,16(2):150~154
    226.王家富,张楚瑜,王宁等.猪瘟病毒石门株与兔化弱毒株E0糖蛋白基因的克隆及序列分析.微生物学报,2000,40(1):32~37
    227.王宁,付烈振,张楚瑜.猪瘟病毒囊膜糖蛋白E0的RNA酶活性及其研究进展.微生物通报,1998,25(6):354~355
    228.王琴,王长江.新型动物疫苗的研究进展及应用前景.中国兽药杂志,2001,35(6):54~58
    229.王镇,丁明孝.猪瘟病毒的分子生物学研究进展.微生物学通报,1998,25(1):57~59
    230.王镇,丁明孝.猪瘟病毒致病机制及防治的研究进展.畜牧兽医学报,1998。29(5):385~391
    231.王镇,陆宇,周鹏程等.猪瘟病毒在PK细胞和MPK细胞中繁殖过程的研究.微生物学报,1999,39(3):189~195
    232.吴乃虎主编.基因工程原理.北京,科学出版社,2001
    233.吴增坚,杨奎.非典型猪瘟.畜牧与兽医,2000,32(2):35~37
    234.肖明,张楚瑜,祝志展等.猪瘟病毒基因组非编码区的定性、定量与结构分析.科学通报,2001,46(7):544~551
    235.殷震,刘景华主编.动物病毒学(第2版).北京,科学出版社,1997
    236.于立权,崔玉东,朴范泽.猪瘟疫苗研究进展.动物医学进展,2002,23(2):10~13
    237.周鹏程,陈建国,丁明孝等.猪瘟病毒NS3丝氨酸蛋白酶功能区基因的克隆及其在大肠杆菌中的高效表达.畜牧兽医学报,2001,32(4):330~337
    238.周鹏程,陆宇,陈建国等.猪瘟病毒E2(gp55)基因的克隆表达及其DNA疫苗的初步研
    
    究.微生物学报,2000,40(3):243~252
    239.周鹏程,聂玉春,曹圻等.特异寡聚核苷酸对猪瘟病毒在细胞中增殖抑制作用的研究.中国病毒学,2001,16(3):270~274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700