离子液体在有机合成中的拓展研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,学术和工业界均致力于环境友好型技术的研发,以解决传统挥发性有机溶剂和腐蚀性催化剂所带来的污染问题。室温离子液体(RTIL,简称离子液体,IL)作为环境友好的“清洁”介质,具有蒸汽压低、不易挥发、稳定性和电导性好、液程宽、不可燃、无污染等优点。近年来,离子液体作为催化剂和溶剂在有机合成中得到了广泛应用,但其在阿司匹林合成反应、苯胺合成反应以及舒巴坦酸合成反应中的应用却未见相关报道。此三类合成反应的传统工艺过程由于使用了大量的有机溶剂和无机酸催化剂,不可避免会导致系列环境问题。采用离子液体替代传统有机溶剂和催化剂,可有效解决上述问题,基本实现反应过程的绿色化。因此,推广此三类反应进一步拓展离子液体在有机合成中的应用具有重要的创新意义和应用价值。
     本论文主要包括以下三个方面内容:
     1.离子液体在阿司匹林合成反应中的应用研究
     传统的阿司匹林合成反应在浓硫酸催化下进行,存在副反应多、腐蚀设备和环境污染严重等缺点。本论文选择五种1,3-二烷基咪唑离子液体为催化剂应用于水杨酸和乙酸酐合成阿司匹林的反应中,考察反应时间、酸醇物质的量比等反应条件对该反应的影响。实验结果表明:离子液体1-丁基-3-甲基咪唑溴盐[bmim]Br对阿司匹林的合成有较好的催化效果,最佳反应条件为:n水杨酸:n乙酸酐=1:2,离子液体用量2 mL,反应温度80-85℃,反应时间3 h,产率最高可达81.6%。产物和离子液体不溶而分层,易于分离,离子液体重复使用5次后其催化活性无明显降低。
     2.离子液体在苯胺合成反应中的应用研究
     水合肼法制备芳胺的还原反应可在甲酸、乙酸、二氯乙烷等有机溶剂中进行,但存在反应时间长、水合肼用量大以及环境污染严重等缺点。本论文选择五种Brφnsted酸性离子液体作为反应溶剂,研究了以硝基苯为反应底物、Y.氧化铝作催化剂的水合肼还原硝基苯制苯胺的反应。通过考察还原过程中反应时间、温度、水合肼用量、催化剂用量等对产率的影响,确定了最佳反应条件为:n硝基苯:n水合肼=1:1.9,催化剂用量0.3 g,反应温度80℃,反应时间1 h,产率最高可达96.0%。这一反应体系有以下几个优点:1)反应时间短(约1 h),反应条件温和,产率较好;2)催化剂在离子液体中的分散性较好,催化活性增强;3)不必使用高浓度水合肼,可显著降低成本。
     3.离子液体在舒巴坦酸合成反应中的应用研究
     舒巴坦酸合成反应可在乙酸乙酯或二氯甲烷有机相中进行,并采用硫酸作氢源,存在产率低、设备腐蚀和污染严重等缺点。本论文选择了三种离子液体做为溶剂,探索了以水合肼作为氢源、铸铁铁粉作为电子转移剂的舒巴坦酸合成反应。通过考察还原过程中反应时间、温度、水合肼用量、铸铁铁粉用量等对产率的影响,确定了最佳反应条件为:n二溴青霉烷砜酸:n水合肼:n铸铁铁粉=1:10:4.5,反应温度25℃,反应时间4 h,产率最高可得87.0%。该方法具有反应条件温和、产率较高、不腐蚀设备等优点,为制备含卤素化合物脱卤合成目标产物提供了一种新的方法,同时也为治理芳香卤化物废水污染开辟了一条具有理论和应用价值的新途径。
Currently, a major drive is underway in academia and industry to substitute more environmentally friendly technologies for traditional ones in which damaging catalysts and volatile organic solvents are heavily used. Room temperature ionic liquid (RTIL, called IL for short) are considered as environmentally benign solvents, not only because of their low vapor pressures, but more importantly, also because of their ability to act as catalysts. Moreover, RTILs have several other attractive properties, including chemical and thermal stability, nonflammability, high ionic conductivity, and a wide electrochemical potential window. Recent years, ILs have been widely used as catalysts and solvents in organic synthesis, but those researches of application in the synthesis of aspirin, aromatic amines and sulbactam acid were hardly reported. On the other hand,the traditional technology for the three kind of syntheses, using organic reagent and inorganic acid as solvent or catalyst, which inevitably brought on serious environmental pollution and equipment corrosion,but instead,those problems can be solved by introducing ionic liquids as solvent or catalyst applied to the reaction. Therefore, further extended researches of ILs in organic synthesis have great significance and application values. This dissertation includes the three following aspects:
     1. Research on the application of ILs in synthesis of Aspirin
     Synthesis of Aspirin can be carried out in sulfuric acid, however, having some shortcomings, such as:the existence of many side reactions, corrosion of equipment and environmental pollution and etc. In this paper the synthesis of aspirin was investigated in 5 kinds of ionic liquids 1,3-dialkylimidazolium. The effects of reaction time and ratio of acid to alcohol on the reaction were examined. Experimental results showed that ionic liquid [bmim]Br could be used as a catalyst of aspirin. The optimized estefification conditions were:(n)salicylic acid:(n)acetic anhydride=1:2, catalyst 2 mL, reaction temperature 80-85℃, reaction time 3 h. The yield of esterification could reach 81.6%. The isolation of desired products could be achieved via simple decantation and the ILs can be reused five times without significant decrease of its catalytic activity.
     2. Research on the application of ILs in synthesis of aromatic amine
     Synthesis of aromatic amine can be carried out in organic solvents, such as formic acid, acetic acid, dichloroethane and other organic solvents, which have some shortcomings:a long reaction time, a large amount of hydrazine hydrate, and serious environmental pollution and etc. In this paper, by employing 5 kinds of Brφnsted acidic ionic liquids as the reaction solvent, the reduction of nitrobenzene to aniline in the presence of hydrazine hydrate catalyzed by Y-alumina can be achieved.The effects of reaction time, temperature and amount of hydrazine hydrate and catalyst on the reaction were also examined. Experimental results showed that the optimized reduction conditions were:(n) nitrobenzene:(n) hydrazine hydrate=1:1.9, catalyst 0.3 g, reaction temperature 80℃. reaction time 1h. The yield of reduction could reach 96.0%. This study identified several advantages of the reaction carried out in ionic liquids, namely:1)shorter reaction time,milder conditions,satisfied yield; 2) higher catalyst distribution in the ionic liquids,exerted a strong influence on catalytic activity; 3)lower concentration of hydrazine hydrate, eased the cost.
     3. Research on the application of ILs in synthesis of Sulbactam acid
     Sulbactam acid synthesis can be carried out in organic phases of ethyl acetate or methylene chloride with using sulfuric acid as the catalyst and solvent, which have some shortcomings, such as:the existence of low yield, and serious corrosion and pollution. In this paper, by employing 3 kinds of Brφnsted acidic ionic liquids both as the reaction solvent and catalyst, hydrazine hydrate as the hydrogen source,cast iron as the electron transfer agent of the environment, the synthesis of Sulbactam acid can be achieved. The effects of reaction time, temperature and amount of hydrazine hydrate and cast iron powder on the reaction were also examined. Experimental results showed that the optimized reduction conditions were:The optimized conditions were:n(dibromo penicillin sulfoxide acid):n(hydrazine hydrate):n(cast iron powder)=1:10:4.5, reaction temperature 25℃, reaction time 4 h, the yield obtained 87.0% at most. The study identified several advantages, such as:milder conditions, satisfied yield, no serious corrosion and pollution. Therefore, it provided a new approach for the preparation of halogen-containing compounds synthesized through dehalogenation, and also for the management of wastewater pollution of aromatic halides, a theoretical and practical value of the new approach.
引文
1. P. T. Anastas, J. C. Warner, Green Chemistry:Theoryand Practice[M], New York, Oxford University Press,1998,30.
    2. P. Wasserscheid, W. Kevin, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed.,2000,39,3773.
    3. M. J. S. Dewar, J. Frank, Seiler Reasearch Laboratory, U.S, Air Force Academy, Co 80840,1990.
    4. J. J. Stewar, J. Frank, Seiler Reasearch Laboratory, U.S, Air Force Academy, Co 80840,1990.
    5. J. B. Foresman, E. Frisch, Gaussian03W User's Reference. Pittsburgh[M], PA U.S.A, Gaussian, Inc.
    6. A. R. Katritzky, V. S. Lobanov, M. Karelson, CODESSA UserManual., Version 2.0.University of Florida,1996.
    7. A. R. Katrizky, K. Tamm, M. Kuanar, Aqueous biphasic systems patitioning of organicmolecules:a QSPR treatment, J. Chem. Inf. Comput. Sci.,2004,44,136.
    8. M. Karelson, U. Maran, Y. Wang, Collect. Czech. Chem. Commoun.,1999,64, 1551.
    9. K. R. Seddon, Ionic Liquids for clean technology. Chem. Biotechnol.,1997,2, 351.
    10. J. D.Holbery,K.R.Seddon, J. Chem. Soc. Dalton Trans.,1999,13,2133.
    11.王均凤,张锁江,陈惠萍等,离子液体的性质及其在催化反应中的应用,过程工程学报,2003,3,177.
    12. T. Welton, Chem. Rev.,1999,99,2071.
    13.王明慧,吴坚平,杨立荣,有机化学,2005,25,241.
    14. D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth, M. Forsyth, Chem. Commun.,2006,1905.
    15. M. Hirao, H. Sugimoto, H. Ohno, Preparation of novel room temperature molten salts by neutralization of amines, Electron. Chem.,2000,147,4168.
    16. P. Bonhote, A. P. Dias, N. Papageorigiou, Inorg. Chem.,1996,35,1168.
    17. J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg. Chem.,1982, 21,1263.
    18. P. J. Dyson, M. C. Grossel, N. Srinivasan, T. Vine, T. Welton, D. J. Williams, A. J. P. White, T. Zigras, J. Chem. Soc., Dalton Trans.,1997,3465.
    19. D. Pradhan, D. Mantha, R. G. Reddy, Electrochim. Acta,2009,54,6661.
    20. K. Bahrami, M. M. Khodei, F. Shahbazi, Tetrahedron Lett.,2008,49,3931.
    21. J. Fuller, R. T. Carlin, R. A. Osteryoung, J. Electrochem. Soc.,1997,144, 3881.
    22. A. Paul, P. K. Mandal, A. Samanta, Chem. Phys. Lett.,2005,402,375.
    23.张锁江,吕兴梅,离子液体--从基础研究到工业应用,北京:科学出版社,2006.
    24. K. R. Seddon,J. Chem. Tech. Biotechnol.,1997,68,351.
    25. H. Stegemann, A. Rohde, A. Reiche, A. Schnittke, H. Fullbier, Electrochim. Acta,1992,37,379.
    26.李汝雄,绿色溶剂--离子液体的合成与应用,北京:化学工业出版社,2004.
    27.蒋栋,王媛媛,刘洁,戴立益,化学通报,2007,70,371.
    28. H. L. Ngo, K. LeCompte, L. Hargens, A. B. McEwen, Thermochim. Acta, 2000,97,357.
    29. R. E. Del Sesto, T. Mark McCleskey, C. Macomber, K. C. Ott, A. T. Koppisch, G. A. Baker, A. K. Burrell, Thermochim. Acta,2009,491,118.
    30. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Inorg. Chem.,1996,35,1168.
    31.顾彦龙,彭家建,乔琨,杨宏洲,石峰,邓友全,化学进展,2003,15,222.
    32. J. D. Holbrey, K. R. Seddon, J. Chem. Soc., Dalton Trans.,1999,2133.
    33. T. Nishida, Y. Tashiro, M. Yamamoto, J. Fluorine Chem.,2003,120,135.
    34. J. R. Sanders, E. H. Ward, C. L. Hussey, J. Electrochem. Soc.,1986,133, 325.
    35. S. V. Dzyuba, R. A. Bartsch, Chem Phys Chem,2002,3,161.
    36. S. Chun, S. V. Dzyuba, R. A. Bartsch,Anal. Chem.,2001,73,3737.
    37. U. Domanska, M. Laskowska, J. Solution Chem.,2009,38,779.
    38. B. Hasse, J. Lehmann, D. Assenbaum, P. Wasserscheid, A. Leipertz, A. P. Froba,J. Chem. Eng. Data,2009,54,2576.
    39. J. A. Widegren, A. Laesecke, J. W. Magee, Chem. Commun.,2005,1610.
    40. A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, J. L. Williams, J. Phys. Chem.,1984,88,2614.
    41. L. C. Branco, J. N. Rosa, J. J. M. Ramos, C. A. M. Afonso, Chem. Eur. J., 2002,8,3671.
    42.0. Aschenbrenner, S. Supasitmongkol, M. Taylor, P. Styring, Green Chem., 2009,11,1217.
    43. L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton, Phys. Chem. Chem. Phys.,2001,3,5192.
    44. P. Wasserscheid, W. Keim,Angew. Chem. Int. Ed.,2000,39,3772.
    45. K. R. Seddon, A. Stark, M. J. Torres, Pure Appl. Chem.,2000,72,2275.
    46. J. L. Anderson, J. K. Dixon, E. J. Maginn, J. F. Brennecke, J. Phys. Chem. B:, 2006,110,15059.
    47. C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, E. J. Maginn, J. Am. Chem. Soc.,2004,126,5300.
    48. J. Hassoun, A. Fernicola, M. A. Navarra, S. Panero, B. Scrosati,J. Power Sources,2010,195,574.
    49. M. Jayakumar, K. A. Venkatesan, T. G. Srinivasan, P. R. Vasudeva Rao, Electrochim. Acta,2009,54,6747.
    50. A. Lewandowski, A. Swiderska-Mocek, J. Power Sources,2009,194,601.
    51. M. C. Buzzeo, R. G. Evans, R. G. Compton, Chem. Phys. Chem.,2004,5, 1106.
    52. M. T. Garcia, N. Gathergood, P. J. Scammells, Green Chem.,2005,7,9.
    53. N. Gathergood, P. J. Scammells, M. T. Garcia, Green Chem.,2006,8,156.
    54. C. Pretti, C. Chiappe, D. Pieraccini, M. Gregori, F. Abramo, G. Monni, L. Intorre, Green Chem.,2006,8,238.
    55. K. M. Docherty, S. Z. Hebbeler, C. F. Kulpa, Green Chem.,2006,8,560.
    56. B. Jastorff, K. Molter, P. Behrend, U. Bottin-Weber, J. Filser, A. Heimers, B. Ondruschka, J. Ranke, M. Schaefer, H. Schroder, A. Stark, P. Stepnowski, F. Stock, R. Stormann, S. Stolte, U. Welz-Biermann, S. Ziegert, J. Thoming, Green Chem.,2005, 7,362.
    57. J. Ranke, K. Molter, F. Stock, U. Bottin-Weber, J. Poczobutt, J. Hoffmann, B. Ondruschka, J. Filser, B. Jastorff, Ecotoxicol. Environ. Saf.,2004,58,396.
    58.柯明,周爱国,宋昭峥,蒋庆哲,化学进展,2007,19,671.
    59. J. D. Holbrey, K. R. Seddon, Clean Technol. Environ. Policy,1999,1,223.
    60. S. J. Nara, J. R.Harjani, M.M.Salunkhe, J. Org. Chem.,2001,66,8616.
    61. H. Zhao, S.V. Malhotra, Esterification of Amino Acids by Using Ionic Liquid as a Green Catalyst. In Catalysis of Organic Reactions; Morrell, D., Ed[M].; Marcel Dekker:New York,2002; Volume 83; 667
    62. M. J. Earle, P.B. McCormac, K. R. Seddon, Chem. Commun.,1998,2245.
    63. C. Wheeler, K. N. West, C. L. Liotta, C. A. Eckert, Chem. Commun.,2001, 887.
    64.C. Chiappe, D. Capraro, V. Conte, D. Pieraccini, Org. Lett.,2001,3,1061.
    65. J. Howarth, P. James, R. Ryan, Synth. Commun.,2001,31,2935.
    66. G. L. Rebeiro, B. M. Khadilkar, Synthesis.,2001,3,370.
    67. J. Peng, Y. Deng, Tetrahedron Lett.,2001,42,403.
    68. J. Peng, Y. Deng, Cuihua Xuebao.,2001,22,598; Chem. Abstr.,2002,136, 218
    69. Y. Chauvin, L. Mussman, H.Olivier,Angew. Chem.,1995,107,2941.
    70. S. Steines, J. Drieben-Holscher, P.Wasserscheid, J. Prakt. Chem.,2000,342, 348.
    71.C. E. Song, E. J. Roh, Chem. Commun.,2000,837.
    72.P.Wasserscheid, H. Waffenschmidt, P.Machnitzki, K.W.Kottsieper, O.Stielzer, Chem. Commun.,2001,4510.
    73. P. Wasserscheid, C. M. Gordon, C. Hilgers, M. J. Muldoon, I. R. Dunkin, Chem. Commun.,2001,1186.
    74. D. E. Kaufmann, M. Nouroozian, H. Henze, Synlett.,1996,4,1091.
    75. D. Zim, R. F. de Souza, J. Dupont, A. L. Monteiro, Tetrahedron Lett.,1998, 39,7071.
    76. C. de Bellefon, E. Pollet, P. Grenouillet, J. Mol. Catal.,1999,145,121.
    77. R. C. Buijsman, E. van Vuuren, J. G. Sterrenburg, Org. Lett.,2001,3,3785.
    78. C. J. Mathews, P. J.Smith, T.Welton, Chem. Commun.,2000,1249.
    79.张宝华,史兰香,牟微,郭瑞霞,阿司匹林制备研究进展,河北工业科技., 2008,25,119.
    80.丁健桦,郝丽,乐长高,阿司匹林的合成条件研究,东华理工学院学报(自然科学版),,2005,28,76.
    81.王贵全,陈志勇,以酸活化膨润土催化合成阿司匹林,化学工程师.,2004,10-15.
    82.唐宝华,肖凤娟,张筠,碳酸钠催化微波合成阿司匹林的方法探索,河北化工.,2006,29,24.
    83.林沛和,吡啶催化合成乙酰水杨酸的研究,化工中间体.,2006,9,18.
    84. S. Chun, S. V. Dzyuba, R. A. Bartsch, Anal. Chem.,2001,73,3737.
    85. C. P. Mehnert, R. A. Cook, N. C. Dispenziere, E. J. Mozeleski, Polyhedron., 2004,23,2679.
    86. S. V. Dzyuba, R. A. Bartsch, Chem. Commun.,2001,1466.
    87. J. G. Huddleston, A. E. Viser, W. M. Reichert, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem.,2001,3,156.
    88. Y. L. Gu, F. Shi, Y. Q. Deng, Esterification of aliphatic acids with olefin p romoed by Bronsted acidic ionic liquids, J. Mol. Catal. A:Chem.,2004,212,71.
    89. A. J. Bechamp, J.Ann. Chim. Phys,1854,42,186.
    90. H.Q.Wang, J.P.Yan, W.F.Chang, Z.M.Zhang, Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO2, Catal. Commun.,2009,10,989.
    91.刘晓智,陆世维,催化CO/H2O还原芳香硝基化合物制芳胺的技术进展,染料与染色,2003,40,339.
    92.彭爱东,陆世维,硒催化芳香硝基化合物制芳胺的反应研究[D],大连科学院大连化学物理研究所,2002.
    93.张竹霞,吕荣文,水合肼还原芳硝基物的研究,精细化工.,2001,4,239.
    94.唐洪,张蕾,徐寿颐,芳香族硝基化合物的水合肼催化还原反应的研究,精细化工.,1998,15,43.
    95.戴桂元,刘德龙,刘蕴等,取代邻硝基苯胺的还原工艺改进,化学世界.,,2003,44,252.
    96. M. Kumarraja, K. Pitchumani, Recent advances in processes and catalysts for the production of acetic acid, Appl. Catal. A:,2004,265,135.
    97. A.Vass, J. Dudas, J. Toth, et al, A study on the reduction of aromatic nitro compounds with hydrazine hydrate in the presence of a H-Transfer catalyst, Tetrahedron Lett.,2001,42,5347.
    98. S. Pramod, Mg-Fe hydrotalcite as a catalyst for the reduction of aromatic nitro compounds with hydrazine hydrate, J. Catal.,2000,191,467.
    99. W. John, L. Michael, M. Sidovar, et al, Mechanism of the carbon catalyzed reduction of nitrobenzene by hydrazine, Carbon.,2000,38,655.
    100. G.. Groppi, M. Bellotto, C. Cristiani, et al, Thermalevolution crystal structure and cation valence of Mn in substituted Ba-γ-Al2O3 prepared via coprecipitation in aqueous medium, J. Mat. Sci.,1999,34,2609.
    101. M. Bellotto, G.. Artioli, C. Cristiani, On the crystal structure and cation valence of Mn in Mn-substituted Ba-β-Al2O3, J. Catal.,1998,179,597.
    102. H. Inoue, K. Sekizawz, K. Eguchi,J. Solid State Chem.,1996,121,190.
    103. A. J. Zarur, J. Y. Ying, Reverse microemulsion synthesis of nano structured complex oxides for catalytic combustion, Nature.,2000,403,65.
    104. A. Arfan, J. P. Bazureau, Org. Process Res. Dev.,2005,9,743.
    105. K. F. Seddon, Green Chem.,2002,4, G25.
    106. R. A. Volkmann, R. D. Carroll, et al, Synthesis of Penicillamic acid S, S-dioxide,J. Org. Chem.,1982,47,3344.
    107. G. C. Bond, C. Louis, D. Thompson, Catalysis by Gold[M], Imperial College Press,2006
    108.张锁江,吕兴梅,等,离子液体——从基础研究到工业应用,过程工程学报.,北京,科学出版社,2006.
    109. R. P. Swatloski, S. K. Spear, J. D. Holbery, et al, Dissolution of cellose with ionic liquids,J. Am. Chem. Soc.,2002,124,4974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700