承压类特种设备远程在线监控及事故追忆系统开发与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展和社会的进步,信息技术的应用几乎已经深入到人类社会活动和生活的所有领域,计算机和网络已经成为日常工作必不可少的工具,计算机技术是当代发展最为迅猛的科学技术,己经成为当今促进生产力发展的最重要的因素之一。
     承压类特种设备,如锅炉和压力容器,被广泛地应用于电力、化工、纺织等各个行业,对国民经济发展发挥着不可取代的重大作用。作为生产的重要环节,如何利用目前先进的网络和通信技术,将构成承压类特种设备仪表的传感、数据采集、处理、传输和控制等功能,通过计算机专用或公用平台,配上功能强大的软件,从而使仪器仪表功能更强、效率更高、适用性更好,能够实现高效可靠地监控承压类特种设备的实时运行状态,保证其安全可靠运行,降低劳动强度和生产成本,是本课题的研究目的。
     承压类特种设备远程在线监控及事故追忆系统是为安全监察部门对各使用单位承压类特种设别的安全运行,采集需要的运行数据,进行有效监管和为分析承压类特种设备事故原因,评估设备安全事故责任提供依据而开发的。为解决承压类特种设备各种运行数据保存,节约监管成本,提高监管效能,本系统采用自动化,信息化,科学化的高科技手段,建设承压类特种设备在线监测及事故追忆系统,为承压类特种设备的安全管理提供了重要的原始数据和技术支持。
     本文从承压类特种设备使用的安全角度出发,分析了政府部门中特种设备使用远程监控等各项业务,论述了建立承压类特种设备远程监控的必要性、设计目标与原则、总体设计方案等。
     本文主要研究了承压类特种设备远程在线监控及事故追忆系统的现场监测终端设备的特性,现场与监控中心之间的数据传输技术和监控中心管理信息系统构成。在本系统中,现场监测终端安装在承压类设备上,实施对设备状态的实时监控,采用了GPRS通讯方式和协议技术把现场采集的数据实时传送到监控中心,监控中心的业务工作人员通过开发的监控管理系统界面即可了解远端承压类设备的实时运行状况,在数据出现异常时,系统能够自动报警,利用地理信息系统技术实现故障点位的及时定位,以便及时采取相应措施,减少承压类设备事故的发生概率,保障设备的安全运行,降低损失。
     论文描述了整个系统的构成,包括监测终端、监控中心和监控终端的硬件和软件。监测终端包括单片机数据采集模块、GPRS通讯模块;监控中心包括数据采集服务器、实时数据处理模块;监控终端主要包括动态仪表的生成,利用MapX地图控件实现地理信息管理模块。
     系统将远程数据采集、数据传输、危险报警等全部融合在本系统中,系统实施后,为特种设备的安全运行提供了保障。
With the technological development and social progress, the application of information technology, almost deep into human social activities and all areas of life, computers and networks have become an indispensable tool for daily work, computer technology is the fastest growing of contemporary science and technology, has become the most important for the development of productivity factor.
     Special pressure equipment, such as boilers and pressure vessels, has been widely used in electric power, chemicals, textiles and other industries, they are playing an irreplaceable role in development of the national economy. As an important part of safe production, make full use of the network and communication technology, real-time collect, process and control the parameters such as temperature, pressure and water level, detect abnormity in time, prevent security incident to prevent security incidents, to ensure its safe operation, is the subject of research.
     Special pressure equipment remote monitoring and recall systems for security incidents and supervision departments of the use of units bearing the safe operation of any other kind of special design, the operation of collecting the data needed to conduct effective monitoring and special equipment for the analysis of cause of the incident pressure to assess the safety of equipment to provide the basis responsible for the accident developed. To resolve a variety of questions as operating pressure data storage and save regulatory costs, improve regulatory efficiency of special pressure equipment, the system uses automation, information technology, high-tech scientific instruments, construction of special pressure equipment on line pressure monitoring and emergency recall system provides the raw data and technical support for safety management of the special pressure equipment.
     This paper begin from the safety use of special pressure equipment, and analysis the business of government departments such as special pressure equipment remote monitoring, discussed the need for remote monitoring, the design objectives, principles, general design of the establishment of special pressure equipment.
     This paper mainly studies the pressure of special equipment remote monitor and accident remembrance of field monitoring terminal equipment system, with the characteristics of field monitoring center data transfer between technology and the monitoring center management information system structure. In the system, and on-site monitoring terminal installed in confined class equipment, the implementation of the real-time monitoring equipment status, using a GPRS communication mode and the on-site technical agreement of the data collected real-time transmission to the monitoring center, the monitoring center business staff through the development of monitoring and management system interface can understand the distal pressure of such equipment real-time operation condition, in data abnormal, the system can automatically alarm, by using the geographic information system technology realization fault GSSP for timely orientation, so take timely measures to reduce pressure such equipment accidents probability, to protect the equipment safe operation, reduce losses.
     Paper describes the composition of the whole system, including monitoring terminal, the monitoring center and monitor terminal of hardware and software. Monitoring terminal including single-chip microcomputer data acquisition module, GPRS communication module, The monitoring center includes data gathering server, real-time data processing module; Monitor terminal mainly includes dynamic instrument generation, using MapX map control realization geographic information management module.
     System will remote data acquisition, data transmission, danger alertion wait all fusion in the system, and the system implementation, for special equipment operation safety of provide the safeguard.
引文
[1]K.B. Lee, R.D. Schneeman. Distributed Measurement and Control Based on the IEEE 1451 Smart Transducer Interface Standards. IEEE Trans. Instrum.Meas, 2000,(3):621-627
    [2]R. Fielding, J. Getys, J. Mogul, H. Frystyk,. Hypertext Transfer Protocol HTTP/LLR FC2 616,1999:357-363
    [3]Bertrand Ibrahim. Use of HTML Forms in Complex User Interfaces for Server-side Applications.Computer Studies,1997,(46):761-771
    [4]Bertrand Ibrahim. World-wide Algorithm Animation. Computer Networks and ISDN Sytems,1994,(27):255-265
    [5]Zhang Baoliang, Hu Hanping. A Network-Based VPN Architecture Using Virtual Routing. Journal of NaturalSc iences,2005,(1):161-167
    [6]M.P. de Albuquerque, E. Lelievre-Berna. Remote Monitoring over the Internet Nuclear Instruments and Methods in Physics Research,1998,(41):140-145
    [7]Kostas Kalaitzakis. Development of Data Acquisition System for Remote Monitoring of Renewable Energy Systems. Measurement,2003, (34):75-83
    [8]徐海琴,田作华.远程监控技术的新发展[J].微型电脑应用,2004,20(8):3-5
    [9]栗秋华等.基于GPRS的电力系统蓄电池在线监测系统的设计与实现[J].电工技术学报2007,
    [10]吴贞东,陈麟.基于GPRS和GIS的路灯监控系统[J].微计算机信息.2007,(28)
    [11]王晓兰,任晓芳.基于GPRS的远程监控系统集中器的设计[J].微计算机信息.2007,(29)
    [12]浦江.网络计算模式的演变与发展[J],电子技术,2001,(1):15-19
    [13]黎洪生,何岭松,史铁林等.基于B/S的远程故障诊断专家系统研究[J].武汉工业大学学报,1999,21(4):23-26
    [14]李东海,孙鹤旭,雷兆明.OPC技术在远程监控系统中的应用研究[J],微计算机信息,2005,(11):20-22
    [15]Joseph Schmuller(美).HTML基础、案例与应用[M].北京:人民邮电出版社,2002
    [16]Ken Lunn. UML软件开发[M].北京:电子工业出版社,2050
    [17]李顶根,陈军,吴朝晖.基于Arm-Linux的车载信息平台的研制[J].浙江大学学报(工学版).2006,(09)
    [18]徐月华.基于GPRS技术的配电变压器监控系统终端设计[J].华南理工大学学报(自然科学版).2006,(09)
    [19]王莉,潘正运,刘伟.一种基于J2ME的移动警务应用系统的新型设计[J].计算机工程.2006,(14)
    [20]任丽佳等.江秀臣动态确定输电线路输送容量[J].电力系统自动化2006,(17)
    [21]程娟,平西建.集成GPRS服务的嵌入式车载地理信息系统[J].计算机工程2006,(17)
    [22]徐小琴,叶桦.基于SMS和GPRS自主切换技术的车载通信终端[J].东南大学学报(自然科学版)2006,(S1)
    [23]尹伊君,张国军.基于GPRS网络热电厂汽网数据监测系统[J].辽宁工程技术大学学报.2006,(04)
    [24]刘峰,韩春燕,林浒.基于嵌入式TCP/IP的远程GPRS控制终端的设计与实现[J].小型微型计算机系统,2006,(06)
    [25]陈够喜,张永梅,王博.基于GPRS的远程数据的无线传输[J].中北大学学报(自然科学版).2006,(03)
    [26]吴允平.航标遥测遥控信息系统的设计与实现[J].计算机工程.2006,(12)
    [27]旅慧,王军,陈安卫.基于GPRS通信技术的台区变压器远程抄表系统[J].中国电力,2007,(07).
    [28]栗秋华等.基于GPRS的电力系统蓄电池在线监测系统的设计与实现[J].电工技术学报2007,(10).
    [29]王晓兰,任晓芳.基于GPRS的远程监控系统集中器的设计[J].微计算机信息.2007,(29)
    [30]潘峥嵘.邓科.基于GPRS的油田抽油机远程在线监控系统的设计与实现[J].化工自动化及仪表.2008,,(01).
    [31]李秀红等.嵌入式Internet中GPRS和SMS技术的实现[J].电子科技大学学报,2007,(04).
    [32]黄亦翔,周俊,刘成良.基于Web GIS/GPRS/GPS的设备远程监测系统[J].计算机工程,2007,(03)
    [33]陈玉峰.SQL Server 2000数据库开发教程[M].北京:科学出版社.2003:21-23.
    [34]于同工.状态监测系统在港口装卸机械上的应用研究[J].港口装卸,2001,(4):18-20
    [35]梅金,罗飞,李如雄.GPRS网络的远程监控系统[J].计算机工程,2006,32(3): 240-241
    [36]黄荣星,许士敏.基于GPRS通信技术的城市水资源监测系统[J].现代电子技术,2004,(11):43-45.
    [37]吴允平.航标遥测遥控信息系统的设计与实现[J].计算机工程.2006,(12)
    [38]曹小华.基于无线局域网的集装箱装卸桥远程监测系统研究[D].武汉:武汉理工大学,2005
    [39]卓祯雨.基于WEB的远程监控系统实现技术的研究[D].武汉:武汉理工大学,2003
    [40]王鑫.B/S模式实时监控的研究与实现[D].北京:铁道科学研究院.2005
    [41]于海晨,仲崇权.基于Internet的控制系统远程监控方案及实例[J].计算机自动测量与控制,2001,(5):14-17
    [42]朱志浩,樊留群.设备远程监控的研究[J].制造业自动化,2001,23(1):47-50
    [43]回晓东.起重运输机械的网络监控和网络管理[M].大连:大连理工大学,2005:20-22
    [44]王能斌;数据库系统[M].北京:电子工业出版社,1995
    [45]康军,戴冠中.工业以太网远程监控系统设计[J].计算机工程与设计,2005.6,26(6):1633-1635
    [46]严华,古钟壁,王祯学.基于DCS的分布式实时监控系统的设计与实现[J].四川大学学报,2002,39(4):657-660
    [47]王强,段晨东,何正嘉.机电设备远程监测和故障诊断系统的数据管理[J].计算机工程与应用,2004,(9):208-211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700