纯工质R245fa水平管内流动沸腾换热特性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,能源消耗越来越大,然而在大量消耗的能源中,有一部分能量是没有利用而白白浪费掉,如在动力、化工、石油、冶金、核能、制冷等工业中均存在此问题,有一部分能量以烟气、热水的形式浪费掉。如在昆明钢铁集团有限公司冶炼厂同样存在大量的每天24小时向外排放的低于300-400℃的中低温烟气,废蒸汽、废热水等余热资源,节能潜力巨大。采用低沸点有机工质为循环工质的有机朗肯循环(ORC)发电是对低品位热量回收利用的有效方式,并将环保性能、化学稳定性、安全性、热力学性能、成本、传热和流动性能作为工质选择所考虑的基本条件。
     准确的工质的传热系数是换热器设计及设备安全运行的基础,本文对有机工质R245fa的传热性能进行了实验测定,目的是为低温余热发电有机朗肯循环相关换热设备的设计与优化,提供传热设计的可靠依据。
     分析了水平管内汽液两相流的基本参数,包括:截面含汽率及截面含液率、质量流量、质量含汽率(即:干度)、质量流速、体积流量、体积含汽率、汽相真实流速、汽相折算速度、滑动比、滑动速度、汽液两相流的平均密度、汽液两相流的平均流速等。
     分析了水平管内汽液两相流的基本流型,包括:单相液体、细泡状流型、汽塞状流型、汽弹状流型、波状分层流型、环状流型。
     总结并分析了管内两相强制对流换热系数计算的关联式,具体模型有两种:一是区分流型的模型,该模型把有机工质在管内蒸发换热粗略地分为两个换热区:沫态沸腾换热区和两相受迫对流换热区;二是不区分流型的模型,此模型主要有三种计算方法:1、叠加法,具有代表性的关联式为有Gungor和Wingterton公式、Chen公式、Jung公式;2、渐进线法,具有代表性的关联式有Liu和Winterton公式、Wattelet公式;3、增强法,具有代表性的关联式有Shah公式、Kandlikar公式。并分析了用神经网络模型计算管内两相强制对流换热系数。
     基于以上理论研究的基础上,本文研究了R245fa在水平管内的流动沸腾传热特性,分析了工质质量流速、蒸发温度、加热水质量流速及干度对流动沸腾换热系数的影响,结果为:
     ●流动沸腾换热系数同时受蒸发温度、工质质量流速、加热水质量流速及管内工质干度的影响;
     ●在沸腾开始阶段,随着干度的增大,流动沸腾换热系数升高,在流动沸腾换热系数达到最大值后,随着干度的继续增大,流动沸腾换热系数反而下降;
     ●在相同蒸发温度及热流密度下,随着工质质量流速增大,管内流动沸腾换热系数迅速升高;
     ●在相同工质质量流速及蒸发温度下,随着加热水质量流速的增大,管内流动沸腾换热系数升高;
     ●在相同工质质量流速及加热水质量流速下,随着蒸发温度的升高,管内流动沸腾换热系数降低;
     本文将实验结果与用Chen公式、Liu-Winterton公式、Shan公式的计算结果进行了比较,结果表明:用Chen公式、Liu-Winterton公式、Shan公式预测R245fa工质管内流动沸腾换热系数的平均误差分别为31.6%、6.3%、37.4%;用Liu-Winterton公式计算R245fa工质的饱和流动沸腾换热具有良好的精度,可以满足工程实际对精度的要求。
Energy consumption increases with the development of economic, however, a large number of energy is wasted by the form of hot gas and water emission. This kind of phenomenon widely exists in some industries, such as chemical, petroleum, metallurgy, nuclear power, refrigeration and so on. Taking the smelter in Kunming Iron & Steel Group Co., Ltd as an example, a large number of flue gas, waste steam, waste hot water which lower 300~400℃are uninterruptedly discharged every day. Organic Rankine cycle power generation using low-boiling point organic working fluids is an effective way for low-grade heat recovery. To choice suitable working fluids for Organic Rankine cycle, the basic requirements including environmental performance, chemical stability, security, thermodynamic performance, cost, heat transfer and flow performance must be satisfied.
     Accurate calculation of working fluid heat transfer coefficient is the foundation of heat exchanger design and safe operation of equipment. Heat transfer performances of organic fluids R245fa are studied in this paper. The main purpose is to provide a reliable heat transfer design basis for the design and optimization of heat transfer equipments of Organic Rankine cycle power generation using low-boiling point organic working fluids.
     Some basic parameters of gas-liquid two-phase flow inside a horizontal tube have been analyzed, including cross-section gas rate and liquid rate, mass flow, vapor content, mass flow rate; volumetric flow; volumetric fraction, real gas velocity, gas superficial velocity, sliding ratio; sliding speed, the average density of gas-liquid two-phase flow, the average velocity of gas-liquid two-phase flow and so on.
     Basic flow patterns of gas-liquid two-phase flow inside a horizontal tube have been analyzed, including single-phase liquid, fine bubbly flow, gas plug-like flow, gas slug flow, wavy stratified flow, annular flow.
     The correlations of calculation two-phase forced convection heat transfer coefficients were summarized and analyzed. In general, there are two categories:the first, models distinguished by flow patterns, organic refrigerant evaporation heat transfer in the pipe roughly divided into two heat transfer areas in this model that are
     Pulverescent-boiling heat transfer area and the two-phase forced convection heat transfer area, respectively. The second, models of homogeneous flow patterns,
     There are three main calculation methods in this model:1,superposition method, a representative of the correlation with Gungor and Wingterton the formula, Chen formula, Jung formula; 2,progressive line method, a representative of the correlation with Liu and Winterton formula, Wattelet formula; 3,enhancement method, a representative of the correlation with Shah formula, Kandlikar formula. And using neural network model calculations tube two-phase forced convection heat transfer coefficient was analyzed.
     Based on the above theoretical study, convective boiling heat transfer characteristics of R245fa inside horizontal tube are investigated at various mass flow rates of hot water, working fluids and at various evaporation temperatures. The investigation results show that convective boiling heat transfer coefficients goes up with the increase of hot water and working fluid mass flow rate, but it is contrary to evaporation temperature.
     By comparisons of the experimental local heat transfer coefficients with that predicted by Chen correlation, Liu-Winterton correlation and Shah correlation, it is concluded that deviations of these three correlations are 31.6%、6.3%、37.4% respectively. Liu-Winterton correlation is more precise to predict convective boiling heat transfer coefficients of R245fa than Chen correlation and Shah correlation.
引文
[1]Calm J. M, Didion D A. Trade-Offs in Refrigrant Selections:Past, Present, and Future, ASHRAE/NIST Refrigrant Conf[J]. OCT.6-7,1997
    [2]F.S.Rowland, M.J. Molina, Stratospheric Sink for Chlorofluoromethanes; Chlorine Atom Catalyzed Destruction of Ozone, Nature,1974,249:810-812
    [3]黄晓艳,王华,王辉涛.超临界有机朗肯循环低温余热发电系统的分析[J].工业加热,2009,38(3):22-24
    [4]王辉涛,王华,黄晓艳.低温余热驱动的低沸点工质超临界动力循环[J].武汉理工大学学报,2009,31(14):32-35
    [5]J M Calm.下一代制冷剂-历史回顾、思考与展望[J].汪训昌.译.暖通空调,2009,39(2):4149
    [6]J M Calm, G C Hourahan.制冷剂特性数据解析与更新[J].白雪莲.译.制冷与空调,2007,7(5):61-73
    [7]王辉涛,刘宪英,孙纯武等.三门三温风冷无霜电冰箱CFC-12替代物的实验研究[J].暖通空调,1995,25(5):29-33
    [8]任金禄.制冷剂发展历程[J].制冷与空调,2009,9(3):41-44
    [9]王辉涛,王华.低温太阳能热力发电有机朗肯循环工质的选择[J].动力工程,2009,29(3):87-91
    [10]王辉涛,王华.海洋温差发电有机朗肯循环工质的选择[J].海洋工程,2009,27(2):119-123
    [11]史琳,曹德胜.制冷剂使用手册[M].北京:冶金工业出版社,2004
    [12]J.C.Khanparae. Augmentation of R113 in-tube evaporation with micro-fin tubes [J]. ASHRAE Trans.,1986,92(3):506-524
    [13]L.M.Schlager.Heat transfer and pressure drop during evaporation and condensation of R22 in horizontal micro-fin tube [J]. Int.J. Refrig.,1989,12(1):6-12
    [14]Torikoshi. Heat transfer and pressure drop characteristics of HFC-134a in a horizontal heat transfer tube[J]. Proc. of the 1992 Int. Refrig. Conf. at Purdue, Purdue University,1992:167-176
    [15]K.Torikoshi and T.Ebisu. Heat transfer and Pressure drop characteristics of R134a, R32, and a mixture of R32/134a inside a horizontal tube[J]. ASHRAE Trans,1993,99(2):90-96
    [16]Koyama Sh, Yu J, Momoki S, et al. Forced convective flow boiling heat transfer of pure refrigerants inside a horizontal micro-fin tube[J]. International Conference on Convective Flow Boiling,1995,137-142
    [17]Cheng-Shu Kuo, Chi-chuan Wang. Horizontal flow boiling of R22 and R407C in a 9.52 mm micro-fin tube[J]. Applied Thermal Engineering,1996,819 (16):719-731
    [18]K. Seo, Y. Kun. Evaporation heat transfer and pressure drop of R-22 in 7and 9.52 mm smooth/micro-fin tubes[J]. International Journal of Heat and Mass Transfer,2000,43:2869-2882
    [19]韩晓霞.R2(?)和R404A内螺纹管中沸腾换热研究[D].西安,西安建筑科技大学硕士论文,2004
    [20]纪海维.纯工质在水平管内流动沸腾换热特性的实验研究[D].西安,西安科技大学硕士论文,2006
    [21]Yueshe Wang, Yanling Wang, G.-X. Wang, Hiroshi Honda. Prediction of evaporation heat transfer coefficient based on gas-liquid two-phase annular flow regime in horizontal microfin tubes[J]. Applied Thermal Engineering,2009,29:2970-2976
    [22]Takamatsu. Acorelation for forced convective boiling heat transfer of pure refrigerants in a horizontal smooth tube [J]. Int.J. Heat MassTransfer,1993,36(13):3351-336
    [23]Chi-chuan Wang, Ching-shan Chiang. Two-phase heat transfer characteristics for R-22/R-407C in a 6.5-mm smooth tube[J]. Int.J. Heat and Fluid Flow,1997,18:550-558
    [24]X. Boissieux, M.R. Heikal, R.A. Johns. Two-phase heat transfer coeficients of three HFC refrigerants inside a horizontal smooth tube, part Ⅰ:evaporation[J]. International Journal of Refrigeration, 2000,23:269-283
    [25]A.Greco, G.P.Vanoli. Flow boiling heat transfer with HFC mixtures in a smooth horizontal tube.PartⅠ:Experimental investigations[J]. Experimental Thermal and FluiScience,2005, (29):189-198
    [26]H.S.Lee, J.I.Yoon, J.D.Kim, Pradeep Bansal. Evaporating heat transfer and pressure drop of hydrocarbon refrigerants in 9.52 and 12.70 mm smooth tube [J]. International Journal of Heat and Mass Transfer,2005, (48):351-2359
    [27]Wisis Sripattrapan, Somchai Wongwises. Two-phase flow of refrigerants during evaporation under constant heat flux in a horizontal tube[J]. International Communications in Heat and Mass Transfer,2005, (32):386-402
    [28]Choi T Y,Kim Y J,Kim M S,et al. Evaporation heat transfer of R-32,R-134a, R-32/134a,and R-32/125/134a inside a horizontal smooth tube[J].Int.J.Heat Mass Transfer,2000,43:3651-3660
    [29]Gary J.Zyhowski, Mark W Spatz. HFC-245fa性质及应用综述[J].家电科技,2003,(8):59-61
    [30]黄素逸,刘伟.高等工程传热学[M].北京:中国电力出版社,2006
    [31]Baker O. Oil and Gas journal,1954,53:185-190
    [32]Mandhane J M, Gregory G A. Inter. J. Multiphase Flow,1974,1:537-553
    [33]AIChE 10th Annual Meeting, New York, Session on Fundamental Research in Fluid Mechanics,1977
    [35]董祖康.译.苏联1961年水利计算标准方法
    [36]陈立勋.两相流及传热论文集[M].西安:西安交通大学,1984
    [37]电站锅炉水计算法JB/Z201-83.1983
    [38]林宗虎.气液两相流和沸腾传热[M].西安:西安交通大学出版社,2003
    [39]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006
    [40]Gnielinski V. New equations for heat mass transfer in turbulent pipe and channel flows[J]. Int Chem Eng,1976,16:359-368
    [41]Thom J R S. Paper Presented at the Symposium on Boiling Heat Transfer in Steam Generating Units and Heat Exchangers, Manchester,1965
    [42]Lin Z H. Multiphase Flow and Heat Transfer Ⅲ, Par A, Edited by T N. Vezinoglu[J].Elsevier Science Publishers,1984,637-644
    [43]彦启森.空气调节用制冷技术[M].北京:建筑工业出版社,1980
    [44]RL.Webb, N.S.Gupte.A critical review of correlation for convective vaporization in tubes and tube banks[J]. Heat Transfer Engineering,1992,13(3):58-81
    [45]J.Darabietal Review of available correlations for Prediction of flow boiling heat transfer in smooth and auglllented tubes[J].ASHRAE Trans,1995,101(1):965-975
    [46]Gungor K E, Winterton R H S. A general correlation for flow boiling in tubes and annuli[J]. Int.J.Heat Mass Transfer,1986,29:351-358
    [47]Jung D, Radermacher R. A study of flow boiling heat transfer with refrigerant mixtures[J]. Int.J.Heat Mass Transfer,1989,32(9):1751-1764
    [48]Liu Z,Winterton R H S.A general correlation for saturated and subcooled flow boiling in tubesand aunuli based on a nucleate pool boiling[J].Int.J.Heat Mass Transfer,1991,(34):2759-2765
    [49]Kutateladze SS. Boiling heat transfer[J]. Int. J. Heat Mass Transfer,1961,(4):31-45.
    [50]J.P.Wattelet. Evaporation characteristics of R12, R134a, and a mixture at low mass fluxes[J]. A SHRAE Trans.,1994,100:603-615
    [51]D.B.Bivens, A.Yokozeki. Heat transfer coefficients and transport properties for alternative refrigerants, Proc. of the 1994 Int. Refrig. Conf. at Purdue, Purdue University,1994,299-304
    [52]Shah M M. Chart correlation for saturated boiling heat transfer:Equations and farther study[J].ASHRAE Transactions,1982,88 (1):185-196
    [53]Kandlikar S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J].ASME J Heat Transfer,1990,112:219-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700