逆循环装置中代替节流阀的双转子膨胀机的设计与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规工质逆循环中,包括压缩机、换热器及系统控制等在内的各部分都得到了较为完善的发展,唯独节流部件是例外。原因是多方面的。但是不得不看到的是,将逆循环装置中取代节流阀的膨胀机应用于大中型制冷与热泵机组时,可回收的膨胀功比较可观。而其可观前景与推广应用的关键就是开发出高效膨胀机。针对逆循环中取代节流阀的双转子膨胀机,本文通过理论分析与数值计算,分析了膨胀机的设计要点,讨论了工作过程中膨胀相变机理以及内部各不可逆损失的能流分析与相关模拟计算。
     论文以课题组研发CO_2滚动活塞膨胀机的经验为基础,开展了常规工质取代节流阀的双转子膨胀机的设计研究。分析了针对不同工质,转子式膨胀机相应的侧重点。给出了膨胀机结构特征尺寸的设计依据,并讨论了膨胀机的运动规律。
     取代节流阀的膨胀机工作过程中,回收的有用能主要来自膨胀过程中的相变功。尽可能回收这部分功是提高膨胀机效率的关键。为此,论文详细讨论了膨胀机工作过程中的相关相变机理。液体的极限过热度、汽化核心的形成以及汽泡的生长模式是相变过程中比较重要的过程,尤以汽化核心的形成为相变过程顺利进行的关键。论文以已有理论研究为基础,提出了汽核形成模型,并分析与总结了纯工质情形下过热液极限过热度以及汽泡的生长模型。
     为了不断优化设计取代节流阀的常规工质双转子膨胀机,在设计与分析膨胀机结构与运动的基础上,对膨胀机进行了建模分析,主要探讨了膨胀机工作过程中的摩擦与泄漏情况。分析了各部件之间的受力情况,并对相关各力的作用效果进行了便于理解的合理的解释。讨论了常规工质双转子膨胀机的主要泄漏通道及泄漏模型,并建立了膨胀机的摩擦损失模型与泄漏损失模型。模拟结果表明,摩擦损失对膨胀机效率影响较大,是提高膨胀机效率关键应解决的问题。
     最后,对常规制冷逆循环中取代节流阀的膨胀机可实现的试验方式进行了探讨。由于直接在大中型系统中测试较为不便,现提出三角循环模式进行膨胀机的试验与测试。
In conventional reverse cycle, all parts including compressor, heat exchanger and system control etc., have been got a more perfect development. Just throttle part is an exception with many reasons. But what have to see is that the recoverable work is substantial when a expander, in a medium or large refrigeration and heat pump units, has been used to replace the throttle in a conventional reverse cycle. And the key to its prospects and promote its application is to develop a highly efficient expander. To the two rolling piston expander which been used to replace throttle in conventional reverse cycle, through theoretical analysis and numerical calculation, the paper have discussed the design elements of the expander, analysed the phase transition mechanism during its expansion process and the irreversible loss of energy and related simulation.
     Based on our work group’experience of CO_2 rolling piston expander, this paper have carried out the design of conventional two rolling piston expander which been used to replace throttle, analyzed the corresponding focus in rotor expander of different working refrigerants, given the design basis of the structure size of expander, and discussed the motion discipline of the expander.
     During the work process of expander of which replace throttle, the recoverable useful energy is mainly the phase transition work in expansion process. Maximize the recovery of this work is the key to improving the efficiency of expander. To this end, the paper have discussed in detail the related phase change mechanism in the work process of expander. What is more important during the phase transition process is the limit of liquid superheat, the formation of the vaporization core and the model of vaporization bubble growth, particularly the formation of the vaporization core is the key to the smoothly run of phase transition. Basing on the existing theoretical research, thesis has been proposed the formation of the vaporization core,as well as, analyzed and summarized the limit of liquid superheat and the growth model of bubble in the case of pure refrigerant.
     In order to optimize the design of conventional two rolling piston expander which would replace throttle, under the design and analysis of the structure and movement of expander, modeling analysis have been conducted and the analysis of friction and leakage is the main work. The forces between various components have been analysed and a reasonable explanation of the effect related to each force have been given to facilitate understanding. The main leakage channel and leakage model of working fluid was discussed. Then the friction loss model and leakage loss model was established. The results show that the friction loss has a greater impact on the expander efficiency and is key problems to be solved to improve the efficiency of expander.
     Finally, the realisable testing of expander has been discussed. As the too much trouble when carry out a direct test in large systems, triangular model has been proposed.
引文
[1]http://www.lnsq.com.cn/zykt/read.asp?vid=1446,2007年全国冷水机组市场总结报告,冷暖商情网,2008-01-14
    [2]中华人民共和国国家技术监督局,GB50189-2005,中国国家标准,背景:中国标准出版社,2005-07-01
    [3]马一太等,我国制冷空调能效标准的现状和发展,制冷与空调,2008,8(3):5~11.
    [4]中华人民共和国国家技术监督局,GB19577-2004,中国国家标准,背景:中国标准出版社,2004-12-01
    [5] http://www.co188.com/e_c_2.htm,暖通空调样本库,暖通网,2010-03-20
    [6]马一太,赵丽等,常规工质双转子膨胀机的分析与试验设计,全国高校工程热物理第十六届学术年会,2010
    [7]Oomori,Hideyo etc.New engine design and engine component Technology. SAE Special Publications,1993:159~164
    [8]M. Kane, D. Larrain, D. Favrat, Y. Allani, Small hybrid solar power system, Energy, 2003, 28: 1427~1443.
    [9]Kane El H, Intégration et optimisation thermoéconomique and environomique de centrales thermiques solaires hybrids: [PhD Thesis], Laboratoire d’Energétique Industrielle, Ecole polytechnique Fédérale de Lausanne, Suisse, 2002.
    [10]Aoun B, Clodic D, Theoretical and experimental study of an oil-free scroll type vapor expander. In: Proc. the 19th Int. compressor engineering conference at Purdue, 2008, 1188.
    [11]R. Zanelli, D. Favrat, Experimental investigation of a hermetic scroll expander-generator. Proceedings of the International Compressor Engineering Conference at Purdue, 1994: 459~464.
    [12]T. Yanagisawa, M. Fukuta, Y. Ogi, T. Hikichi, Performance of an oil-free scroll type air expander. Proceedings of the IMECHE Conference on Compressors and their Systems, 2001: 167~174.
    [13]J. Manzagol, P. d’Harboullé, G. Claudet, G. Gistau Baguer, Cryogenic scroll expander for Claude cycle with cooling power of 10 to 100 watts at 4.2 K. Proceedings of the Cryogenic Engineering Conference– CEC AIP Conference, Advances in Cryogenic Engineering , 2002: 267~274.
    [14]G. Xiaojun, L. Liansheng, Z. Yuanyang, S. Pengcheng, Research on a scroll expander used for recovering work in a fuel cell, International Journal of Thermodynamics, 2004, 7: 1~8.
    [15]J. Hugenroth, J. Braun, E. Groll, G. King, Experimental investigation of a liquid-flooded Ericsson cycle cooler, International Journal of Refrigeration, 2008, 31: 1241~1252.
    [16]陈波,涡旋式膨胀机的热力特性研究:[硕士学位论文],浙江:浙江大学,2004
    [17]顾兆林等,燃气涡旋式发动机,中国专利,94246833,1994-12-01
    [18]黄允东,郁永章,利用涡旋机械的朗肯循环制冷系统,流体机械,1997,1:52~55
    [19]Steidel.R.F,Pankow.Q.H, Brown, K.A. The empirical modelling of a Lysholm screw expander. Proceedings of Eighteenth Intersociety Energy Conversion Conference,1983:286~293
    [20]胡亮光,庞风彪,王之安等,中低温能源全流发电螺杆膨胀机的性能及实验研究.工程热物理学报,1989,4(10):353~356
    [21]庞风彪,气液两相螺杆膨胀机的性能及实验研究:[硕士学位论文],天津;天津大学,1988
    [22]朱朝辉,姚艳霞,侯予等,新型动压箔片径向气体轴承低温透平膨胀机的开发,低温与特气,2003,2(21):28~31
    [23]侯予,林韶宁,陈纯正等,全动压气体轴承透平膨胀机机械性能的试验研究,西安交通大学学报,2005,05: 58~62
    [24] C.Z. Chen, S.N. Lin, Y. Hou etc. Study of new aerodynamic foil thrust gas bearing with elastic support for cryogenic turbo-expander. Proceedings of the Twentieth International Cryogenic Engineering Conference (ICEC20), 2005: 468-472
    [25] Lawrence Hawkins et al, Test Results and Analytical Predictions for Rotor Drop Testing of an Active Magnetic Bearing Expander/Generator, Journal of Engineering for Gas Turbines and Power APRIL 2007(129):523
    [26]钟丽娜,中压透平膨胀机的设计开发,深冷技术,2009,3:88~92
    [27]张波,彭学院,张芳玺等,一种新型自由活塞式膨胀机的研制及试验研究,西安交通大学学报,2006,7(40):776~780
    [28]沈永年,涡旋式膨胀机热力过程分析与实验研究,低温工程,2000,4:23~28
    [29]沈永年,一种利用涡旋机械的绿色天然工质制冷空调器,低温工程,2001,3:13~17
    [30]Smith.I.K, Stosic.N, Kovacevic.A. An improved System for Power Recovery from Higher Enthalpy Liquid Dominated Fields. GRC Annual Meeting, Indian Wells. 2004
    [31]Smith.I.K, Stosic.N, Kovacevic.A. Screw Expanders Increase Output and Decrease the Cost of Geothermal Binary Power Plant Systems. GRC Trans 2005, 29:787~794.
    [32]Smith.I.K, Stosic.N, Kovacevic.A. Cost effective small scale ORC systems for power recovery from low enthalpy geothermal resources. Grc meeting,2005
    [33]B. Yang, X. Peng, Z. He etc. Experimental investigation on the internal working process of a CO2 rotary vane expander. Applied Thermal Engineering, 2009,11(29) : 2289~2296
    [34]O. Badr, S.D. Probert, P.W. O'Callaghan. Influences of vane design and lubricant on a multi-vane expander's performance. Applied Energy.1986,4(22):271~298
    [35]O. Badr, S.D. Probert, P.W. O'Callaghan. Performances of multi-vane expanders. Applied Energy.1985,3(20):207~234
    [36]O. Badr, S.D. Probert, P.W. O'Callaghan. Multi-vane expanders: Vane dynamics and friction losses. Applied Energy.1985,4(20):253~285
    [37]O. Badr, S.D. Probert, P.W. O'Callaghan. Multi-vane expanders: Internal-leakage losses. Applied Energy, 1985,1(20):1~46
    [38]XIONG L Y,WU G,HOU Y,et al.Development of Aerodynamic Foil Journal Bearings for a High Speed Cryogenic Turboexpander. Cryogenics,1997,4 : 221~230
    [39]HAYASHI K. Development of aerodynamics foil bearings for high-speed rotor. 2lst Leeds-Lyon Symposium Tribology,1994
    [40]Coda H T P.Gas Lubrication(1915-1990)——Achievements in Tribology. ASME. New York,USA. 1990,31~55
    [41]B KEENAN, KLAUS REUTER. The Design, Experience and Economic Advantage of Cryogenic Turbo-expanders with Active Magnetic Bearings. American Society of Chemical Engineers Eighth Cryogenics Intersociety Symposium,1991
    [42] R.AGAHI,B.ERSHAGHI. Expansion Turbine in Energy Recovery Applications.Ⅷth International Congress of Refrigeration,1991
    [43]Masaru Matsui, Masanobu Wada, Takeshi Ogata, etal. Development of high-efficiency technology of two-stage rotary expander for CO2 refrigerant. International Compressor Engineering Conference at Purdue, July 14-17, 2008.
    [44] Denso Corp. New Type of Expander: JP, 100 10864 A1. 2003-03-01.
    [45]福田充宏二酸化炭素サイクル用膨張機の現状Department of Mechanical Engineering, Shizuoka University, Hamamatsu, Shizuoka,
    [46]Hans-Joachim Huff, Reinhard Radermacher, CO2 compressor-expander analysis,ARTI-21CR/611-10060-01, http://www.arti-21cr.org
    [47]查世彤,CO2跨临界循环膨胀机的研究与开发:[博士学位论文],天津;天津大学,2002
    [48]马一太,邢丽英,查世彤等,CO2跨临界循环膨胀机回收功的试验研究,流体机械,2003,31(12): 1~4
    [49]查世彤,马一太,李丽新等,CO2跨临界循环膨胀过程的对比与分析,工程热物理学报,2003,24(4): 506~549
    [50]魏东,二氧化碳跨临界循环换热与膨胀机理的研究:[博士学位论文],天津;天津大学,2002
    [51]曾宪阳,马一太,李敏霞等,CO2滚动活塞膨胀机吸气结构的设计和分析,压缩机技术,2005,5:7~9
    [52]李敏霞,马一太,管海清等,CO2跨临界循环新型滚动活塞膨胀机的研究与比较,工程热物理学报,2005,5(26):745~746
    [53]刘圣春,马一太等,CO2转子膨胀机泄漏的理论及实验,天津大学学报,2008,12(41): 1417~1421
    [54]刘圣春,超临界CO2流体特性及跨临界循环系统的研究:[博士学位论文],天津;天津大学,2006
    [55]管海清,CO2跨临界循环膨胀机机理与转子式膨胀机-压缩机研究:[博士学位论文],天津;天津大学,2005
    [56]姜云涛,CO2跨临界水-水热泵及两级滚动活塞膨胀机的研究:[博士学位论文],天津;天津大学,2008
    [57]田华,马一太等,冷水(热泵)机组膨胀机的开发研究,工程热物理年会会议论文,大连,2009
    [58]马国远,李红旗.旋转压缩机,北京:机械工业出版社,2001
    [59]田华,CO2双级滚动转子压缩机的设计与模拟:[硕士学位论文],天津;天津大学,2008
    [60]Joseph Kestin. A course in Thermodynamics. Hemisphere Publishing Corporation
    [61]Skripov, Pavlov. High Temp[J]. USSR,1970,8:782
    [62]Lienhard, Alamgir, Trela. Early Response of Hot Water to Sudden Release from High Pressure[J]. ASME Journal of Heat Transfer, 1978,3(100):473~479
    [63]Edwards, O’Brien. Studies of Phenomena Connected with the Depressurization of Water Reactors[J]. Journal British Nuclear Energy Society,1970,9:125~134
    [64]Yefimchkin. Investigation of the Flashing of Water Upon Sudden Decompression in Vacuum-Type Contact(Mixing) Preheats. Heat Transfer-Soviet Research,1982,2(14):124~129
    [65]董卫国,亚稳态工质热物性,热力发电,1990,3:20~28
    [66]Asai. Application of the Nucleation Theory to the Design of Bubble Jet Printers . Jpn. J . Appl. Phys., 1989,28:909~915
    [67]曾丹苓,复相系平衡系统及平衡稳定性条件的分析,工程热物理学报,1996,1(17):9~12
    [68]吴双应,曾丹苓等,汽液相变系统的平衡稳定性分析,热能动力工程, 2005,5(20):486~488
    [69]Biney P O. Dong W G.. Lienhard J H. Use of a Cubic Equation to Predict Surface Tension and Spinodal Limits. Journal of Heat Tranfer,1986,108:405~410
    [70]曾丹苓,敬成君,利用涨落理论确定液体极限过热度,中国科学(A辑),1995,10(25):1075~1081
    [71]刘朝,明向军,曾丹苓等,液体理论极限过热度的确定,工程热物理学报. 1997,3(18):265~269
    [72]王金照,汽泡成核的分子动力学研究及纳米颗粒对成核的影响:[博士学位论文],北京;清华大学,2004
    [73]Shigeo Maruyama, Chapter Six: Molecular dynamics method for microscale heat transfer [M]. Advances in Numerical Heat Transfer, New York. 2000:189~226
    [74]Jones.S.F and Evan.G.M, Bubble nucleation from gas cavities-a review [J], Advances in Colloid and Interface Science, 1999, 80(1):27~50
    [75]童景山,聚集力学原理及其应用,北京:高等教育出版社,2006
    [76]Pankaj A.Apte. Phase equilibria nucleation in condensed phase: a statistical mechanical study [D]. Ohio State University, 2006
    [77]安青松,CO2滚动转子膨胀机内部相变膨胀过程机理分析与可视化试验研究:[博士学位论文],天津:天津大学,2008
    [78]曾丹苓,汽-液相变中成核的热力学理论,重庆大学学报,1995,2(19):1~8
    [79]Avedisian C T. The Homogenous Nucleation Limit of Liquids[J]. Phys. Chem. Data. 1985,14(3):695~729
    [80]Park H K. Xu X. Grigoropoulos C P. et al. Transient Optical Transmission Measurement in Excimer- Laser Irradiation of Amorphous Silicon Films [J]. Journal of Heat Transfer , 1993 , 115 : 178~183.
    [81]林文胜,顾安忠,利用涨落理论确定液体均匀核化速率,上海交通大学学报. 2000,9(34):1167~1170
    [82]刘朝,亚稳态过热液特性及降压自蒸发过程中汽泡生长规律的研究:[博士学位论文],重庆;重庆大学,1997
    [83]马国远,李红旗,旋转压缩机,北京:机械工业出版社,2000
    [84]姜云涛,CO2跨临界水-水热泵及两级滚动活塞膨胀机的研究:[博士学位论文],天津;天津大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700