耐辐射球菌DNA损伤响应基因ddrI的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐辐射球菌(Deinococcus radiodurans)是世界上最耐辐射的物种之一,对各种DNA损伤介质具有超强的抗性,已成为研究基因组完整性和稳定性的一种理想模式生物。本实验室的研究结果显示,一个被注释为CRP/FNR家族的基因ddrl(基因编号为dr0997),在DNA受损时被显著诱导表达,可能贡献于耐辐射球菌的极端抗性。因此,我们重点围绕该基因进行了研究。
     1.分别构建了dr0997及其同源基因dr1646的基因缺失突变株,并发现突变株相对于野生株,生长情况出现了明显的延滞。
     2.分析了△DR0997突变株对DNA损伤因子的抗性。结果表明:dr0997和dr1646对UV和氧化损伤抗性的贡献都不大。而△DR0997突变株对Y-射线辐照处理很敏感,表明该基因可能与电离辐射造成的双链断裂修复有关。
     3.用DNA微阵列技术分析了突变株相对于野生株的转录谱变化。本研究覆盖了3033个基因,占整个基因组的95.26%。DR0997的缺失导致28个基因的转录水平明显上调,另外79个基因明显下调,这些基因很多涉及NADPH、乙酰辅酶A合成酶等的转录合成,表明dr0997可能参与调控了相关途径。
     4.表达并纯化了DR0997重组蛋白。通过测序,我们证实对该基因在Genebank的ORF是错误的,其实际长度为612 bp,我们以新序列为标准克隆了dr0997基因,并最终成功在体外表达并纯化了DR0997重组蛋白。
     综上所述,耐辐射球菌的DR0997基因对其极端抗性很重要。它是一个具有特异性DNA结合活性的代谢调节基因,主要通过调控与细菌抗氧化和DNA修复相关的途径起作用。它与重要蛋白PprI和RecA的相互关系正在探索之中。
Deinococcus radiodurans R1 is one of the most radioresistant bacteria on the earth. This particular species can stand a wide range of DNA-damaging agents such as gamma-radiation, UV, H2O2 and desiccation. For many years, it has been an ideal model organism to investigate the integrity and stability of the genome. However, the underlying molecular mechanisms remain poorly understood. System singaling the stresses from eniverment are required in all three kindom of lifes. Phosphorylation on histidine and aspirate are the main signal-transduction pathways in prokaryote, named two-compenents system, which consists of a kinase and a response regulator. Previous studies of our laboratory showed that DR2418, a key participator of the radio-resistance of Deinococcus radiodurans, binds to the promoter region of dr0997, encoding of cAMP receptor protein (CRP). Proteins of CRP family are very important to Deinococcus radiodurans, and regulate more than 200 genes. Therefore, we focused on this gene in this study.
     1. The gene dr0997 and its homologue gene dr1646 were successfully knocked out with a kanamycin-resistance gene cassette. We found that the growth of both knockout strains were remarkablely delayed, indicating both genes are required for the metabolism.
     2. We investigated the survival of the mutant strainsΔDR0997 andΔDR1646 under stresses of DNA-damaging agents. We found that both mutants are sensitive to gamma-radiation, indicating that both genes may be involved in the recovery of D. radiodurans from radiation damage. However, absence of DR0997 only caused a very modest reduction of survival capability when cells were treated UV radiation or H2O2.
     3. Then, DNA microarray was used to analyze the alteration of transcription profiles when DR0997 is abscent.3033 genes were detected in the microarray, taking up of 95.26% in all predicted ORF. We found that 79 genes were significantly down-regulated, while 28 genes were significantly up-regulated in the mutant compared to these in the wildtype strain. Many of these genes are involved in the synthesis of NADPH and acetyl coenzyme A. These suggest that DR0997 may be involved in the regulation of these pathways.
     4. To further investigate the biological function of DR0997 protein, the recombinant DR0997 protein was induced and purified here. The gene dr0997 was cloned and resequenced. It has been comfirmed that the ORF of this gene consists of only 612 bp, which is smaller than the predicted one in the Genebank. We also successfully constructed the strain for recombinant DR0997 protein expression and purified the recombinant protein.
     Taken together, the gene dr0997 plays an important role in the radioresistance of Deinococcus radiodurans Rl, and regulates the carbohydrate metabolism. The work to reveal the underlying mechanisms is proceeding.
引文
1. Anderson A.E., H.Nordon, R.Cain, GParrish, and D.Duggan, Studies on a radio-resistant micrococcus.I.Isolation,morphology,cultural characteristics,and resistance toy radition. [J]. Food Technol 1956,10:p.575-578.
    2. Kausar, J., Y. Ohyama, H. Terato, H. Ide, and O. Yamamoto,16S rRNA gene sequence of Rubrobacter radiotolerans and its phylogenetic alignment with members of the genus Arthrobacter, gram-positive bacteria, and members of the family Deinococcaceae [J]. Int J Syst Bacteriol,1997.47(3):p.684-6.
    3. Battista, J.R., Against all odds:the survival strategies of Deinococcus radiodurans [J]. Annu Rev Microbiol,1997.51:p.203-24.
    4. Masters, C.I., R.G. Murray, B.E. Moseley, and K.W. Minton, DNA polymorphisms in new isolates of 'Deinococcus radiopugnans'[J]. J Gen Microbiol,1991.137(7):p.1459-69.
    5. Counsell, T.J. and R.G.E. Murray, Polar Lipid Profiles of the Genus Deinococcus [J]. Int J Syst Bacteriol, 1986.36(2):p.202-206.
    6. Moseley, B.E. and A. Mattingly, Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans [J]. J Bacteriol,1971.105(3):p.976-83.
    7. Smith, K.C. and K.D. Martignoni, Protection of Escherichia coli cells against the lethal effects of ultraviolet and x irradiation by prior x irradiation:a genetic and physiological study [J]. Photochem Photobiol,1976.24(6):p.515-23.
    8. Gutman, P.D., P. Fuchs, L. Ouyang, and K.W. Minton, Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans [J]. J Bacteriol,1993.175(11):p.3581-90.
    9. Mattimore, V. and J.R. Battista, Radioresistance of Deinococcus radiodurans:functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation [J]. J Bacteriol,1996.178(3): p.633-7.
    10. Arrage, A.A., T.J. Phelps, R.E. Benoit, and D.C. White, Survival of subsurface microorg-anisms exposed to UV radiation and hydrogen peroxide [J]. Appl Environ Microbiol,1993.59(11):p.3545-50.
    11. Lin, J., R. Qi, C. Aston, J. Jing, T.S. Anantharaman, B. Mishra, O. White, M.J. Daly, K.W. Minton, J.C. Venter, and D.C. Schwartz, Whole-genome shotgun optical mapping of Deinococcus radiodurans [J]. Science,1999.285(5433):p.1558-62.
    12. Minton, K.W. and M.J. Daly, A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans [J]. Bioessays,1995.17(5):p.457-64.
    13. Earl, A.M., M.M. Mohundro, I.S. Mian, and J.R. Battista, The IrrE protein of Deinococcus radiodurans Rl is a novel regulator of recA expression [J]. J Bacteriol,2002.184(22):p.6216-24.
    14. Cox, M.M. and J.R. Battista, Deinococcus radiodurans-the consummate survivor [J]. Nat Rev Microbiol, 2005.3(11):p.882-92.
    15. Baumeister, W., M. Barth, R. Hegerl, R. Guckenberger, M. Hahn, and W.O. Saxton, Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans [J]. J Mol Biol,1986.187(2): p.241-50.
    16. Lancy, P., Jr. and R.G. Murray, The envelope of Micrococcus radiodurans:isolation, purification, and preliminary analysis of the wall layers [J]. Can J Microbiol,1978.24(2):p.162-76.
    17. Sleytr, U.B., M. Kocur, A.M. Glauert, and M.J. Thornley, A study by freeze-etching of the fine structure of Micrococcus radiodurans [J]. Arch Mikrobiol,1973.94(1):p.77-87.
    18. Montaudon, D., M.A. Carbonneau, A.M. Melin, and N. Rebeyrotte, Lipid composition, lipid fluidity and radioresistance of Deinococcus radiodurans and two mutant strains [J]. Biochimie,1987.69(11-12):p. 1243-50.
    19. Thompson, B.G. and R.G. Murray, Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark [J]. Can J Microbiol,1981.27(7):p.729-34.
    20. Ferreira, A.C., M.F. Nobre, F.A. Rainey, M.T. Silva, R. Wait, J. Burghardt, A.P. Chung, and M.S. da Costa, Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs [J]. Int J Syst Bacteriol,1997.47(4):p.939-47.
    21. Anderson, R. and K. Hansen, Structure of a novel phosphoglycolipid from Deinococcus radiodurans [J]. J Biol Chem,1985.260(22):p.12219-23.
    22. Carbonneau, M.A., N. Rebeyrotte, and P. Rebeyrotte, Polar lipids from the radiation resistant bacterium Deinococcus radiodurans:structural investigations on glucosaminyl and N-acetyl glucosaminyl lipids [J]. Biochimie,1984.66(4):p.319-30.
    23. Levin-Zaidman, S., J. Englander, E. Shimoni, A.K. Sharma, K.W. Minton, and A. Minsky, Ringlike structure of the Deinococcus radiodurans genome:a key to radioresistance? [J]. Science,2003.299(5604): p.254-6.
    24. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M.V. Omelchenko, H.M. Kostandarithes, K.S. Makarova, L.P. Wackett, J.K. Fredrickson, and D. Ghosal, Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance [J]. Science, 2004.306(5698):p.1025-8.
    25. Zimmerman, J.M. and J.R. Battista, A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae [J]. BMC Microbiol,2005.5:p.17.
    26. White, O., J.A. Eisen, J.F. Heidelberg, E.K. Hickey, J.D. Peterson, R.J. Dodson, D.H. Haft, M.L. Gwinn, W.C. Nelson, D.L. Richardson, K.S. Moffat, H. Qin, L. Jiang, W. Pamphile, M. Crosby, M. Shen, J.J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K.S. Makarova, L. Aravind, M.J. Daly, K.W. Minton, R.D. Fleischmann, K.A. Ketchum, K.E. Nelson, S. Salzberg, H.O. Smith, J.C. Venter, and C.M. Fraser, Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1 [J]. Science, 1999.286(5444):p.1571-7.
    27. Makarova, K.S., L. Aravind, Y.I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, and M.J. Daly, Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics [J]. Microbiol Mol Biol Rev,2001.65(1):p.44-79.
    28. Goodhead, D.T., Initial events in the cellular effects of ionizing radiations:clustered damage in DNA [J]. Int J Radiat Biol,1994.65(1):p.7-17.
    29. Teoule, R. and A.M. Duplaa, Gamma-irradiation of homodeoxyoligonucleotides 32P-labelled at one end: computer simulation of the chain length distribution of the radioactive fragments [J]. Int J Radiat Biol Relat Stud Phys Chem Med,1987.51(3):p.429-39.
    30. Sandigursky, M. and W.A. Franklin, Thermostable uracil-DNA glycosylase from Thermotoga maritima a member of a novel class of DNA repair enzymes [J]. Curr Biol,1999.9(10):p.531-4.
    31. Aravind, L., D.R. Walker, and E.V. Koonin, Conserved domains in DNA repair proteins and evolution of repair systems [J]. Nucleic Acids Res,1999.27(5):p.1223-42.
    32. Eisen, J.A. and P.C. Hanawalt, A phylogenomic study of DNA repair genes, proteins, and processes [J]. Mutat Res,1999.435(3):p.171-213.
    33. Friedberg, E.C., Relationships between DNA repair and transcription [J]. Annu Rev Biochem,1996.65:p. 15-42.
    34. Yajima, H., M. Takao, S. Yasuhira, J.H. Zhao, C. Ishii, H. Inoue, and A. Yasui, A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light [J]. Embo J,1995.14(10):p. 2393-9.
    35. Sandigursky, M., S. Sandigursky, P. Sonati, M.J. Daly, and W.A. Franklin, Multiple uracil-DNA glycosylase activities in Deinococcus radiodurans [J]. DNA Repair (Amst),2004.3(2):p.163-9.
    36. Purvis, I.J. and B.E. Moseley, Isolation and characterisation of DraⅠ, a type Ⅱ restriction endonuclease recognising a sequence containing only A:T basepairs, and inhibition of its activity by uv irradiation of substrate DNA[J]. Nucleic Acids Res,1983.11(16):p.5467-74.
    37. Evans, D.M. and B.E. Moseley, Roles of the uvsC, uvsD, uvsE, and mtcA genes in the two pyrimidine dimer excision repair pathways of Deinococcus radiodurans [J]. J Bacteriol,1983.156(2):p.576-83.
    38. Al-Bakri, G.H., M.W. Mackay, P.A. Whittaker, and B.E. Moseley, Cloning of the DNA repair genes mtcA, mtcB, uvsC, uvsD, uvsE and the leuB gene from Deinococcus radiodurans [J]. Gene,1985.33(3):p. 305-11.
    39. Xu, W., J. Shen, C.A. Dunn, S. Desai, and M.J. Bessman, The Nudix hydrolases of Deinococcus radiodurans [J]. Mol Microbiol,2001.39(2):p.286-90.
    40. Mennecier, S., G. Coste, P. Servant, A. Bailone, and S. Sommer, Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans [J]. Mol Genet Genomics,2004.272(4):p.460-9.
    41. Friedberg, E.C., G.C. Walker, and W. Siede, DNA Repair and Muta-genesis [J]. ASM Press, Washington, DC,1995:p.14-31.
    42. Iliakis, G., The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic cells [J]. Bioessays,1991.13(12):p.641-8.
    43. Khanna, K.K. and S.P. Jackson, DNA double-strand breaks:signaling, repair and the cancer connection [J]. Nat Genet,2001.27(3):p.247-54.
    44. Weber, K.J. and M. Flentje, Lethality of heavy ion-induced DNA double-strand breaks in mammalian cells [J]. Int J Radiat Biol,1993.64(2):p.169-78.
    45. Kuzminov, A., Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda [J]. Microbiol Mol Biol Rev,1999.63(4):p.751-813, table of contents.
    46. Daly, M.J., O. Ling, and K.W. Minton, Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans [J]. J Bacteriol,1994.176(24):p.7506-15.
    47. Minton, K.W., DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans [J]. Mol Microbiol,1994.13(1):p.9-15.
    48. Servinsky, M.D. and D. A. Julin, Effect of a recD mutation on DNA damage resistance and transformation in Deinococcus radiodurans [J]. J Bacteriol,2007.189(14):p.5101-7.
    49. Funayama, T., I. Narumi, M. Kikuchi, S. Kitayama, H. Watanabe, and K. Yamamoto, Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans [J]. Mutat Res,1999.435(2):p.151-61.
    50. Kitayama, S., I. Narumi, M. Kikuchi, and H. Watanabe, Mutation in recR gene of Deinococcus radiodurans and possible involvement of its product in the repair of DNA interstrand cross-links [J]. Mutat Res,2000.461(3):p.179-87.
    51. Xu, G., L. Wang, H. Chen, H. Lu, N. Ying, B. Tian, and Y. Hua, RecO is essential for DNA damage repair in Deinococcus radiodurans [J]. J Bacteriol,2008.190(7):p.2624-8.
    52. Daly, M.J. and K.W. Minton, An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans [J]. J Bacteriol,1996.178(15):p.4461-71.
    53. Tanaka, M., A.M. Earl, H.A. Howell, M.J. Park, J.A. Eisen, S.N. Peterson, and J.R. Battista, Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance [J]. Genetics,2004.168(1):p.21-33.
    54. Zahradka, K., D. Slade, A. Bailone, S. Sommer, D. Averbeck, M. Petranovic, A.B. Lindner, and M. Radman, Reassembly of shattered chromosomes in Deinococcus radiodurans [J]. Nature,2006.443(7111): p.569-73.
    55. Hunter, T., Protein kinases and phosphatases:the yin and yang of protein phosphorylation and signaling [J]. Cell,1995.80(2):p.225-36.
    56. Mizuno, T., Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli [J]. DNA Res,1997.4(2):p.161-8.
    57. Urao, T., K. Yamaguchi-Shinozaki, and K. Shinozaki, Two-component systems in plant signal transduction [J]. Trends Plant Sci,2000.5(2):p.67-74.
    58. West, A.H. and A.M. Stock, Histidine kinases and response regulator proteins in two-component signaling systems [J]. Trends Biochem Sci,2001.26(6):p.369-76.
    59. Ninfa, A.J. and B. Magasanik, Covalent modification of the gInG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli [J]. Proc Natl Acad Sci U S A,1986. 83(16):p.5909-13.
    60. Nixon, B.T., C.W. Ronson, and F.M. Ausubel, Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC [J]. Proc Natl Acad Sci U S A,1986.83(20):p.7850-4.
    61. Vigh, L., D.A. Los, I. Horvath, and N. Murata, The primary signal in the biological perception of temperature:Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803 [J]. Proc Natl Acad Sci U S A,1993.90(19):p.9090-4.
    62. Urao, T., S. Miyata, K. Yamaguchi-Shinozaki, and K. Shinozaki, Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system [J]. FEBS Lett,2000.478(3):p.227-32.
    63. Busby, S. and R.H. Ebright, Transcription activation by catabolite activator protein (CAP) [J]. J Mol Biol, 1999.293(2):p.199-213.
    64. Harman, J.G., Allosteric regulation of the cAMP receptor protein [J]. Biochim Biophys Acta,2001. 1547(1):p.1-17.
    65. Kolb, A., S. Busby, H. Buc, S. Garges, and S. Adhya, Transcriptional regulation by cAMP and its receptor protein [J]. Annu Rev Biochem,1993.62:p.749-95.
    66. Krueger, S., S. Gregurick, Y. Shi, S. Wang, B.D. Wladkowski, and F.P. Schwarz, Entropic nature of the interaction between promoter bound CRP mutants and RNA polymerase [J]. Biochemistry,2003.42(7):p. 1958-68.
    67. Zubay, G., D. Schwartz, and J. Beckwith, Mechanism of activation of catabolite-sensitive genes:a positive control system [J]. Proc Natl Acad Sci U S A,1970.66(1):p.104-10.
    68. Emmer, M., B. deCrombrugghe, I. Pastan, and R. Perlman, Cyclic AMP receptor protein of E. coli:its role in the synthesis of inducible enzymes [J]. Proc Natl Acad Sci U S A,1970:66(2):p.480-7.
    69. McKay, D.B., I.T. Weber, and T.A. Steitz, Structure of catabolite gene activator protein at 2.9-A resolution. Incorporation of amino acid sequence and interactions with cyclic AMP [J]. J Biol Chem,1982.257(16):p. 9518-24.
    70. 张红芝,阚飙,cAMP受体蛋白在细菌中的转录调控作用研究进展[J].生物技术通讯,2009.20(1):p.5.
    71. Gutierrez-Rios, R.M., J.A. Freyre-Gonzalez, O. Resendis, J. Collado-Vides, M. Saier, and G. Gosset, Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli [J]. BMC Microbiol,2007.7:p.53.
    72. Semsey, S., S. Krishna, K. Sneppen, and S. Adhya, Signal integration in the galactose network of Escherichia coli [J]. Mol Microbiol,2007.65(2):p.465-76.
    73. Zheng, D., C. Constantinidou, J.L. Hobman, and S.D. Minchin, Identification of the CRP regulon using in vitro and in vivo transcriptional profiling [J]. Nucleic Acids Res,2004.32(19):p.5874-93.
    74. Brown, C.T. and C.G. Callan, Jr., Evolutionary comparisons suggest many novel cAMP response protein binding sites in Escherichia coli [J]. Proc Natl Acad Sci U S A,2004.101(8):p.2404-9.
    75. Busby, S. and R.H. Ebright, Transcription activation at class II CAP-dependent promoters [J]. Mol Microbiol,1997.23(5):p.853-9.
    76. Gosset, G., Z. Zhang, S. Nayyar, W.A. Cuevas, and M.H. Saier, Jr., Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli [J]. J Bacteriol,2004.186(11):p. 3516-24.
    77. Grainger, D.C., D. Hurd, M. Harrison, J. Holdstock, and S.J. Busby, Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome [J]. Proc Natl Acad Sci U S A,2005.102(49):p.17693-8.
    78. Tan, K., G. Moreno-Hagelsieb, J. Collado-Vides, and G.D. Stormo, A comparative genomics approach to prediction of new members of regulons [J]. Genome Res,2001.11(4):p.566-84.
    79. McKay, S.E. and C.J. Golden, Re-examination of the factor structure of the Receptive Language scale of the Luria-Nebraska Neuropsychological Battery [J]. Int J Neurosci,1981.14(3-4):p.183-8.
    80. Ebright, L., Linda Ebright:pulmonary researcher. Interview by Kama Bramble [J]. Nurse Pract Forum, 1993.4(1):p.2-3.
    81. Passner, J.M., S.C. Schultz, and T.A. Steitz, Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution [J]. J Mol Biol,2000.304(5):p.847-59.
    82. Weber, I.T. and T.A. Steitz, Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution [J]. J Mol Biol,1987.198(2):p.311-26.
    83. Parkinson, G., C. Wilson, A. Gunasekera, Y.W. Ebright, R.E. Ebright, and H.M. Berman, Structure of the CAP-DNA complex at 2.5 angstroms resolution:a complete picture of the protein-DNA interface [J]. J Mol Biol,1996.260(3):p.395-408.
    84. Passner, J.M. and T.A. Steitz, The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer [J]. Proc Natl Acad Sci U S A,1997.94(7):p.2843-7.
    85. Schultz, S.C., G.C. Shields, and T.A. Steitz, Crystal structure of a CAP-DNA complex:the DNA is bent by 90 degrees [J]. Science,1991.253(5023):p.1001-7.
    86. Aiba, H., S. Fujimoto, and N. Ozaki, Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein [J]. Nucleic Acids Res,1982.10(4):p.1345-61.
    87. Anderson, W.B., A.B. Schneider, M. Emmer, R.L. Perlman, and I. Pastan, Purification of and Properties of the Cyclic Adenosine 3',5'-Monophosphate Receptor Protein which Mediates Cyclic Adenosine 3',5'-Monophosphate-dependent Gene Transcription in Escherichia coli [J]. Journal of Biological Chemistry,1971.246(19):p.5929-5937.
    88. Shabb, J.B. and J.D. Corbin, Cyclic nucleotide-binding domains in proteins having diverse functions [J]. J Biol Chem,1992.267(9):p.5723-6.
    89. Brennan, R.G. and B.W. Matthews, The helix-turn-helix DNA binding motif [J]. J Biol Chem,1989. 264(4):p.1903-6.
    90. Ebright, Y.W, Y. Chen, P.S. Pendergrast, and R.H. Ebright, Incorporation of an EDTA-metal complex at a rationally selected site within a protein:application to EDTA-iron DNA affinity cleaving with catabolite gene activator protein (CAP) and Cro [J]. Biochemistry,1992.31(44):p.10664-70.
    91. Tutar, Y., Syn, anti, and finally both conformations of cyclic AMP are involved in the CRP-dependent transcription initiation mechanism in E. coli lac operon [J]. Cell Biochem Funct,2008.26(4):p.399-405.
    92. Mukhopadhyay, J., R. Sur, and P. Parrack, Functional roles of the two cyclic AMP-dependent forms of cyclic AMP receptor protein from Escherichia coli [J]. FEBS Lett,1999.453(1-2):p.215-8.
    93. Brown, A.M. and D.M. Crothers, Modulation of the stability of a gene-regulatory protein dimer by DNA and cAMP [J]. Proc Natl Acad Sci U S A,1989.86(19):p.7387-91.
    94. Baker, C.H., S.R. Tomlinson, A.E. Garcia, and J.G. Harman, Amino acid substitution at position 99 affects the rate of CRP subunit exchange [J]. Biochemistry,2001.40(41):p.12329-38.
    95. Malecki, J. and Z. Wasylewski, Stability and kinetics of unfolding and refolding of cAMP receptor protein from Escherichia coli [J]. Eur J Biochem,1997.243(3):p.660-9.
    96. Garcia, A.E. and J.G. Harman, Simulations of CRP:(cAMP)2 in noncrystalline environments show a subunit transition from the open to the closed conformation [J]. Protein Sci,1996.5(1):p.62-71.
    97. Berrera, M., S. Pantano, and P. Carloni, Catabolite activator protein in aqueous solution:a molecular simulation study [J]. J Phys Chem B,2007.111(6):p.1496-501.
    98. Spolar, R.S. and M.T. Record, Jr., Coupling of local folding to site-specific binding of proteins to DNA [J]. Science,1994.263(5148):p.777-84.
    99. Ryu, S., J. Kim, S. Adhya, and S. Garges, Pivotal role of amino acid at position 138 in the allosteric hinge reorientation of cAMP receptor protein [J]. Proc Natl Acad Sci U S A,1993.90(1):p.75-9.
    100. Blaszczyk, U. and Z. Wasylewski, Interaction of cAMP receptor protein from Escherichia coli with cAMP and DNA studied by differential scanning calorimetry [J]. J Protein Chem,2003.22(3):p.285-93.
    101. Gorshkova, I., J.L. Moore, K.H. McKenney, and F.P. Schwarz, Thermodynamics of cyclic nucleotide binding to the cAMP receptor protein and its T127L mutant [J]. J Biol Chem,1995.27.0(37):p.21679-83.
    102. James, J.T. and I.A. Dubery, Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase inhibiting protein from cotton [J]. Phytochemistry,2001.57(2):p.149-56.
    103. Dong, A., J.M. Malecki, L. Lee, J.F. Carpenter, and J.C. Lee, Ligand-induced conformational and structural dynamics changes in Escherichia coli cyclic AMP receptor protein [J]. Biochemistry,2002. 41(21):p.6660-7.
    104. Lee, E.J., J. Glasgow, S.F. Leu, A.O. Belduz, and J.G. Harman, Mutagenesis of the cyclic AMP receptor protein of Escherichia coli:targeting positions 83,127 and 128 of the cyclic nucleotide binding pocket [J]. Nucleic Acids Res,1994.22(15):p.2894-901.
    105. Shi, Y., S. Wang, S. Krueger, and F.P. Schwarz, Effect of mutations at the monomer-monomer interface of cAMP receptor protein on specific DNA binding [J]. J Biol Chem,1999.274(11):p.6946-56.
    106. Chu, S. Y, M. Tordova, G.L. Gilliland, I. Gorshkova, Y. Shi, S. Wang, and F.P. Schwarz, The structure of the T127L/S128A mutant of cAMP receptor protein facilitates promoter site binding [J]. J Biol Chem, 2001.276(14):p.11230-6.
    107. Dai, J., S.H. Lin, C. Kemmis, A.J. Chin, and J.C. Lee, Interplay between site-specific mutations and cyclic nucleotides in modulating DNA recognition by Escherichia coli cyclic AMP receptor protein [J]. Biochemistry,2004.43(28):p.8901-10.
    108. Kim, J., S. Adhya, and S. Garges, Allosteric changes in the cAMP receptor protein of Escherichia coli: hinge reorientation [J]. Proc Natl Acad Sci U S A,1992.89(20):p.9700-4.
    109. Garges, S. and S. Adhya, Sites of allosteric shift in the structure of the cyclic AMP receptor protein [J]. Cell,1985.41(3):p.745-51.
    110. Harman, J.G., K. McKenney, and A. Peterkofsky, Structure-function analysis of three cAMP-independent forms of the cAMP receptor protein [J]. J Biol Chem,1986.261(35):p.16332-9.
    111. Malecki, J., A. Polit, and Z. Wasylewski, Kinetic studies of cAMP-induced allosteric changes in cyclic AMP receptor protein from Escherichia coli [J]. J Biol Chem,2000.275(12):p.8480-6.
    112. Epstein, W., L.B. Rothman-Denes, and J. Hesse, Adenosine 3':5'-cyclic monophosphate as mediator of catabolite repression in Escherichia coli [J]. Proc Natl Acad Sci U S A,1975.72(6):p.2300-4.
    113. Tutar, Y., Chemical linkage at allosteric activation of E. coli cAMP receptor protein [J]. Protein J,2008. 27(1):p.21-9.
    114. Fic, E., A. Gorecki, and Z. Wasylewski, Fluorescence quenching studies of conformational changes induced by cAMP and DNA binding to heterodimer of cyclic AMP receptor protein from Escherichia coli [J]. Protein J,2007.26(7):p.457-66.
    115. Won, H.S., T. Yamazaki, T.W. Lee, M.K. Yoon, S.H. Park, Y. Kyogoku, and B.J. Lee, Structural understanding of the allosteric conformational change of cyclic AMP receptor protein by cyclic AMP binding [J]. Biochemistry,2000.39(45):p.13953-62.
    116. Cheng, X. and J.C. Lee, Interactive and dominant effects of residues 128 and 141 on cyclic nucleotide and DNA bindings in Escherichia coli cAMP receptor protein [J]. J Biol Chem,1998.273(2):p.705-12.
    117. Gekko, K., N. Obu, J. Li, and J.C. Lee, A linear correlation between the energetics of allosteric communication and protein flexibility in the Escherichia coli cyclic AMP receptor protein revealed by mutation-induced changes in compressibility and amide hydrogen-deuterium exchange [J]. Biochemistry, 2004.43(13):p.3844-52.
    118. Gorecki, A., B. Kepys, P. Bonarek, and Z. Wasylewski, Kinetic studies of cAMP-induced propagation of the allosteric signal in the cAMP receptor protein from Escherichia coli with the use of site-directed mutagenesis [J]. Int J Biol Macromol,2009.44(3):p.262-70.
    119. Tworzydlo, M., A. Polit, J. Mikolajczak, and Z. Wasylewski, Fluorescence quenching and kinetic studies of conformational changes induced by DNA and cAMP binding to cAMP receptor protein from Escherichia coli [J]. Febs J,2005.272(5):p.1103-16.
    120. Merkel, T.J., J.L. Dahl, R.H. Ebright, and R.J. Kadner, Transcription activation at the Escherichia coli uhpT promoter by the catabolite gene activator protein [J]. J Bacteriol,1995.177(7):p.1712-8.
    121. Weyand, N.J., B.A. Braaten, M.van der Woude, J. Tucker, and D.A. Low, The essential role of the promoter-proximal subunit of CAP in pap phase variation:Lrp- and helical phase-dependent activation of papBA transcription by CAP from -215 [J]. Mol Microbiol,2001.39(6):p.1504-22.
    122. Zhang, X. and R. Schleif, Catabolite gene activator protein mutations affecting activity of the araBAD promoter [J]. J Bacteriol,1998.180(2):p.195-200.
    123. Zhou, Y., T.J. Merkel, and R.H. Ebright, Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). Ⅱ. Role at Class Ⅰ and class Ⅱ CAP-dependent promoters [J]. J Mol Biol,1994.243(4):p.603-10.
    124. Kanack, K.J., L.J. Runyen-Janecky, E.P. Ferrell, S.J. Suh, and S.E. West, Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein [J]. Microbiology,2006.152(Pt 12):p.3485-96.
    125. Jacob, F. and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins [J]. J Mol Biol,1961. 3:p.318-56.
    126. Niu, W., Y. Zhou, Q. Dong, Y.W. Ebright, and R.H. Ebright, Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). Ⅰ. Saturation and alanine-scanning mutagenesis [J]. J Mol Biol,1994.243(4):p.595-602.
    127. Gaston, K., A. Bell, A. Kolb, H. Buc, and S. Busby, Stringent spacing requirements for transcription activation by CRP [J]. Cell,1990.62(4):p.733-43.
    128. Niu, W., Y. Kim, G. Tau, T. Heyduk, and R.H. Ebright, Transcription activation at class Ⅱ CAP-dependent promoters:two interactions between CAP and RNA polymerase [J]. Cell,1996.87(6):p.1123-34.
    129. Rhodius, V.A., D.M. West, C.L. Webster, S.J. Busby, and N.J. Savery, Transcription activation at class Ⅱ CRP-dependent promoters:the role of different activating regions [J]. Nucleic Acids Res,1997.25(2):p. 326-32.
    130. Scott, S., S. Busby, and I. Beacham, Transcriptional co-activation at the ansB promoters:involvement of the activating regions of CRP and FNR when bound in tandem [J]. Mol Microbiol,1995.18(3):p.521-31.
    131. Lobell, R.B. and R.F. Schleif, AraC-DNA looping:orientation and distance-dependent loop breaking by the cyclic AMP receptor protein [J]. J Mol Biol,1991.218(1):p.45-54.
    132. Richet, E., D. Vidal-Ingigliardi, and O. Raibaud, A new mechanism for coactivation of transcription initiation:repositioning of an activator triggered by the binding of a second activator [J]. Cell,1991.66(6): p.1185-95.
    133. Sogaard-Andersen, L. and P. Valentin-Hansen, Protein-protein interactions in gene regulation:the cAMP-CRP complex sets the specificity of a second DNA-binding protein, the CytR repressor [J]. Cell, 1993.75(3):p.557-66.
    134. Sogaard-Andersen, L., A.S. Mironov, H. Pedersen, V.V. Sukhodelets, and P. Valentin-Hansen, Single amino acid substitutions in the cAMP receptor protein specifically abolish regulation by the CytR repressor in Escherichia coli [J]. Proc Natl Acad Sci U S A,1991.88(11):p.4921-5.
    135. Cameron, A.D. and R.J. Redfield, Non-canonical CRP sites control competence regulons in Escherichia coli and many other gamma-proteobacteria [J]. Nucleic Acids Res,2006.34(20):p.6001-14.
    136. Chen, S., J. Vojtechovsky, G.N. Parkinson, R.H. Ebright, and H.M. Berman, Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex:DNA binding specificity based on energetics of DNA kinking [J]. J Mol Biol,2001.314(1):p.63-74.
    137. Ebright, R.H., Y. W. Ebright, and A. Gunasekera, Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP):CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site [J]. Nucleic Acids Res,1989.17(24):p.10295-305.
    138. Pyles, E.A. and J.C. Lee, Escherichia coli cAMP receptor protein-DNA complexes.2. Structural asymmetry of DNA bending [J]. Biochemistry,1998.37(15):p.5201-10.
    139. Dethiollaz, S., P. Eichenberger, and J. Geiselmann, Influence of DNA geometry on transcriptional activation in Escherichia coli [J]. Embo J,1996.15(19):p.5449-58.
    140. Katouzian-Safadi, M., B. Blazy, J.Y. Cremet, J.P. Le Caer, J. Rossier, and M. Charlier, Photo-cross-linking of CRP to nonspecific DNA in the absence of cAMP. DNA interacts with both the N- and C-terminal parts of the protein [J]. Biochemistry,1993,32(7):p.1770-3.
    141. Salemme, F.R., A model for catabolite activator protein binding to supercoiled DNA [J]. Proc Natl Acad Sci U S A,1982.79(17):p.5263-7.
    142. Giraud-Panis, M.J., F. Toulme, B. Blazy, J.C. Maurizot, and F. Culard, Fluorescence study on the non-specific binding of cyclic-AMP receptor protein to DNA:effect of pH [J]. Biochimie,1994.76(2):p. 133-9.
    143. Zhang, X.P. and R.H. Ebright, Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP-DNA complex [J]. Proc Natl Acad Sci U S A,1990.87(12):p.4717-21.
    144. Busby, S. and R.H. Ebright, Promoter structure, promoter recognition, and transcription activation in prokaryotes [J]. Cell,1994.79(5):p.743-6.
    145. Ebright, R.H. and S. Busby, The Escherichia coli RNA polymerase alpha subunit:structure and function [J]. Curr Opin Genet Dev,1995.5(2):p.197-203.
    146. Hochschild, A. and S.L. Dove, Protein-protein contacts that activate and repress prokaryotic transcription [J]. Cell,1998.92(5):p.597-600.
    147. Liu, K. and M.M. Hanna, NusA interferes with interactions between the nascent RNA and the C-terminal domain of the alpha subunit of RNA polymerase in Escherichia coli transcription complexes [J]. Proc Natl Acad Sci U S A,1995.92(11):p.5012-6.
    148. Blatter, E.E., W. Ross, H. Tang, R.L. Gourse, and R.H. Ebright, Domain organization of RNA polymerase alpha subunit:C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding [J]. Cell,1994.78(5):p.889-96.
    149. Negishi, T., N. Fujita, and A. Ishihama, Structural map of the alpha subunit of Escherichia coli RNA polymerase:structural domains identified by proteolytic cleavage [J]. J Mol Biol,1995.248(4):p.723-8.
    150. Jeon, Y.H., T. Yamazaki, T. Otomo, A. Ishihama, and Y. Kyogoku, Flexible linker in the RNA polymerase alpha subunit facilitates the independent motion of the C-terminal activator contact domain [J]. J Mol Biol, 1997.267(4):p.953-62.
    151. Severinov, K., M. Kashlev, E. Severinova, I. Bass, K. McWilliams, E. Kutter, V. Nikiforov, L. Snyder, and A. Goldfarb, A non-essential domain of Escherichia coli RNA polymerase required for the action of the termination factor Alc [J]. J Biol Chem,1994.269(19):p.14254-9.
    152. Miller, A., D. Wood, R.H. Ebright, and L.B. Rothman-Denes, RNA polymerase beta' subunit:a target of DNA binding-independent activation [J]. Science,1997.275(5306):p.1655-7.
    153. Zhang, G. and S.A. Darst, Structure of the Escherichia coli RNA polymerase alpha subunit amino-terminal domain [J]. Science,1998.281(5374):p.262-6.
    154. Malhotra, A., E. Severinova, and S.A. Darst, Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase [J]. Cell,1996.87(1):p.127-36.
    155. Browning, D.F., J.A. Cole, and S.J. Busby, Suppression of FNR-dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H-NS:modulation of transcription initiation by a complex nucleo-protein assembly [J]. Mol Microbiol,2000.37(5):p.1258-69.
    156. Goosen, N. and P. van de Putte, The regulation of transcription initiation by integration host factor [J]. Mol Microbiol,1995.16(1):p.1-7.
    157. Soler, J.M., The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport [J]. J Contam Hydrol,2001.53(1-2):p.63-84.
    158. Richet, E., Synergistic transcription activation:a dual role for CRP in the activation of an Escherichia coli promoter depending on MalT and CRP [J]. Embo J,2000.19(19):p.5222-32.
    159. Wickstrum, J.R., J.M. Skredenske, A. Kolin, D.J. Jin, J. Fang, and S.M. Egan, Transcription activation by the DNA-binding domain of the AraC family protein RhaS in the absence of its effector-binding domain [J]. J Bacteriol,2007.189(14):p.4984-93.
    160. Nam, T.W., Y.H. Park, H.J. Jeong, S. Ryu, and Y.J. Seok, Glucose repression of the Escherichia coli sdhCDAB operon, revisited:regulation by the CRP*cAMP complex [J]. Nucleic Acids Res,2005.33(21): p.6712-22.
    161. Zhang, Z., G. Gosset, R. Barabote, C.S. Gonzalez, W.A. Cuevas, and M.H. Saier, Jr., Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli [J]. J Bacteriol,2005.187(3):p.980-90.
    162. Kao, K.C., L.M. Tran, and J.C. Liao, A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis [J]. J Biol Chem,2005.280(43):p.36079-87.
    163. Zhao, K., M. Liu, and R.R. Burgess, Adaptation in bacterial flagellar and motility systems:from regulon members to 'foraging'-like behavior in E. coli [J]. Nucleic Acids Res,2007.35(13):p.4441-52.
    164. Soutourina, O., A. Kolb, E. Krin, C. Laurent-Winter, S. Rimsky, A. Danchin, and P. Bertin, Multiple control of flagellum biosynthesis in Escherichia coli:role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon [J]. J Bacteriol,1999.181(24):p. 7500-8.
    165. Wang, L., Y. Hashimoto, C.Y. Tsao, J.J. Valdes, and WE. Bentley, Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli [J]. J Bacteriol,2005.187(6):p.2066-76.
    166. Derzelle, S., E. Duchaud, F. Kunst, A. Danchin, and P. Bertin, Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens [J]. Appl Environ Microbiol,2002.68(8):p.3780-9.
    167. Paul, L., P.K. Mishra, R.M. Blumenthal, and R.G. Matthews, Integration of regulatory signals through involvement of multiple global regulators:control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR [J]. BMC Microbiol,2007.7:p.2.
    168. Huang, T.P. and A.C. Wong, A cyclic AMP receptor protein-regulated cell-cell communication system mediates expression of a FecA homologue in Stenotrophomonas maltophilia [J]. Appl Environ Microbiol, 2007.73(15):p.5034-40.
    169. Stock, J.B., A.J. Ninfa, and A.M. Stock, Protein phosphorylation and regulation of adaptive responses in bacteria [J]. Microbiol Rev,1989.53(4):p.450-90.
    170. Oshima, T., H. Aiba, Y. Masuda, S. Kanaya, M. Sugiura, B.L. Wanner, H. Mori, and T. Mizuno, Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12 [J]. Mol Microbiol,2002.46(1):p.281-91.
    171. Zhou, L., X.H. Lei, B.R. Bochner, and B.L. Wanner, Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems [J]. J Bacteriol,2003.185(16):p.4956-72.
    172. Gao, G.J., H.M. Lu, L.F. Huang, and Y.J. Hua, Construction of DNA damage response gene pprl function-deficient and function-complementary mutants in Deinococcus radiodurans
    [J]. CHINESE SCI BULL,2005.50(3):p.232-37.
    173. Moseley, B.E. and D.M. Evans, Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA:evidence for two excision pathways [J]. J Gen Microbiol,1983.129(8):p.2437-45.
    174. Sambrook, J., E.F. Fritsch, and T. Maniatis, [J]. Molecular Cloning. A Laboratory Manual,1989.
    175. Lange, C.C., L.P. Wackett, K.W. Minton, and M.J. Daly, Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments [J]. Nat Biotechnol, 1998.16(10):p.929-33.
    176. Debouck, C. and P.N. Goodfellow, DNA microarrays in drug discovery and development [J]. Nat Genet, 1999.21(1 Suppl):p.48-50.
    177. Liu, Y., J. Zhou, M.V. Omelchenko, A.S. Beliaev, A. Venkateswaran, J. Stair, L. Wu, D:K. Thompson, D. Xu, I.B. Rogozin, E.K. Gaidamakova, M. Zhai, K.S. Makarova, E.V. Koonin, and M.J. Daly, Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation [J]. Proc Natl Acad Sci U S A,2003.100(7):p.4191-6.
    178. Qiu, X., M.J. Daly, A. Vasilenko, M.V. Omelchenko, E.K. Gaidamakova, L. Wu, J. Zhou, G.W. Sundin, and J.M. Tiedje, Transcriptome analysis applied to survival of Shewanella oneidensis MR-1 exposed to ionizing radiation [J]. J Bacteriol,2006.188(3):p.1199-204.
    179. Clarke, P.A., R. te Poele, R. Wooster, and P. Workman, Gene expression microarray analysis in cancer biology, pharmacology, and drug development:progress and potential [J]. Biochem Pharmacol,2001. 62(10):p.1311-36.
    180. Chen, H., Z.J. Xu, B. Tian, W.W. Chen, S.N. Hu, and Y.J. Hua, Transcriptional profile in response to ionizing radiation at low dose in Deinococcus radiodurans [J]. PROG NAT SCI,2007.17(5):p.529-36.
    181. Smyth, G.K., J. Michaud, and H.S. Scott, Use of within-array replicate spots for assessing differential expression in microarray experiments [J]. Bioinformatics,2005.21(9):p.2067-75.
    182. Yang, Y.H., S. Dudoit, P. Luu, D.M. Lin, V. Peng, J. Ngai, and T.P. Speed, Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation [J]. Nucleic Acids Res,2002.30(4):p. e15.
    183. Nishimura, A., M. Morita, Y. Nishimura, and Y. Sugino, A rapid and highly efficient method for preparation of competent Escherichia coli cells [J].Nucleic Acids Res,1990.18(20):p:6169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700