中度嗜热菌Deinococcus geothermalis的自发突变特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Deinococcus属的细菌对电离辐射都具有很强的抗性。与该类中其它成员不同,Deinococcus geothermalis可以在高达55℃下进行培养,因此D.geothermalis作为遗传工程菌株,被应用于由于放射性物质(如137Cs和90Sr)长期衰变而导致环境温度升高的放射性废物的生物治理工程中。目前,虽然通过比较基因组分析还不能清楚解释Deinococcus. radiodurans或者D.geothermalis强大的DNA修复原理,但是高效的DNA修复蛋白和细胞清除系统都对它们的抗性表型具有重大贡献。
     研究D. geothermalis的自发突变模式不仅有助于了解嗜温生长条件与其野生突变发生之间的关系,对该菌的抗性机制的研究也有一定的助益。同时,突变率也是研究细菌的适应性和进化机制的重要参数。2003年,Garibyan等利用rpoB/Rifr系统法分析了Escherichia.coli的突变谱。细菌RNA聚合酶的β亚基是一段可以结合在利福平上的保守序列,E. coli经利福平诱导后会导致该序列的氨基酸发生改变。目前,该rpoB/Rifr突变分析系统已被广泛应用于E. coili, Bacillus subtilis, Helicobacter pylori, D. radiodurans, Mycobacterium tuberculosis, Pseudomonas stutzeri, Neisseria species等。该系统能被用于分析D. radiodurans的突变谱主要基于rpoB基因的保守性。2008年,华孝挺等人就利用rpoB/Rifr系统法分析了耐辐射球菌recQ突变株和四突变株uvsE. uvrAl. uvrA2. recQ的突变情况,结果证明recQ参与了耐辐射球菌的紫外损伤修复途径。此外,细菌在有氧代谢过程中产生的ROS (reactive oxygen species)是诱发自发突变的原因之一。耐辐射球菌中的抗氧化酶包括SOD (superoxide dismutase)和CAT(catalase),它们对该菌清除ROS和抵抗氧化压力具有重要作用。因此,抗氧化酶对D. geothermalis的突变率和突变谱可能也存在着一定的影响。
     在本文中,我们利用rpoB/Rifr系统法分析了D. geothermalis的突变率和突变谱,这是第一次对该菌的突变情况进行研究。我们发现,30℃培养的细菌发生了更多的碱基对替换,且30℃培养时该菌的SOD和CAT酶的活性和基因表达水平也比50℃要低。这表明,当D. geothermalis在30℃培养时其突变率升高的同时会伴随着抗氧化酶的活性的下降。
The genus Deinococcus is well known for its extreme resistance to ionizing radiation. Deinococcus geothermalis is distinguished from other Deinococcus species by its ability to grow at temperatures as high as 55℃. The radioresistant and thermophilic bacterium D. geothermalis can potentially be used as a genetic-engineering bacterium for the bioremediation of radioactive wastes in situ, in environments where temperatures are elevated by the decay of long-lived radionuclides, e.g.,137Cs and 90Sr. However, the mechanism underlying its growth in detrimental environments is poorly understood. Comparative genome analysis failed to identify a unique DNA repair systems in D. radiodurans or D. geothermalis, but highly efficient DNA repair proteins and cell-cleaning systems have been suggested to contribute to their resistant phenotypes.
     The investigation of spontaneous mutations patterns is not only helpful in understanding the relationships between the nature of mutagenesis and thermophilic growth behaviour, but may also reveal the cellular resistance mechanism used by this bacterium The mutation rate is also an important parameter in studying bacterial adaptation and evolutionary mechanisms. An rpoB/Rif system was developed to analyze mutations in Escherichia coli. The resistance of E. coli to rifampin is attributed almost exclusively to amino acid exchanges in a limited region of the P subunit of the RNA polymerase which is involved in rifampin binding, and the related sequence is highly conserved among prokaryotes.
     The rpoB/Rif mutation analysis system has been widely used, including E. coili,Bacillus subtilis, Helicobacter pylori and D. radiodurans, Mycobacterium tuberculosis, Pseudomonas stutzeri, Neisseria species.
     The rpoB/Rifr mutational analysis system was extended to analyze mutations in mesophilic D. radiodurans, based on the conservation of the rpoB gene. We have previously used this system to determine the mutation rates of the mutant recQ in D.radiodurans and the four-mutation strain uvsE uvrAl uvrA2 recQ. The results indicated that recQ is involved in the ultraviolet damage repair pathway of D.radiodurans. Moreover, reactive oxygen species (ROS), generated as by-products of aerobic metabolism, are thought to be the inducers of spontaneous mutations of bacteria. The antioxidant enzymes including superoxide dismutase (SOD) and catalase (CAT) plays an important role in the resistance of D. radiodurans to oxidative stress by their ROS scavenging activity. Hence, antioxidant enzyme may have effects on the mutation rates and spectra of D. geothermalis.
     In this study, we determined the mutation rates and spectra of D. geothermalis using the rpoB/Rifr mutational analysis system. The results provided the first detailed description of mutagenesis in D. geothermalis. More base-pair substitutions (BPSs) were detected from D. geothermalis grown at 30℃than that at the optimal growth temperature (50℃). The activities and gene expression levels of SOD and CAT of D. geothermalis grown at 50℃are significantly higher than those grown at 30℃. These results indicated that the elevation of mutation rate when D. geothermalis grown at 30℃was associated with a decline of antioxidant enzymes in this extreme bacterium.
引文
[1]Anderson, A.W., Nordan, H.C., Cain, R.F., Parrish, G,& Duggan, D.1956. Studies on a radio-resistant micrococcus I. Isolation morphology cultural characteristics and resistance to gamma radiation. Food Technology.575-582.
    [2]Hensel, R., Demharter, W., Kandler, O., Kroppenstedt, R. M.,& Stackebrandt, E. 1986. Chemotaxonomic and molecular genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus. aquaticus and Thermus. ruber to the genus Deinococcus. Int. J. Syst. Bacteriol.36,444-453,
    [3]Murray, R. G. E.1986. In Bergey's Manual of Systematic Bacteriology (eds Sneath, P. H. A., Mair, N. S., Sharpe, M. E.& Holt, J. G.) 1035-1043 (Williams & Wilkins, Baltimore.
    [4]Rainey, F. A., Nobre, M. F., Schumann, P., Stackebrandt, E.,& da Costa, M. S. 1997. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol.47,510-514.
    [5]Weisburg,W.G, Giovannoni, S. J.,& Woese,C.R.1989.The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst. Appl. Microbiol.11,128-134.
    [6]Woese, C. R.1987. Bacterial evolution. Microbiol. Rev.51,221-271.
    [7]Woese, C. R., Stackebrandt, E., Macke, T. J.,& Fox, G. E.1985. A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol.61,143-151.
    [8]Brooks, B. W.,& Murray, R. G. E.1981. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci:Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int. J. Syst. Bacteriol.31,353-360.
    [9]Ferreira, A.C., Nobre, M.F., Rainey, F.A., Silva, M.T., Wait, R., Burghardt, J., Chung, A.P., da Costa, M.S.1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939-947.
    [10]Saarimaa, C., Peltola, M., Raulio, M., Neu, T.R., Salkinoja-Salonen, M.S., Neubauer, P.2006.Characterization of adhesion threads of Deinococcus geothermalis as type IV pili. J Bacteriol 188:7016-7021
    [11]Marteinsson, V.T., Hauksdottir, S., Hobel, C.F., Kristmannsdottir, H., Hreggvidsson, G.O., Kristjansson, J.K.2001. Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67:4242-4248
    [12]Brim, H., Venkateswaran, A., Kostandarithes, H.M., Fredrickson, J.K., Daly, M.J.2003.Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69: 4575-4582.
    [13]Ghosal, D., Omelchenko, M.V., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Venkateswaran, A., Zhai, M., Kostandarithes, H.M., Brim, H., Makarova, K.S., Wackett, L.P., Fredrickson, J.K., Daly, M.J.2005. How radiation kills cells:survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev 29:361-375.
    [14]Brim, H., McFarlan, S.C., Fredrickson, J.K., Minton, K.W., Zhai, M., Wackett, L.P., Daly, M.J.2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85-90.
    [15]Brim, H., Osborne, J.P., Kostandarithes, H.M., Fredrickson, J.K., Wackett, L.P., Daly, M.J.2006. Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction. Microbiology 152:2469-2477.
    [16]White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C., Richardson, D.L., Moffat, K.S., Qin, H., Jiang, L., Pamphile, W., Crosby, M., Shen, M., Vamathevan, J.J., Lam, P., McDonald, L., Utterback, T., Zalewski, C., Makarova, K.S., Aravind, L., Daly, M.J., Minton, K.W., Fleischmann, R.D., Ketchum, K.A., Nelson, K.E., Salzberg, S., Smith, H.O., Venter, J.C., Fraser, C.M.1999. Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1. Science 286:1571-1577
    [17]Makarova, K.S., Omelchenko, M.V., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Zhai, M., Lapidus, A., Copeland, A., Kim, E., Land, M., Mavrommatis, K., Pitluck, S., Richardson, P.M., Detter, C., Brettin, T., Saunders, E., Lai, B., Ravel, B., Kemner, K.M., Wolf, Y.I., Sorokin, A., Gerasimova, A.V., Gelfand, M.S., Fredrickson, J.K., Koonin, E.V., Daly, M.J.2007. Deinococcus geothermalis:The Pool of Extreme Radiation Resistance Genes Shrinks. PLoS ONE 2(9):e955.
    [18]Lin, J., Qi, R., Aston, C., Jing, J., Anantharaman, T.S., Mishra, B., White,O., Daly, M.J., Minton, K.W., Venter, J.C., Schwartz, D.C.1999. Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 285:1558-1562.
    [19]Moseley, B.E., Mattingly, A.1971. Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J Bacteriol 105:976-983.
    [20]Gerard, E., Jolivet, E., Prieur, D., Forterre, P.2001. DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genomics 266:72-78.
    [21]Cox, M.M., Battista, J.R.2005. Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3:882-892.
    [22]Krasin, F., Hutchinson, F.1977. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol 116:81-98.
    [23]Mattimore, V., Battista, J.R.1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633-637.
    [24]Potts, M.1994. Desiccation tolerance of prokaryotes. Microbiol Rev 58:755-805.
    [25]Battista, J.R.1997. Against all odds:the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203-224.
    [26]Makarova, K.S., Aravind, L., Wolf, Y.I., Tatusov, R.L., Minton, K.W., Koonin, E.V., Daly, M.J.2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44-79.
    [27]Minton, K.W.1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9-15.
    [28]Moseley, B.E.,& Evans, D.M.1983. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA:evidence for two excision pathways. J Gen Microbiol 129:2437-2445.
    [29]Agostini, H.J., Carroll, J.D.,& Minton, K.W.1996. Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 178:6759-6765.
    [30]Narumi, I., Cherdchu, K., Kitayama, S.,& Watanabe, H.1997.The Deinococcus radiodurans uvrA gene:identification of mutation sites in two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene 198:115-126.
    [31]Earl, A.M., Rankin, S.K., Kim, K.P., Lamendola, O.N.,& Battista, J.R.2002b. Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Bacteriol 184:1003-1009.
    [32]Shin-ichiro, K., Shigenori, I., Masashi, T.,& Akira, Y.1999.Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage. Nucleic Acids Research, Vol.27, No.15:3096-3103
    [33]Evans, D.M.,& Moseley, B.E.1985. Identification and initial characterisation of a pyrimidine dimer UV endonuclease (UV endonuclease beta) from Deinococcus radiodurans; a DNA-repair enzyme that requires manganese ions.Mutat Res 145:119-128.
    [34]Evans, D.M.,& Moseley, B.E.1988. Deinococcus radiodurans UV endonuclease beta DNA incisions do not generate photoreversible thymine residues. Mutat Res 207:117-119.
    [35]Tanaka, M., Narumi, I., Funayama, T., Kikuchi, M., Watanabe, H., Matsunaga, T., Nikaido, O.,& Yamamoto, K.2005. Characterization of pathways dependent on the uvsE, uvrAl, or uvrA2 gene product for UV resistance in Deinococcus radiodurans. J Bacteriol 187:3693-3697.
    [36]Burrell, A. D., Feldschreiber, P.& Dean, C. J.1971. DNA membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans. Biochim. Biophys. Acta 247,38-53.
    [37]Mortimer, R. K.1958. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res.66,158-169.
    [38]Harsojo, K.S.,& Matsuyama, A.1981.Genome multiplicity and radiation resistance in Micrococcus radiodurans. J. Biochem. (Tokyo) 90,877-880.
    [39]Maldonado, R., Jimenez, J.,& Casadesus, J.1994. Changes of ploidy during the Azotobacter vinelandii growth cycle. J. Bacteriol.176,3911-3919.
    [40]Daly, M. J., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Zhai, M., Venkateswaran, A., Hess, M., Omelchenko, M.V., Kostandarithes, H.M., Makarova, K.S., Wackett, L.P., Fredrickson, J.K., Ghosal, D.2004.Accumulation of Mn(Ⅱ) in Deinococcus radiodurans facilitates y-radiation resistance. Science 306,1025-1028.
    [41]Archibald, F. S.,& Fridovich, I.1981. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol.146,928-936.
    [42]Levin-Zaidman, S., Englander, J., Shimoni, E., Sharma, A.K., Minton, K.W., Minsky, A.2003. Ringlike structure of the Deinococcus radiodurans genome:a key to radioresistance? Science 299,254-256.
    [43]Englander, J., Klein, E., Brumfeld, V., Sharma, A.K., Doherty, A.J., Minsky, A. 2004. DNA toroids:framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores.J. Bacteriol.186,5973-5977.
    [44]Wilson, R. W.,& Bloomfield, V. A.1979. Counterion-induced condesation of deoxyribonucleic acid. a light-scattering study. Biochemistry 18,2192-2196.
    [45]Omelchenko, M.V., Wolf, Y.I., Gaidamakova, E.K., Matrosova, V.Y.,Vasilenko, A., Zhai, M., Daly, M.J., Koonin, E.V.,& Makarova,K.S.2005. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans:divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 5:57.
    [46]Kobayashi, I., Tamura, T., Sghaier, H., Narumi, I., Yamaguchi, S.,Umeda, K.,& Inagaki, K.2006. Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans. J Biosci Bioeng 101:315-321.
    [47]Dennis,R.J.,Micossi,E.,McCarthy,J., Moe, E., Gordon, E.J.,Kozielski-Stuhrmann, S., Leonard, G.A.,& McSweeney, S.2006. Structure of the manganese superoxide dismutase from Deinococcus radiodurans in two crystal forms. Acta Crystallograph Sect F Struct Biol Cryst Commun 62:325-329.
    [48]Markillie, L.M., Varnum, S. M., Hradecky, P.,& Wong, K.K.1999. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans:radiation sensitivities of catalase(katA) and superoxyde dismutase (sodA) mutants. J Bacteriol 181:666-669.
    [49]Kota, S.,& Misra, H.S.2006. PprA:A protein implicated in radiore sistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl Microbiol Biotechnol 72:790-796.
    [50]Gao, G, Tian, B., Liu, L., Shen, B.,& Hua, Y.2003. Expression of Deinococcus radiodurans PprⅠ enhances the radioresistance of Escherichia coli. DNA Repair 2:1419-1427.
    [51]Tian, B., Xu, Z., Sun, Z., Lin, J.,& Hua, Y.2007. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta 1770:902-911.
    [52]Xu, Z., Tian, B., Sun, Z., Lin, J.,& Hua, Y.2007. Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 153:1642-1652.
    [53]Zhang, L., Yang, Q., Luo, X., Fang, C., Zhang, Q.,& Tang, Y.2007. Knockout of crtB or crtⅠ gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Arch Microbiol 188:411-419.
    [54]Daly, M. J.,& Minton, K. W.1996. An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol.178,4461-4471
    [55]Tanaka, M., Earl, A.M., Howell, H.A., Park, M.J., Eisen, J.A., Peterson, S.N., Battista, J.R.2004.Deinococcus radiodurans'transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168,21-33.
    [56]Harris, D. R., Tanaka, M., Saveliev, S.V., Jolivet, E., Earl, A.M., Cox, M.M., Battista, J.R.2004.Preserving genome integrity:the DdrA protein of Deinococcus radiodurans R1. PLoS Biol.2,1629-1639.
    [57]Gutman, P.D., Carroll, J.D., Masters, C.I., Minton, K.W.1994.Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioresistance of Deinococcus radiodurans, Gene 14131-37.
    [58]Moseley, B.E., Copland, H.J.1975. Isolation and properties of a recombination-deficient mutant of Micrococcus radiodurans, J. Bacteriol.121 422-428.
    [59]Masters, C.I., Smith, M.D., Gutman, P.D., Minton, K.W.1991.Heterozygosity and instability of amplified chromosomal insertions in the radioresistant bacterium Deinococcus radiodurans, J. Bacteriol.1736110-6117.
    [60]Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D., Rehrauer, W.M.1994. Biochemistry of homologous recombination in Escherichia coli, Microbiol. Rev.58 401-465.
    [61]Kuzminov, A.1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage, Microbiol. Mol. Biol. Rev.63.751-813.
    [62]Cox, M.M.2007. Regulation of bacterial RecA protein function, Crit. Rev. Biochem. Mol. Biol.42.41-63.
    [63]Narumi, I., Satoh, K., Kikuchi, M., Funayama, T., Yanagisawa, T., Kobayashi, Y., Watanabe, H., Yamamoto, K.2001.The LexA protein from Deinococcus radiodurans is not involved in RecA induction following gamma irradiation, J. Bacteriol.183.6951-6956.
    [64]Bonacossa de Almeida, C., Coste, G., Sommer, S., Bailone, A. 2002.Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation, Mol. Genet. Genom.268. 28-41.
    [65]Kim, J.I., Sharma, A.K., Abbott, S.N., Wood, E.A., Dwyer, D.W., Jambura, A., Minton, K.W., Inman, R.B., Daly, M.J., Cox, M.M.2002. RecA protein from the extremely radioresistant bacterium Deinococcus radiodurans:expression, purification, and characterization, J. Bacteriol.184.1649-1660.
    [66]Kim, J.I., Cox, M.M.2002. The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways, Proc. Natl. Acad. Sci. U. S. A.99.7917-7921.
    [67]Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., Lindner, A.B.,Radman, M.2006. Reassembly of shattered chromosomes in Deinococcus radiodurans, Nature 443.569-573.
    [68]Slade, D., Lindner, A.B., Paul, G., Radman, M.2009. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans, Cell 136.1044-1055.
    [69]Eggington, J. M., Haruta, N., Wood, E. A.,& Cox, M. M.2004. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol. 4,2.
    [70]Bernstein, D. A., Eggington, J.M., Killoran, M.P., Misic, A.M., Cox, M.M., Keck, J.L.2004. Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc. Natl Acad. Sci. USA 101,8575-8580.
    [71]Wang, J.,& Julin, D. A.2004.DNA helicase activity of the RecD protein from Deinococcus radiodurans. J. Biol. Chem.279,52024-52032.
    [72]Makharashvili, N., Koroleva, O., Bera, S., Grandgenett, D. P.,& Korolev, S. 2004. A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure (Camb.) 12,1881-1889.
    [73]Leiros, I., Timmins, J., Hall, D. R.,& McSweeney, S.2005.Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J.24, 906-918.
    [74]Weller, G. R., Kysela, B., Roy, R., Tonkin, L.M., Scanlan, E., Della, M., Devine, S.K., Day, J.P., Wilkinson, A., d'Adda di Fagagna, F., Devine, K.M., Bowater, R.P., Jeggo, P.A., Jackson, S.P., Doherty, A.J.2002. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297,1686-1689.
    [75]Haber, J. E.2000. Partners and pathways repairing a double-strand break. Trends Genet.16,259-264.
    [76]Lecointe, F., Shevelev, I. V., Bailone, A., Sommer, S.,& Hubscher, U.2004. Involvement of an X family DNA polymerase in double-stranded break repair in the radioresistant organism Deinococcus radiodurans. Mol. Microbiol.53,1721-1730.
    [77]Narumi, I., Satoh, K., Cui, S., Funayama, T., Kitayama, S., Watanabe, H.2004. PprA:a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol. Microbiol.54,278-285.
    [78]Minton, K.W.,& Daly, M.J.1995. A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 17:457-464.
    [79]Spell, R.M.,& Jinks-Robertson, S.2003. Role of mismatch repair in the fidelity of RAD51-and RAD59-dependent recombination in Saccharomyces cerevisiae. Genetics 165:1733-1744.
    [80]Worth, L., Jr., Clark, S., Radman, M.,& Modrich, P.1994. Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc Natl Acad Sci USA 91:3238-3241.
    [81]Mennecier, S., Coste, G, Servant, P., Bailone, A.,& Sommer, S.2004. Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Mol Genet Genomics 272:460-469.
    [82]Makarova, K.S., Wolf, Y.I., White, O., Minton, K.,& Daly, M.J.1999. Short repeats and IS elements in the extremely radiation-resistant bacterium Deinococcus radiodurans and comparison to other bacterial species. Res Microbiol 150:711-724.
    [83]Mennecier, S., Servant, P., Coste, G, Bailone, A.,& Sommer, S.2006. Mutagenesis via IS transposition in Deinococcus radiodurans. Mol Microbiol 59:317-325.
    [84]Earl, A.M., Mohundro, M.M., Mian, I.S.,& Battista, J.R.2002a. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 184:6216-6224.
    [85]Hua, Y, Narumi, I., Gao, G, Tian, B., Satoh, K., Kitayama, S.,& Shen, B.2003. PprI:a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun 306:354-360.
    [86]Jolivet, E., Lecointe, F., Coste, G, Satoh, K., Narumi, I., Bailone, A.,& Sommer, S.2006. Limited concentration of RecA delays DNA double-strand break repair in Deinococcus radiodurans R1. Mol Microbiol 59:338-349.
    [87]Satoh, K., Ohba, H., Sghaier, H.,& Narumi, I.2006. Down-regulation of radioresistance by LexA2 in Deinococcus radiodurans. Microbiology 152:3217-3226.
    [88]Danforth, C. H.1923. The frequency of mutation and the incidence of hereditary traits in man. In Eugenics, genetics and the family. Scientific papers of the 2nd International Congress of Eugenics, New York,1921, vol.1, pp.120-128.
    [89]Muller, H. J.1927 Artificial transmutation of the gene. Science 66,84-87.
    [90]Haldane, J. B. S.1935 The rate of spontaneous mutation in a human gene. J. Genet.31,317-326
    [91]Timofeeff-Ressovsky, N. W.1935 Auslosung von Vitlitatsmutationen durch Rontgenbestrahlung bei Drosophila melanogaster. Nachr. Gess. Wiss. Gottingen. Biol.N. F.1,163-180.
    [92]Mukai, T.1964 The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50,1-19.
    [93]Mukai, T., Chigusa, S. I., Mettler, L. E., Crow, J.F.1972 Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72, 333-355.
    [94]Crow, J. F., Abrahamson, S.1997 Seventy years ago:mutation becomes experimental. Genetics 147,1491-1496.
    [95]Drake, J. W.1993 Rates of spontaneous mutation among RNA viruses. Proc. Natl Acad. Sci. USA 90,4171-4175
    [96]Drake, J. W. Charlesworth B., Charlesworth D. Crow J. F.1998 Rates of spontaneous mutation. Genetics 148,1667-1686.
    [97]Lynch, M., Blanchard, J., Houle, D., Kibota, T., Schultz, S., Vassilieva, L. Willis, J.1999 Perspective:spontaneous deleterious mutation. Evolution 53, 645-663.
    [98]Lynch, M., Koskella, B., Schaack, S.2006 Mutation pressure and the evolution of organelle genomic architecture. Science 311,1727-1730.
    [99]Baer, C. F., Miyamoto, M. M., Denver D. R.2007. Mutation rate variation in multicellular eukaryotes:causes and consequences. Nat. Rev. Genet.8,619-631.
    [100]Gago, S., Elena, S. F., Flores, R., Sanjuan, R.2009 Extremely high mutation rate of a hammerhead viroid. Science 323,1308.
    [101]Petrov, D. A., Sangster, T. A., Johnston, J. S., Hartl, D. L., Shaw, K. L.2000 Evidence for DNA loss as a determinant of genome size. Science 287,1060-1062.
    [102]Yang, H. P., Tanikawa, A. Y., Kondrashov, A. S.2001a Molecular nature of 11 spontaneous de novo mutations in Drosophila melanogaster. Genetics 157, 1285-1292.
    [103]Yang, H. P., Tanikawa, A. Y., Van Voorhies, W. A., Silva, J. C., Kondrashov, A. S.2001b Whole-genome effects of ethyl methanesulfonate-induced mutation on nine quantitative traits in outbred Drosophila melanogaster. Genetics 157, 1257-1265.
    [104]Ball, E. V., Stenson, P. D., Abeysinghe, S. S., Krawczak, M., Cooper, D. N., Chuzhanova, N. A.2005 Microdeletions and microinsertions causing human genetic disease:common mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum. Mutat.26,205-213.
    [105]Chen, J. M., Chuzhanova, N., Stenson, P. P., Ferec,C., Cooper, D. N.2005. Intrachromosomal serial replication slippage in trans gives rise to diverse genomic rearrangements involving inversions. Hum. Mutat.26,362-373.
    [106]Hastings, P. J., Lupski, J. R., Rosenberg, S. M., Ira, G.2009. Mechanisms of change in gene copy number. Nat. Rev. Genet.10,551-564.
    [107]Holliday, R., Grigg, G. W.1993. DNA methylation and mutation. Mutat. Res. 285,61-67.
    [108]Rogozin, I. B., Pavlov, Y. I.2003. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat. Res.544,65-85.
    [109]Muller, H. J.1932. Further studies on the nature and causes of gene mutations. Proc. Sixth Int. Congr. Genetics, vol.1, pp.213-255.
    [110]Sniegowski, P. D., Gerrish, P. J., Lenski, R. E.1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387,703-705.
    [111]Loewe, L., Textor, V., Scherer, S.2003. High deleterious genomic mutation rate in stationary phase of Escherichia coli. Science 302,1558-1560.
    [112]Avila, V., Chavarrias, D., Sanchez, E., Manrique, A., Lopez-Fanjul, C. Garcia-Dorado, A.2006. Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster. Genetics 173,267-277.
    [113]Lynch, M., Sung, W., Morris, K., Coffey, N., Landry, C.R., Dopman, E.B., Dickinson, W.J., Okamoto, K., Kulkarni, S., Hartl, D.L., Thomas, W.K.2008 A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc. Natl Acad. Sci. USA 105,9272-9277.
    [114]Keller, I., Bensasson, D., Nichols, R. A.2007 Transition-transversion bias is not universal:a counter example from grasshopper pseudogenes. PLoS Genet.3, e22.
    [115]Kondrashov, A. S.2003 Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum. Mutat.21,12-27.
    [116]Denver, D. R., Morris, K., Lynch, M., Thomas, W. K.2004 High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430,679-682.
    [117]Haag-Liautard, C., Dorris, M., Maside, X., Macaskill, S., Halligan, D. L., Houle, D., Charlesworth, B., Keightley, P. D.2007 Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445, 82-85.
    [118]Drost, J. B., Lee, W. R.1995 Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among Drosophila, mouse, and human.Environ. Mol. Mutagen 25 (Suppl.26),48-64.
    [119]Crow, J. F.2000 The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet.1,40-47.
    [120]Makova, K. D., Li, W. H.2002 Strong male-driven evolution of DNA sequences in humans and apes. Nature 416,624-626.
    [121]Crow, J. F.2006 Age and sex effects on human mutation rates:an old problem with new complexities. J. Radiat. Res. (Tokyo) 47 (Suppl. B), B75-B82.
    [122]Wyman, C., Kanaar, R.2006 DNA double-strand break repair:all's well that ends well. Annu. Rev. Genet.40,363-383.
    [123]Lewin, B.2008 Genes IX. Sudbury, MA:Jones and Bartlett.
    [124]Gordenin, D. A., Resnick, M. A.1998 Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat. Res.400,45-58.
    [125]Kondrashov, A. S., Rogozin, I. B.2004. Context of deletions and insertions in human coding sequences. Hum. Mutat.23,177-185.
    [126]Kondrashov, F. A., Ogurtsov, A. Y., Kondrashov, A. S.2006. Selection in favor of nucleotides G and C diversifies evolution rates and levels of polymorphism at mammalian synonymous sites. J. Theor. Biol.240,616-626.
    [127]Hodgkinson, A., Ladoukakis, E., Eyre-Walker, A.2009 Cryptic variation in the human mutation rate. PLoS Biol.7, e27.
    [128]Pavlov, Y. I., Shcherbakova, P. V., Rogozin, I. B.2006 Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int. Rev. Cytol. 255,41-132.
    [129]Arana, M.E., Seki, M., Wood, R.D., Rogozin, I.B., Kunkel, T.A.2008 Low-fidelity DNA synthesis by human DNA polymerase theta. Nucl. Acid. Res.36, 3847-3856.
    [130]Nuzhdin, S. V., Mackay, T. F.1994 Direct determination of retrotransposon transposition rates in Drosophila melanogaster. Genet. Res.63,139-144.
    [131]Tanaka, M., Ozawa, T.1994 Strand asymmetry in human mitochondrial DNA mutations. Genomics 22,327-335.
    [132]Green, P., Ewing, B., Miller, W., Thomas, P. J., Green, E. D.,& NISC Comparative Sequencing Program.2003. Transcription-associated mutational asymmetry in mammalian evolution. Nat.Genet.33,514-517.
    [133]Morton R. A., Morton B. R.2007. Separating the effects of mutation and selection in producing DNA skew in bacterial chromosomes. BMC Genom.8,369.
    [134]Unniraman, S., Schatz, D. G.2007. Strand-biased spreading of mutations during somatic hypermutation. Science 317,1227-1230.
    [135]Degnen, G.E., Cox, E.C.1997.Conditional Mutator Gene in Escherichia coli: Isolation, Mapping, and Effector Studies. J Bacteriol.1 February; 117(2):477-487
    [136]Ruth, M., Liberfarb.,& Vernon Bryson.1970. Isolation, Characterization, and Genetic Analysis of Mutator Genes in Escherichia coli B and K-12. J Bacteriol. October; 104(1):363-375.
    [137]Coulondre, C., Miller,J.H.1977. Genetic studies of the lac repressor. Ⅳ. Mutagenic specificity in the lacl gene of Escherichia coli, J. Mol. Biol.117.577-606.
    [138]Coulondre, C., Miller, J.H., Farabaugh, P.J., Gilbert, W.1978.Molecular basis of base substitution hotspots in Escherichia coli, Nature 274.775-780.
    [139]Farabaugh, P.J., Schmeissner, U., Hofer, M., Miller, J.H.1978.Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacl gene of Escherichia coli, J. Mol. Biol.126.847-863.
    [140]Schaaper, R.M., Dunn, R.L.1987. Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction:the nature of in vivo DNA replication errors, Proc. Natl. Acad. Sci. U.S.A.84.6220-6224.
    [141]LeClerc, J.E., Istock, N.L.1982.Specificity of UV mutagenesis in the lac promoter of M131ac hybrid phage DNA, Nature 297.596-598.
    [142]Wehrli, W., Knusel, F., Schmid, K.,& Staehelin, M.1968. Interaction of rifamycin with bacterial RNA polymerase. Proc. Natl. Acad. Sci. USA 61:667-673.
    [143]Plorde, J. J.1994. Mycobacteria, p.401-416. In K. J. Ryan (ed.), Sherris medical microbiology,3rd ed. Appleton & Lang, East Norwalk, Conn.
    [144]Hartmann, G., Honikel, K.O., Knusel, F.,& Nuesch, J.1967. The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim. Biophys. Acta 145,843-844.
    [145]Archambault, J.,& Friesen, J.D.1993. Genetics of RNA polymer ases Ⅰ,Ⅱ, and III. Microbiol. Rev.57,703-724.
    [146]Zhang, G., Campbell, E.A., Minakliin, L., Richter, C., Severinov, K.,& Darst, S.A.1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A° resolution. Cell 98,811-824.
    [147]Hinkle, D.C., Mangel, W.F.,& Chamberlin, M.J.1972. Studies of the binding of Escherichia coli RNA polymerase to DNA. Ⅳ. The effect of rifampicin on binding and on RNA chain initiation. J. Mol. Biol.70,209-220.
    [148]McClure, W.R.,& Cech, C.L.1978. On the mechanism of rifampicin inhibition of RNA synthesis. J. Biol. Chem.253,8949-8956.
    [149]Schulz, W.,& Zillig, W.1981. Rifampicin inhibition of RNA synthesis by destabilization of DNA-RNA polymerase-oligonucleotide complexes. Nucleic Acids Res.9,6889-6906.
    [150]Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A.,& Darst, S.A.2000. A structural model of transcription elongation. Science 289, 619-625.
    [151]Elizabeth, A., Campbell., Nataliya Korzheva.2001. Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase Cell, Vol.104,901-912, March 23
    [152]Musser, J.W.1995.Antimicrobial resistance in mycobacteria:molecular genetic insights, Clin. Microbiol. Rev.8.496-514.
    [153]Telenti, A., Imboden, P., Marchesi, F., Lowrie, D., Cole, S., Colston. M.J., Matter, L., Schopfer, K., Bodmer, T.1993.Detection of rifampicin resistance mutations in Mycobacterium tuberculosis, Lancet 341.647-650.
    [154]Karunakaran, P., Davies, J.2000.Genetic antagonism and hypermutability in Mycobacterium smegmatis, J. Bacteriol.182.3331-3335.
    [155]Cambau, E., Bonnafous, P., Perani, E., Sougakoff, W., Jarlier, B.2002. Molecular detection of rifampicin and ofloxacin resistance for patients who experience relapse multibacillary leprosy, Clin. Infect. Dis.34.39-45.
    [156]Klein, J.L., Brown, T.J., French, G.L.2001. Rifamin resistance in Mycobacterium kansasii is associated with rpoB mutation,Antimicrob. Agents Chemother.45.3056-3058.
    [157]Vogler, A.J., Busch, J.D., Percy-Fine, S., Tipton-Hunton, C., Smith, K.L.,Kei.m, P.2002. Molecular analysis of rifampicin resistance in Bacullus anthracis and Bacillus cereus, Antimicrob. Agents Chemother.46.511-513.
    [158]Fines, M., Pronost, S., Maillard, K., Taouji, S., LeClercq, R. 2001.Characterization of mutations in the rpoB gene associated with rifampicin resistance in Rodococcus equi isolated from foals, J. Clin. Microbiol.39. 2784-2787.
    [159]Neilsen, K., Hindersson, P., Hoiby, N., Bangsborg, J.M.2000.Sequencing of the rpoB gene in Leionella pneumophila and characterization of mutations associated with rifampin resistance in the legionellaacaeae, Antimicrob. Agents Chemother.44.2679-2683.
    [160]Stefanelli, P., Fazio, C., La Rosa, G., Marianelli, C., Muscillo, M.2001. Mastrantonio, Rifampicin-resistant meningococci causing invasive disease:detection of point mutations in the rpoB gene and molecular characterization of the strains, J Antimicrob. Chemother.47.219-222.
    [161]Aubry-Damon, H.; Galinmand, M., Gerbaud, G.,Courvalin, P.2002. rpoB mutation conferring rifampicin resistance in Streptococcus pyogenes, Antimicrob. Agents Chemother.46.1571-1573.
    [162]Aubry-Damon, H., Soussy, C.J., Courvalin, P.1998. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus, Antimicrob. Agents Chemother.42.2590-2594.
    [163]Heep, M., Odenbreit, S., Beck, D., Decker, J., Prohaska, E., Rieger, U., Lehn, N.2000. Mutations at four distinct regions of the rpoB gene can reduce the susceptibility of Helicobacter pylori to rifamycins, Antimicrob. Agents Chemother. 44.1713
    [164]Mandy Kim, Erika Wolff, Tiffany Huang.2004. Developing a Genetic System in Deinococcus radiodurans for Analyzing Mutations. Genetics 166:661-668
    [1]Ferreira, A. C., Nobre, M. F., Rainey, F. A., Silva, M.T., Wait, R., Burghardt, J., Chung, A. P., Da Costa, M. S.1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., Two Extremely Radiation-Resistant and Slightly Thermophilic Species from Hot Springs. Int JSyst Bacteriol 47.939-947.
    [2]Agnew, S. F., Corbin, R A.1998.Analysis of SX Farm Leak Histories-Historical Leak Model (HLM). Los Alamos National Laboratory, Los Alamos, NM., HNF--3233.
    [3]Brim, H., Venkateswaran, A., Kostandarithes, H. M., Fredrickson, J. K., Daly, M. J.2003.Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69, 4575-4582.
    [4]Makarova, K. S., Omelchenkom, M. V., Gaidamakova, E. K.2007.Deinococcus geothermalis:the pool of extreme radiation resistance genes shrinks. PLoS ONE 2, e955
    [5]Garibyan, L., Huang, T., Kim, M., Wolff, E., Nguyen, A., Nguyen, T., Diep, A., Hu, K., Iverson, A., Yang, H., Miller, J. H.2003.Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair 2,593-608
    [6]Anthony, R. M., Schuitema, A. R., Bergval, I. L., Brown, T. J., Oskam, L.,Klatser, P. R.2005.Acquisition of rifabutin resistance by a rifampicin resistant mutant of Mycobacterium tuberculosis involves an unusual spectrum of mutations and elevated frequency. Ann Clin Microbiol Antimicrob 4,9.
    [7]Davidsen, T., Bjoras, M., Seeberg, E. C., Tonjum, T.2005.Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J Bacteriol 187, 2801-2809.
    [8]Maugha, H., Galeano, B., Nicholson, W. L.2004.Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis:global effects on growth, competence, sporulation, and germination. J Bacteriol 186,2481-2486.
    [9]Meier, P., Wackernagel, W.2005. Impact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri. J Bacteriol 187, 143-154.
    [10]Miller, J. H., Funchain, P., Clendenin, W., Huang, T., Nguyen, A., Wolff, E., Yeung, A., Chiang, J. H., Garibyan, L., Slupska, M. M.,Yang, H.2002.Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains. Genetics 162, 5-13.
    [11]Morlock, G. P., Plikaytis, B. B., Crawford, J T.2000.Characterization of spontaneous, In vitro-selected, rifampin-resistant mutants of Mycobacterium tuberculosis strain H37Rv. Antimicrob Agents Chemother 44,3298-3301.
    [12]Wang, G, Wilson, T. J. M., Jiang, Q., Taylor, D. E.2001.Spontaneous Mutations That Confer Antibiotic Resistance in Helicobacter pylori. Antimicrob. Agents Chemother.45,727-733.
    [13]Nicholson, W. L., Maughan, H.2002.The Spectrum of Spontaneous Rifampin Resistance Mutations in the rpoB Gene of Bacillus subtilis 168 Spores Differs from That of Vegetative Cells and Resembles That of Mycobacterium tuberculosis. J. Bacteriol.184,4936-4940.
    [14]Kim, M., Wolff, E., Huang, T., Garibyan, L., Earl, A.M., Battista, J. R., Miller, J. H.2004. Developing a genetic system in Deinococcus radiodurans for analyzing mutations. Genetics 166,661-668.
    [15]Hua, X., Huang, L., Tian, B., Hua, Y.2008. Involvement of recQ in the ultraviolet damage repair pathway in Deinococcus radiodurans. Mutat Res 641, 48-53.
    [16]Hua, X., Wang, C., Huang, L. F., Li, M. F., Wang, Y, Weng, S. L., Chen, Y, Tong, Y. Z., Tian, B., Hua, Y. J.2010. The mutation rate and spectrum of spontaneous mutations in Deinococcus radiodurans under different rifampin stress Journal of Nuclear Agricultural Sciences (accepted)
    [17]Battista, J. R..1997. Against all odds:the survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol.51:203-224.
    [18]Anderson, A.W., Nordan, H.C., Cain, R.F., Parrish, G, Duggan, D.1956. Studies on a radio-resistant micrococcus I. Isolation, morphology, cultural characteristics and resistance to gamma radiation. Food Technology 575-582.
    [19]Fitch, W.M.1967. Evidence suggesting a non-random character to nucleotide replacements in naturally occurring mutations, J. Mol. Bio/. 26,499-507
    [1]Lai, W.A., Kampfer, P., Arun, A.B., Shen, F.T., Huber, B., Rekha, P.D., Young, C.C.2006. Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 56:787-791.
    [2]Ferreira, A.C., Nobre, M.F., Rainey, F.A., Silva, M.T., Wait, R., Burghardt, J., Chung, A.P., da Costa, M.S.1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939-947.
    [3]Brim, H., Venkateswaran, A., Kostandarithes, H.M., Fredrickson, J.K., Daly, M.J. 2003.Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575-4582.
    [4]Ghosal, D., Omelchenko, M.V., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Venkateswaran, A., Zhai, M., Kostandarithes, H.M., Brim, H., Makarova, K.S., Wackett, L.P., Fredrickson, J.K., Daly, M.J.2005. How radiation kills cells:survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev 29:361-375.
    [5]Saarimaa, C., Peltola, M., Raulio, M., Neu, T.R., Salkinoja-Salonen, M.S.2006. Characterization of adhesion threads of Deinococcus geothermalis as type Ⅳ pili. J Bacteriol 188:7016-7021.
    [6]Battista, J.R.1997.Against all odds:the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol.;51:203-24.
    [7]Gutman, P.D., Fuchs, P., Minton, K.W.1994. Restoration of the DNA damage resistance of Deinococcus radiodurans DNA polymerase mutants by Escherichia coli DNA polymerase I and Klenow fragment. Mutat Res 314:87-97.
    [8]Daly, M.J., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Zhai, M.2004. Accumulation of Mn(Ⅱ) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025-1028.
    [9]Daly, A.K., Aithal, G. P.2003. Genetic regulation of warfarin metabolism and response. Semin Vasc Me. Aug;3(3):231-8.
    [10]Kira, S., Makarova., Marina, Omelchenko.V.2007. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks. PLoS ONE 2, e955
    [11]Cabiscol, E., Tamarit, J., Ros, J.2000. Oxidative stress in bacteria and protein damage by reactive oxygen species.Int.Microbiol.3(1):3-8. PMID:10963327.
    [12]Halliwell, B., Gutteridge, M.C.1999. Free radicals in biology and medicine. Oxford University Press, Oxford, UK.
    [13]Bruce Demple.1991. Regulation of bacterial oxidative stress genes. Annu. Rev. Genet.25:315-37
    [14]Imlay, J. A., Linn, S.1988. DNA damage and oxygen radical toxicity. Science 240:1302-9
    [15]von Sonntag, C.1987. The Chemical Basis of Radiation Biology. London/New York/Philadephia:Taylor & Francis.515 pp
    [16]Demplc, B., Levin, J. D.1991. Repair systems for radical-damaged DNA.ln Oxidative Stress, Vol.2, ed. H. Sies.
    [17]Ravindranath, S., Sanjukta, A., Kumar., Misra, H. S., Bandekar, J. R.2010. Evaluation of the role of enzymatic and nonenzymatic antioxidant systems in the radiation resistance of Deinococcus. Can. J. Microbiol.56:195-201
    [18]Tarassova, K., Tegova, R., Tover, A., Teras, R., Tark, M., Saumaa, S., Kivisaar, M.2009. Elevated Mutation Frequency in Surviving Populations of Carbon-Starved rpoS-Deficient Pseudomonas putida Is Caused by Reduced Expression of Superoxide Dismutase and Catalase. Journal of bacteriology, June p.3604-3614
    [19]Saumaa, S., Tover, A., Tark, M., Tegova, R., Kivisaar, M.2007. Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida. J. Bacteriol.189:5504-5514.
    [20]Prieto-A'lamo, M. J., Abril, N., Pueyo, C.1993. Mutagenesis in Escherichia coli K-12 mutants defective in superoxide dismutase or catalase. Carcinogenesis 14:237-244.
    [21]Ruiz-Laguna, J., Prieto-A'lamo, M. J., Pueyo, C.2000.Oxidative mutagenesis in Escherichia coli strains lacking ROS-scavenging enzymes and/or 8-oxoguanine defenses. Environ. Mol. Mutagen.35:22-30.
    [22]Dukan, S., Farewell, A., Ballesteros, M., Taddei, F., Radman, M., Nystrom, T. 2000. Protein oxidation in response to increased transcriptional or ranslational errors. Proc. Natl. Acad. Sci. USA 97:5746-5749.
    [23]Men, L., Roginskaya, M., Zou, Y., Wang, Y.2007. Redox-dependent ormation of disulfide bonds in human replication protein A. Rapid Commun. Mass Spectrom. 21:2743-2749.
    [24]Montaner, B., Donovan, P. O., Reelfs, O., Perrett, C. M., Zhang, X., Xu, Y. Z., Ren, X., Macpherson, P., Frith, D., Karran. P.2007. Reactive oxygen-mediated damage to a human DNA replication and repair protein. EMBO ep.8:1074-1079.
    [25]Filipkowski, P., Duraj-Thatte, A., Kur, J.2006. Novel thermostable single-stranded DNA-binding protein (SSB) from Deinococcus geothermalis. Arch Microbiol 186,129-137.
    [26]Fields, P. A.2001. Review:Protein function at thermal extremes:balancing stability and flexibility. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 129,417-431.
    [27]Vieille, C., Zeikus, G. J.2001. Hyperthermophilic Enzymes:Sources, Uses, and Molecular Mechanisms for Thermostability. Microbiol. Mol. Biol. Rev.65,1-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700