基于压缩感知的图像重构技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩感知理论表明,若信号在某变换域具有稀疏表示,且采样矩阵与稀疏矩阵不相关,则可从远低于信号维度的少量非自适应测量值中精确恢复原信号。目前,压缩感知理论已被广泛用于各类磁共振成像中,以便在不降低成像质量的情况下减少采样点数,提高系统扫描速度。本文即研究从亚采样的磁共振数据中,怎样快速而有效地恢复目标图像。主要研究内容包括:
     (1)为消除亚采样的磁共振成像重构时可能出现的过光滑(over-smoothed)和混叠伪影现象,将重构问题转化成含复合正则项的约束最小化问题,并提出一种高效的算法来求解。该算法首先利用Bregman迭代技术,将约束问题转化成一系列无约束问题。然后利用算子分裂技术,将各无约束问题分解成一个梯度问题和一个能使用修改的SBD(Splitting Bregman Denoising)算法来求解的复合正则项的去噪问题。最后再用加速方案对无约束问题的求解予以加速。本文将该算法称作BFSA(Bregman based Fast SBD Algorithm)。对非笛卡尔轨迹采样的重构,本文还提出了一种动态更新L的方法。实验结果表明,新算法能够获得比其他算法更好的重构质量。
     (2)为了克服现有动态磁共振成像重构速度较慢的问题,本文基于BFSA算法框架,提出一种高效的动态磁共振成像重构算法ktBFSA。该算法利用SBD3D(Splitting Bregman Denoising for3D images)来求解含复合正则项的3D去噪问题。实验结果表明,ktBFSA在重构速度和重构质量上都有优势。
     (3)SENSE(Sensitivity encoding)是常用的并行磁共振成像技术,引入压缩感知后重构质量可有较大提升。本文针对现有SENSE重构算法速度较慢的问题,基于BFSA算法框架,提出一种快速SENSE重构算法FSRA(Fast SENSEReconstruction Algorithm)。实验结果表明,新算法能极大地减少重构所需时间。自校准方案无需显式使用线圈灵敏度信息,因此避免了SENSE重构中的灵敏度估计的困难。为了提高基于自校准技术框架SPIRiT的重构质量,提出一种高效的算法ERAS(Efcient Reconstruction Algorithm for SPIRiT Based ParallelImaging)。该算法用算子分离算法将重构问题分解成一个梯度计算问题和一个能通过联合软阈值法求解的去噪问题,最后再用加速方案进行加速,并使用动态更新方法更新L。实验结果表明,新算法的重构图像质量好于POCS。
     (4)对压缩感知在视频编码中的应用进行了初步研究,提出一种基于压缩感知的改进视频编码方案。该方案基于原始图像的梯度比残差图像的梯度更稀疏这一特点,利用像素域最小全变分法对图像块进行重构,并选择具有较小误差的方法作为最终重构方法。仿真实验表明,将该方案分别与MPEG-2和H.264视频编码标准相结合,可取得一定的编码增益。
The emerging Compressed Sensing (CS) theory suggests that it is likely to recoverthe signals from highly undersampled measurements, if the signal have a sparse repre-sentation under some transform domain and the sparse transform matrix and the sensingmatrix are incoherent. The researchers have introduced the CS theory to the MagneticResonance (MR) imaging, to speed up the imaging without degrading the image qual-ity. My research deals with how to efciently recover the target MR image from highlyundersampled k-space data. The major contribution of this thesis is summarized asfollow:
     (1) In order to improve the quality of the reconstructed MR image, which may beover-smoothed or may sufer from aliasing artifacts, the reconstruction problem is for-mulated as a constrained minimization problem with compound regularization terms,which is then solved by an efcient algorithm proposed. In the proposed algorithm, theoriginal constrained problem is reformulated as a sequence of unconstrained problemsby using the Bregman iteration. Then, by using the operator splitting technique, eachunconstrained problem can be decomposed into a gradient problem and a denoisingproblem which can be solved by the Split Bregman Denoising (SBD) algorithm. Then,the solving process of unconstrained problems is accelerated by using an acceleratedscheme. We call the proposed algorithm as BFSA (Bregman based Fast SBD Algo-rithm). For non-Cartesian grid sampling, an updating method is proposed for the stepsize L. Comparisons with the previous algorithms indicate that the proposed algorithmsignificantly improves the quality of the reconstructed images.
     (2) In order to speed up the reconstruction of the dynamic MR Imaging (dMRI), anefcient algorithm called ktBFSA is proposed based on the BFSA framework. ktBFSAuses the SBD3D (Split Bregman Denoising for3D images) to solve the3D image de-noising problem with compound regularization terms. Comparisons with the previousalgorithms indicate that the proposed algorithm not only significantly speeds up thereconstruction, but also improves the quality of the reconstructed images.
     (3) In order to speed up the Sensitivity encoding (SENSE) reconstruction for par- allel MR imaging, an efcient algorithm called FSRA (Fast SENSE ReconstructionAlgorithm) is proposed based on the BFSA framework. The experimental results showthat the proposed algorithm significantly reduces the reconstruction time. Autocalibrat-ing methods like SPIRiT (Iterative Self-consistent Parallel Imaging Reconstruction)implicitly use the sensitivity information for reconstruction and avoid some of the dif-ficulties associated with explicit estimation of the sensitivities. In order to improve thereconstruction quality, an efcient algorithm called ERAS (Efcient Reconstruction Al-gorithm for SPIRiT Based Parallel Imaging) is proposed. The proposed algorithm usesthe operator splitting technique to decompose the unconstrained problem into a gradientproblem and a denoising problem which can be solved by the joint-sparsity promotingalgorithm. And then the proposed algorithm is accelerated by using an acceleratedscheme. The experimental results show that the proposed algorithm significantly im-proves the reconstruction quality.
     (4) In addition, in order to seek for applications of compressed sensing in videocoding and improve the coding efciency of video coding, a compressed sensing basedimproved video coding scheme is proposed. This scheme choose the method produc-ing an image block with smaller sum of squared diference as the final reconstructionmethod between the standard method and the Total Variation (TV) minimization in thepixel domain, which is based on the fact that the original image has sparser gradientthan the residual image. The improved scheme is then integrated into the standardMPEG-2and H.264encoder. The experimental results show that the new encoder canimprove the coding efciency to some degree.
引文
[1] Lustig M,Donoho D,Pauly J M,Sparse MRI: The application of compressedsensing for rapid MR imaging,Magnetic Resonance in Medicine,2007,58(6):1182~1195
    [2]陈武凡,并行磁共振成像的回顾、现状与发展前景,中国生物医学工程学报,2005(6):649~654
    [3]赵喜平,磁共振成像,北京:科学出版社,2004
    [4] Sodickson D K,Manning W J,Simultaneous acquisition of spatial harmonics(SMASH): Fast imaging with radiofrequency coil arrays,Magnetic Resonancein Medicine,1997,38(4):591~603
    [5] Jakob P M,Griswold M A,Edelman R R,et al,AUTO-SMASH: A self-calibrating technique for SMASH imaging,Biology and Medicine MagneticResonance Materials in Physics,1998,7(1):42~54
    [6] Pruessmann K P,Weiger M,Scheidegger M B,et al,SENSE: Sensitivityencoding for fast MRI,Magnetic Resonance in Medicine,1999,42(5):952~962
    [7] Pruessmann K P,Weiger M,Bornert P,et al,Advances in sensitivity en-coding with arbitrary k-space trajectories,Magnetic Resonance in Medicine,2001,46(4):638~651
    [8] Candes E J,Romberg J,Tao T,Robust uncertainty principles: exact signal re-construction from highly incomplete frequency information,IEEE Transactionson Information Theory,2006,52(2):489~509
    [9] Donoho D L,Compressed sensing,IEEE Transactions on Information Theory,2006,52(4):1289~1306
    [10]李树涛,魏丹,压缩传感综述,自动化学报,2009,35(11):1369~1377
    [11] Kim S-J,Koh K,Lustig M,et al,An Interior-Point Method for Large-Scale1-Regularized Least Squares,IEEE Journal of Selected Topics in Signal Pro-cessing,2007,1(4):606~617
    [12] Nocedal J,Wright S J,Numerical Optimization,2nd ed.,New York:Springer,2006
    [13] Beck A,Teboulle M,Fast Gradient-Based Algorithms for Constrained TotalVariation Image Denoising and Deblurring Problems,IEEE Transactions on Im-age Processing,2009,18(11):2419~2434
    [14] Beck A,Teboulle M,A Fast Iterative Shrinkage-Thresholding Algorithm forLinear Inverse Problems,SIAM Journal on Imaging Sciences,2009,2(1):183~202
    [15] Bioucas-Dias J M,Figueiredo M A T,A New TwIST: Two-Step IterativeShrinkage/Thresholding Algorithms for Image Restoration,IEEE Transactionson Image Processing,2007,16(12):2992~3004
    [16] Daubechies I,Defrise M,De Mol C,An iterative thresholding algorithm forlinear inverse problems with a sparsity constraint,Communications on Pure andApplied Mathematics,2004,57(11):1413~1457
    [17] Hale E T,Yin W,Zhang Y,Fixed-Point Continuation for1-Minimization:Methodology and Convergence,SIAM Journal on Optimization,2008,19(3):1107~1130
    [18] Wright S J,Nowak R D,Figueiredo M A T Sparse Reconstruction by Separa-ble Approximation,IEEE Transactions on Signal Processing,2009,57(7):2479~2493
    [19] Yin W,Osher S,Goldfarb D,et al,Bregman iterative algorithms for1-minimization with applications to compressed sensing,SIAM Journal on Imag-ing Sciences,2008,1(1):143~168
    [20] Afonso M V,Bioucas-Dias J M,Figueiredo M A T,Fast Image RecoveryUsing Variable Splitting and Constrained Optimization,IEEE Transactions onImage Processing,2010,19(9):2345~2356
    [21] Gabay D,Mercier B,A dual algorithm for the solution of nonlinear variationalproblems via finite element approximation,Computers and Mathematics withApplications,1976,2(1):17~40
    [22] Glowinski R,Le Tallec P,Augmented Lagrangian and Operator SplittingMethods in Nonlinear Mechanics,Philadelphia:Society for Industrial and Ap-plied Mathematics,1989
    [23] Wang Y,Yang J,Yin W,et al,A new alternating minimization algorithmfor total variation image reconstruction,SIAM Journal on Imaging Sciences,2008,3(1):248~272
    [24] He L,Chang T-C,Osher S,et al,MR image reconstruction by using theiterative refinement method and nonlinear inverse scale space methods,UCLAReport,2006
    [25] Ma S,Yin W,Zhang Y,et al,An efcient algorithm for compressed MRimaging using total variation and wavelets,In IEEE Conference on ComputerVision and Pattern Recognition,Anchorage,AK,June2008:1~8
    [26] Yang J,Zhang Y,Yin W,A Fast Alternating Direction Method for TVL1-L2Signal Reconstruction From Partial Fourier Data,IEEE Journal of SelectedTopics in Signal Processing,2010,4(2):288~297
    [27] Yang J,Zhang Y,Yin W,A fast TVL1-L2minimization algorithm for signalreconstruction from partial Fourier data,Rice University Report,2009
    [28] Goldfarb D,Ma S,Fast Multiple Splitting Algorithms for Convex Optimiza-tion,UCLA Report,2010
    [29] Huang J,Zhang S,Li H,et al,Composite splitting algorithms for convexoptimization,Computer Vision and Image Understanding,2011,115(12):1610~1622
    [30] Huang J,Zhang S,Metaxas D,Efcient MR image reconstruction for com-pressed MR imaging,Medical Image Analysis,2011,15(5):670~679
    [31] Goldstein T,Osher S,The Split Bregman Method for1-Regularized Prob-lems,SIAM Journal on Imaging Sciences,2009,2(2):323~343
    [32] Afonso M V,Bioucas-Dias J M,Figueiredo M A T,An Augmented La-grangian Approach to the Constrained Optimization Formulation of ImagingInverse Problems,IEEE Transactions on Image Processing,2011,20(3):681~695
    [33] Barger A V,Block W F,Toropov Y,et al,Time-resolved contrast-enhancedimaging with isotropic resolution and broad coverage using an undersampled3D projection trajectory,Magnetic Resonance in Medicine,2002,48(2):297~305
    [34] Glover G H,Pauly J M,Projection reconstruction techniques for reductionof motion efects in MRI,Magnetic Resonance in Medicine,1992,28(2):275~289
    [35] Peters D C,Korosec F R,Grist T M,et al,Undersampled projection recon-struction applied to MR angiography,Magnetic Resonance in Medicine,2000,43(1):91~101
    [36] Schefer K,Hennig J,Reduced circular field-of-view imaging,Magnetic Res-onance in Medicine,1998,40(3):474~480
    [37] Jackson J I,Meyer C H,Nishimura D G,et al,Selection of a convolutionfunction for Fourier inversion using gridding,IEEE Transactions on MedicalImaging,1991,10(3):473~478
    [38] Meyer C H,Hu B S,Nishimura D G,et al,Fast spiral coronary artery imag-ing,Magnetic Resonance in Medicine,1992,28(2):202~213
    [39] Haacke E M,Brown R W,Thompson M R,et al,Magnetic Resonance Imag-ing: Physical Principles and Sequence Design,1st ed.,New York:Wiley-Liss,1999
    [40] Tsai C-M,Nishimura D G,Reduced aliasing artifacts using variable-density k-space sampling trajectories,Magnetic Resonance in Medicine,2000,43(3):452~458
    [41] Lee J H,Hargreaves B A,Hu B S,et al,Fast3D imaging using variable-density spiral trajectories with applications to limb perfusion,Magnetic Reso-nance in Medicine,2003,50(6):1276~1285
    [42] Li T-Q,Kim D-H,Moseley M E,High-resolution difusion-weighted imag-ing with interleaved variable-density spiral acquisitions,Journal of MagneticResonance Imaging,2005,21(4):468~475
    [43] Santos J M,Cunningham C H,Lustig M,et al,Single breath-hold whole-heart MRA using variable-density spirals at3T,Magnetic Resonance inMedicine,2006,55(2):371~379
    [44] Lustig M,Sparse MRI,Ph.D. thesis,Stanford: Stanford University,2008
    [45] Fessler J A,On NUFFT-based gridding for non-Cartesian MRI,Journal ofMagnetic Resonance,2007,188(2):191~195
    [46] Fessler J A,Sutton B P,Nonuniform fast Fourier transforms using min-max interpolation,IEEE Transactions on Signal Processing,2003,51(2):560~574
    [47] Adluru G,Awate S P,Tasdizen T,et al,Temporally constrained reconstruc-tion of dynamic cardiac perfusion MRI,Magnetic Resonance in Medicine,2007,57(6):1027~1036
    [48] Vaswani N,LS-CS-Residual (LS-CS): Compressive Sensing on LeastSquares Residual,IEEE Transactions on Signal Processing,2010,58(8):4108~4120
    [49] Wei L,Vaswani N,Modified compressive sensing for real-time dynamicMR imaging,In IEEE International Conference on Image Processing,2009:3045~3048
    [50] Qiu C,Lu W,Vaswani N,Real-time dynamic MR image reconstruction us-ing Kalman Filtered Compressed Sensing,In IEEE International Conference onAcoustics,Speech and Signal Processing,2009:393~396
    [51] Majumdar A,Ward R K,Aboulnasr T,Compressed Sensing Based Real-TimeDynamic MRI Reconstruction,IEEE Transactions on Medical Imaging,2012,31(12):2253~2266
    [52] Tsao J,Boesiger P,Pruessmann K P,k-t BLAST and k-t SENSE: DynamicMRI with high frame rate exploiting spatiotemporal correlations,Magnetic Res-onance in Medicine,2003,50(5):1031~1042
    [53] Lustig M,Santos J M,Donoho D L,et al,k-t SPARSE: High frame rate dy-namic MRI exploiting spatio-temporal sparsity,In Annual Meeting of ISMRM,Seattle,Washington,2006:2420
    [54] Jung H,Ye J C,Kim E Y,Improved k-t BLASK and k-t SENSE using FO-CUSS,Physics in Medicine and Biology,2007,52(11):3201~3226
    [55] Lingala S G,Hu Y,DiBella E,et al,Accelerated Dynamic MRI Exploit-ing Sparsity and Low-Rank Structure: k-t SLR,IEEE Transactions on MedicalImaging,2011,30(5):1042~1054
    [56] Chen L,Schabel M C,DiBella E V R,Reconstruction of dynamic contrastenhanced magnetic resonance imaging of the breast with temporal constraints,Magnetic Resonance Imaging,2010,28(5):637~645
    [57] Adluru G,McGann C,Speier P,et al,Acquisition and reconstruction ofundersampled radial data for myocardial perfusion magnetic resonance imaging,Journal of Magnetic Resonance Imaging,2009,29(2):466~473
    [58] Haldar J P,Zhi-Pei L,Spatiotemporal imaging with partially separable func-tions: A matrix recovery approach,In IEEE International Symposium onBiomedical Imaging: From Nano to Macro,2010:716~719
    [59] Brinegar C,Wu Y J L,Foley L M,et al,Real-time cardiac MRI without trig-gering,gating,or breath holding,In Annual International Conference of theIEEE Engineering in Medicine and Biology Society,August2008:3381~3384
    [60] Brinegar C,Zhang H,Wu Y J L,et al,Real-time cardiac MRI using priorspatial-spectral information,In Annual International Conference of the IEEEEngineering in Medicine and Biology Society,September2009:4383~4386
    [61] Pedersen H,Kozerke S,Ringgaard S,et al,k-t PCA: Temporally constrainedk-t BLAST reconstruction using principal component analysis,Magnetic Reso-nance in Medicine,2009,62(3):706~716
    [62] Lingala S G,Hu Y,Dibella E,et al,Accelerated first pass cardiac perfusionMRI using improved k-t SLR,In IEEE International Symposium on BiomedicalImaging: From Nano to Macro,March2011:1280~1283
    [63] Candes E,Recht B,Exact Matrix Completion via Convex Optimization,Foundations of Computational Mathematics,2009,9(6):717~772
    [64] Cai J-F,Candes E J,Shen Z,A Singular Value Thresholding Algorithmfor Matrix Completion,SIAM Journal on Optimization,2010,20(4):1956~1982
    [65] Zhao B,Haldar J P,Christodoulou A G,et al,Image Reconstruction FromHighly Undersampled (k,t)-Space Data With Joint Partial Separability andSparsity Constraints,IEEE Transactions on Medical Imaging,2012,31(9):1809~1820
    [66] Hu Y,Lingala S G,Jacob M,A Fast Majorize-Minimize Algorithm forthe Recovery of Sparse and Low-Rank Matrices,IEEE Transactions on ImageProcessing,2012,21(2):742~753
    [67] Majumdar A,Improved dynamic MRI reconstruction by exploiting sparsity andrank-deficiency,Magnetic Resonance Imaging,2013
    [68] Majumdar A,Ward R K,Aboulnasr T Non-convex algorithm for sparse andlow-rank recovery: Application to dynamic MRI reconstruction,Magnetic Res-onance Imaging,2013,31(3):448~455
    [69] Lustig M,Pauly J M,SPIRiT: Iterative self-consistent parallel imaging recon-struction from arbitrary k-space,Magnetic Resonance in Medicine,2010,64(2):457~471
    [70] Kyriakos W E,Panych L P,Kacher D F,et al,Sensitivity profiles from an ar-ray of coils for encoding and reconstruction in parallel (SPACE RIP),MagneticResonance in Medicine,2000,44(2):301~308
    [71] Yeh E N,McKenzie C A,Ohliger M A,et al,Parallel magnetic resonanceimaging with adaptive radius in k-space (PARS): Constrained image reconstruc-tion using k-space locality in radiofrequency coil encoded data,Magnetic Res-onance in Medicine,2005,53(6):1383~1392
    [72] Liu C,Bammer R,Moseley M E,Parallel imaging reconstruction for arbi-trary trajectories using k-space sparse matrices (kSPA),Magnetic Resonance inMedicine,2007,58(6):1171~1181
    [73] Griswold M A,Jakob P M,Nittka M,et al,Partially parallel imaging with lo-calized sensitivities (PILS),Magnetic Resonance in Medicine,2000,44(4):602~609
    [74] Griswold M A,Jakob P M,Heidemann R M,et al,Generalized auto-calibrating partially parallel acquisitions (GRAPPA),Magnetic Resonance inMedicine,2002,47(6):1202~1210
    [75] Griswold M A,Kannengiesser S,Heidemann R M,et al,Field-of-view limi-tations in parallel imaging,Magnetic Resonance in Medicine,2004,52(5):1118~1126
    [76] Ramani S,Fessler J A,Parallel MR Image Reconstruction Using AugmentedLagrangian Methods,IEEE Transactions on Medical Imaging,2011,30(3):694~706
    [77] Ye X,Chen Y,Huang F,Computational Acceleration for MR Image Recon-struction in Partially Parallel Imaging,IEEE Transactions on Medical Imaging,2011,30(5):1055~1063
    [78] Ye X,Chen Y,Lin W,et al,Fast MR Image Reconstruction for PartiallyParallel Imaging With Arbitrary k-Space Trajectories,IEEE Transactions onMedical Imaging,2011,30(3):575~585
    [79] Chen Y,Hager W,Huang F,et al,Fast Algorithms for Image Reconstructionwith Application to Partially Parallel MR Imaging,SIAM Journal on ImagingSciences,2012,5(1):90~118
    [80] Blaimer M,Breuer F A,Muelle M,et al,SMASH,SENSE,PILS,GRAPPA: How to choose the optimal method?,Topografy Magnetic ResonanceImaging,2004,15(4):223~236
    [81] Murphy M,Alley M,Demmel J,et al,Fast L1-SPIRiT Compressed Sens-ing Parallel Imaging MRI: Scalable Parallel Implementation and ClinicallyFeasible Runtime,IEEE Transactions on Medical Imaging,2012,31(6):1250~1262
    [82] Zhang Y,Mei S,Chen Q,et al,A novel image/video coding method based onCompressed Sensing theory,In IEEE International Conference on Acoustics,Speech and Signal Processing,Las Vegas,NV,2008:1361~1364
    [83]潘榕,刘昱,侯正信,等,基于局部DCT系数的图像压缩感知编码与重构,自动化学报,2011,37(6):674~681
    [84] Do T T,Lu X,Sole J,Compressive sensing with adaptive pixel domain re-construction for block-based video coding,In IEEE International Conferenceon Image Processing,Hong Kong,2010:3377~3380
    [85]石光明,刘丹华,高大化,等,压缩感知理论及其研究进展,电子学报,2009(5):1070~1081
    [86] Davenport M,Duarte M,Eldar Y C,et al,Introduction to Compressed Sens-ing,In Compressed Sensing: Theory and Applications,Cambridge UniversityPress,2011
    [87] Candes E J,Tao T,Near-Optimal Signal Recovery From Random Projections:Universal Encoding Strategies?,IEEE Transactions on Information Theory,2006,52(12):5406~5425
    [88] Elad M,Bruckstein A M,A generalized uncertainty principle and sparse rep-resentation in pairs of bases,IEEE Transactions on Information Theory,2002,48(9):2558~2567
    [89] Donoho D L,Elad M,Optimally sparse representation in general (nonorthog-onal) dictionaries via1minimization,Proceedings of the National Academy ofSciences,2003,100(5):2197~2202
    [90] Gribonval R,Nielsen M,Sparse representations in unions of bases,IEEETransactions on Information Theory,2003,49(12):3320~3325
    [91] Donoho D L,Huo X,Uncertainty principles and ideal atomic decomposition,IEEE Transactions on Information Theory,2001,47(7):2845~2862
    [92] Candes E,Romberg J,Sparsity and incoherence in compressive sampling,Inverse Problems,2007,23(3):969~985
    [93] Candes E J,Wakin M B,An Introduction To Compressive Sampling,IEEESignal Processing Magazine,2008,25(2):21~30
    [94] Candes E J,Tao T,Decoding by linear programming,IEEE Transactions onInformation Theory,2005,51(12):4203~4215
    [95] Candes E J,The restricted isometry property and its implications for compressedsensing,Comptes Rendus Mathematique,2008,346(9-10):589~592
    [96] Foucart S,Lai M-J,Sparsest solutions of underdetermined linear systems viap-minimization for0    [97] Foucart S,A note on guaranteed sparse recovery via1-minimization,Appliedand Computational Harmonic Analysis,2010,29(1):97~103
    [98] Cai T T,Wang L,Xu G,Shifting Inequality and Recovery of Sparse Signals,IEEE Transactions on Signal Processing,2010,58(3):1300~1308
    [99] Mo Q,Li S,New bounds on the restricted isometry constantδ2K,Applied andComputational Harmonic Analysis,2011,31(3):460~468
    [100] Davies M E,Gribonval R E M,Restricted isometry constants wherepsparserecovery can fail for0p≤1,IEEE Transactions on Information Theory,2009,55(5):2203~2214
    [101] Candes E J,Romberg J K,Tao T,Stable signal recovery from incomplete andinaccurate measurements,Communications on Pure and Applied Mathematics,2006,59(8):1207~1223
    [102] Rudelson M,Vershynin R,On sparse reconstruction from Fourier and Gaussianmeasurements,Communications on Pure and Applied Mathematics,2008,61(8):1025~1045
    [103] Mallat S G,Zhang Z,Matching pursuits with time-frequency dictionaries,IEEE Transactions on Signal Processing,1993,41(12):3397~3415
    [104] Tropp J A,Gilbert A C,Signal Recovery From Random Measurements Via Or-thogonal Matching Pursuit,IEEE Transactions on Information Theory,2007,53(12):4655~4666
    [105] Donoho D L,Tsaig Y,Drori I,et al,Sparse Solution of UnderdeterminedSystems of Linear Equations by Stagewise Orthogonal Matching Pursuit,IEEETransactions on Information Theory,2012,58(2):1094~1121
    [106] Needell D,Vershynin R,Greedy Signal Recovery and Uncertainty Principles,In Proc. SPIE6814,Computational Imaging VI,2008:68140J
    [107] Needell D,Tropp J A,CoSaMP: Iterative signal recovery from incomplete andinaccurate samples,Applied and Computational Harmonic Analysis,2009,26(3):301~321
    [108] Blumensath T,Davies M E,Gradient Pursuits,IEEE Transactions on SignalProcessing,2008,56(6):2370~2382
    [109] Chen S S,Donoho D L,Saunders M A,Atomic decomposition by basis pur-suit,SIAM Review,2001,43(1):129~159
    [110] Candes E,Romberg J,1-magic: Recovery of Sparse Signals via Convex Pro-gramming,2006:2011–11–15,http://www.acm.caltech.edu/l1magic/
    [111]刘吉英,压缩感知理论及在成像中的应用,博士论文,长沙:国防科学技术大学,2010
    [112] Nesterov Y E,A method for unconstrained convex minimization problem withthe rate of convergence O(1/k2),Soviet Mathematics Doklady,1983,269(3):543~547
    [113] Nesterov Y,Gradient methods for minimizing composite objective function,Mathematical Programming,2012,1~37
    [114] van den Berg E,Friedlander M P,Probing the Pareto Frontier for Basis PursuitSolutions,SIAM Journal on Scientific Computing,2008,31(2):890~912
    [115] Tibshirani R,Regression shrinkage and selection via the Lasso,Journal of theRoyal Statistical Society. Series B (Methodological),1996,58(1):267~288
    [116] Figueiredo M A T,Nowak R D,Wright S J,Gradient Projection for Sparse Re-construction: Application to Compressed Sensing and Other Inverse Problems,IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586~597
    [117] Hale E T,Yin W,Zhang Y,A fixed-point continuation method for1regu-larized minimization with applications to compressed sensing,Rice UniversityReport,2007
    [118] Cai J-F,Osher S,Shen Z,Split Bregman Methods and Frame Based ImageRestoration,Multiscale Modeling and Simulation,2009,8(2):337~369
    [119] Osher S,Mao Y,Dong B,et al,Fast linearized Bregman iteration for com-pressive sensing and sparse denoising,Communications in Mathematical Sci-ences,2010,8(1):93~111
    [120] Chartrand R,Fast algorithms for nonconvex compressive sensing: MRI recon-struction from very few data,In IEEE International Symposium on BiomedicalImaging: From Nano to Macro,June2009:262~265
    [121] Chartrand R,Exact Reconstruction of Sparse Signals via Nonconvex Minimiza-tion,IEEE Signal Processing Letters,2007,14(10):707~710
    [122] Larsson E G,Selen Y,Linear Regression With a Sparse Parameter Vector,IEEE Transactions on Signal Processing,2007,55(2):451~460
    [123]张贤达,矩阵分析与应用,北京:清华大学出版社,2004
    [124] Magnus J R,Neudecker H,Matrix Diferential Calculus with Applications inStatistics and Econometrics,Chichester: John Wiley&Sons,2007
    [125] Hansen P C,Nagy J G,O’Leary D P,Deblurring Images: Matrices,Spectra,and Filtering,Society for Industrial and Applied Mathematics,2006
    [126] Bioucas-Dias J M,Figueiredo M,An iterative algorithm for linear inverse prob-lems with compound regularizers,In IEEE International Conference on ImageProcessing,San Diego,CA,October2008:685~688
    [127] Candes E,Romberg J,Practical Signal Recovery from Random Projections,In SPIE Conference on Wavelet Applications in Signal and Image ProcessingXI,San Diego,CA,July2005:76~86
    [128] Zhang X,Burger M,Bresson X,et al,Bregmanized Nonlocal Regulariza-tion for Deconvolution and Sparse Reconstruction,SIAM Journal on ImagingSciences,2010,3(3):253~276
    [129] Osher S,Burger M,Goldfarb D,et al,An iterative regularization method fortotal variation-based image restoration,Multiscale Modeling and Simulation,2005,4(2):460~489
    [130] Fang S,Ying K,Zhao L,et al,Coherence regularization for SENSE re-construction with a nonlocal operator (CORNOL),Magnetic Resonance inMedicine,2010,64(5):1413~1425
    [131] Moreau J J,Functions convexes duales et points proximaux dans un espacehilbertien,C. R. Acad. Sci. Paris,1962,255:2897~2899
    [132] Selesnick I W,Figueiredo M A T,Signal restoration with overcompletewavelet transforms: comparison of analysis and synthesis priors,In Proceed-ings of SPIE Wavelets XIII,San Diego,US,August2009
    [133] Combettes P L,Pesquet J-C,A proximal decomposition method for solv-ing convex variational inverse problems,Inverse Problems,2008,24(6):065014
    [134] Trzasko J,Manduca A,Highly Undersampled Magnetic Resonance Image Re-construction via Homotopic0-Minimization,IEEE Transactions on MedicalImaging,2009,28(1):106~121
    [135] Ravishankar S,Bresler Y,MR Image Reconstruction From Highly Under-sampled k-Space Data by Dictionary Learning,IEEE Transactions on MedicalImaging,2011,30(5):1028~1041
    [136] National Institutes of Health,NIH Image,2013,http://imagej.nih.gov/ij/images/
    [137] Barzilai J,Borwein J M,Two point step size gradient methods,IMA Journalof Numerical Analysis,1988,8(1):141~148
    [138] Dai Y-H,Hager W W,Schittkowski K,et al,The cyclic Barzilai-Borweinmethod for unconstrained optimization,IMA Journal of Numerical Analysis,2006,26(3):604~627
    [139] Zhu M,Wright S J,Chan T F,Duality-based algorithms for total-variation-regularized image restoration,Computational Optimization and Applications,2008,47(3):377~400
    [140] He H,Han D,Li Z,Some projection methods with the BB step sizes forvariational inequalities,Journal of Computational and Applied Mathematics,2012,236(9):2590~2604
    [141] Grippo L,Sci,Rone M,Nonmonotone Globalization Techniques for theBarzilai-Borwein Gradient Method,Computational Optimization and Applica-tions,2002,23(2):143~169
    [142] American Radiology Services,Short Axis: bright blood of the Heart,2013,http://www3.americanradiology.com/pls/web1/wwimggal.vmg/wwimggal.vmg?img in=12432&mod in=
    [143] Graham A,Kronecker Products and Matrix Calculus With Applications,Chichester:Ellis Horwood Limited,1981
    [144] Chan S H,Khoshabeh R,Gibson K B,et al,An Augmented LagrangianMethod for Total Variation Video Restoration,IEEE Transactions on Image Pro-cessing,2011,20(11):3097~3111
    [145] Gorodnitsky I F,Rao B D,Sparse signal reconstruction from limited data us-ing FOCUSS: a re-weighted minimum norm algorithm,IEEE Transactions onSignal Processing,1997,45(3):600~616
    [146] Lee K,Bresler Y,ADMiRA: Atomic Decomposition for Minimum RankApproximation,IEEE Transactions on Information Theory,2010,56(9):4402~4416
    [147] Recht B,Fazel M,Parrilo P A,Guaranteed Minimum-Rank Solutions of Lin-ear Matrix Equations via Nuclear Norm Minimization,SIAM Review,2010,52(3):471~501
    [148] Bioucas-Dias J M,Figueiredo M A T,Oliveira J P,Total Variation-BasedImage Deconvolution: a Majorization-Minimization Approach,In IEEE In-ternational Conference on Acoustics,Speech and Signal Processing,2006:861~864
    [149] Hunter D R,Lange K,A Tutorial on MM Algorithms,The American Statis-tician,2004,58(1):30~37
    [150] Chambolle A,An Algorithm for Total Variation Minimization and Applica-tions,Journal of Mathematical Imaging and Vision,2004,20(1-2):89~97
    [151] Majumdar A,Ward R K,Compressive color imaging with group-sparsity onanalysis prior,In IEEE International Conference on Image Processing,2010:1337~1340
    [152] Majumdar A,Ward R K,An algorithm for sparse MRI reconstruction bySchatten p-norm minimization,Magnetic Resonance Imaging,2011,29(3):408~417
    [153] Zhu M,Chan T,An efcient primal-dual hybrid gradient algorithm for totalvariation image restoration,UCLA Report,2008
    [154] Ying L,Sheng J,Joint image reconstruction and sensitivity estimationin SENSE (JSENSE),Magnetic Resonance in Medicine,2007,57(6):1196~1202
    [155] Lustig M,Alley M,Vasanawala S,et al,1SPIR-iT: Autocalibrating Par-allel Imaging Compressed Sensing,In Processings of International Society forMagnetic Resonance in Medicine,2009:379
    [156] Vasanawala S S,Alley M T,Hargreaves B A,et al,Improved Pediatric MRImaging with Compressed Sensing,Radiology,2010,256(2):607~616
    [157] MPEG Software Simulation Group,MPEG-2Test Model5,1994:2011–11–10,http://www.mpeg.org/MPEG/video/mssg-free-mpeg-software.html
    [158] Bjontegaard G,Calculation of Average PSNR Diferences Between RD-curves,In ITU-T Q.6/SG16VCEG13th Meeting,Austin,Texas,2001
    [159] Suhring K,H.264/AVC Reference Software: JM12.4,2007:2010–2–18,http://iphome.hhi.de/suehring/tml/download/old jm/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700