探地雷达干扰抑制及波速估计问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达(Ground Penetrating Radar,GPR)是一种探测隐蔽目标的有效手段,在国内外已经得到非常广泛的应用。探地雷达也一直是国际学术的研究热点之一,并且已成为遥感技术的重要分支。探地雷达具有探测速度快、探测过程连续、分辨率高、操作方便灵活等优越性,在国防、反恐、城市建设、公路、铁路、桥梁、隧道、矿山、地质、考古等许多领域都表现出强劲的生命力和广阔的应用前景。
     探地雷达是一个非常复杂的系统,其研究远不及探空雷达的研究成熟。特别是浅地层探地雷达,采用了超宽带技术以满足分辨率的高要求,对探地雷达系统的天线、信号源、数据采集和信号处理都有了新的更高要求。同时随着探地雷达应用的深入发展,探地雷达的应用环境越来越复杂和恶劣。如在城市中越来越多的射频干扰、越来越复杂的杂波信号,探地雷达天线离地较远时必须考虑的空气-土壤双层介质等,这些情况对探地雷达的信号处理和系统优化都提出了更高的要求。此时的信号处理技术已不只是探地雷达数据采集后的处理,而应从系统角度对探地雷达系统结构提出改进,使探地雷达整体性能达到最优。
     本论文的主要工作及创新点如下:
     1.针对冲激脉冲探地雷达提出随机等效采样抑制射频干扰的方法。对三种信息数据采集方式(实时采样、周期等效采样和随机等效采样)下,射频干扰经均值滤波后的特征进行了分析。分析指出采用随机等效采样,在无失真地获取目标回波的情况下,能将射频干扰变为零均值随机信号,进而用经典的均值滤波方法进行干扰抑制。仿真和实验结果验证了分析的正确性和本方法抑制射频干扰的有效性。
     2.针对步进频率探地雷达提出随机相位编码抑制射频干扰的方法。使用随机相位编码技术在不影响目标回波的情况下,可将步进频率探地雷达中的射频干扰变为零均值随机信号进行抑制。分析表明使用随机相位编码技术使步进频率探地雷达具有噪声雷达的射频干扰抑制能力,同时保留了步进频率良好的主旁瓣比性能和利用FFT进行快速信号处理的优点。蒙特卡洛仿真结果验证了本文分析的正确性和本方法抑制射频干扰的有效性。
     3.根据探地雷达数据记录B-scan中目标回波与杂波的频谱特性和对称特性差异,分别提出二维频域带通滤波和对称滤波抑制探地雷达杂波的方法。二维频域带通滤波能有效抑制天线直耦杂波、地面杂波及雷达设备抖动引入的噪声成分。对称滤波能有效抑制传统方法较难抑制的起伏地面杂波、地下介质杂波和无关目标回波。实测数据处理结果显示所提方法具有优良性能。
     4.提出一种快速有效的波速估计方法。本文根据B-scan中点目标形成双曲线的机理,利用双曲线的对称特性及目标回波主峰跟踪法等,提取双曲线及顶点。分析了双曲线顶点区域对波速估计的误差影响,提出加权估计波速的方法,并给出相应的估计方差。实测数据处理结果显示本方法具有良好效果。
     5.提出一种横向等效变波速合成孔径成像方法。在复杂的探地雷达应用环境中,目标回波信号常常偏离标准双曲线关系式,使用传统的恒定波速成像效果难以达到最优。本文利用目标回波在B-scan中形成的曲线信号,快速估计横向等效波速以修正目标回波延时的波动,采用变波速频率-波数域(F-K)偏移算法进行精确成像。实测数据处理结果显示本方法性能优于恒定波速成像。
Ground Penetrating Radar (GPR) is an effective tool to detect the buried targets, and it's application is worldwide in many areas. The study of the GPR is one of the international researching hotspots and has become an important branch of the remote sensing technology. Because the GPR can detect the target rapidly, continuously and conveniently with high resolution, it has a broad prospect of application in many areas, such as national defense, anti-terrorism, civil engineering, construction of highway, railway, bridge, tunnel, prospecting, geologic studies, and archaeological studies.
     GPR is a very complex system, and its study is far from maturity as compared to that of traditional radar. Especially when GPR is used to detect the shallow buried target with high resolution, it must adopt the ultra wideband (UWB) technology and faces a series of new challenges to antenna design, signal modulation, signal sampling and processing. As the application of GPR goes wider and deeper, its working environment becomes worse and more complex, such as the increased radio frequency interference in the city, the more complex clutter and the influence of the half-space between the air and soil. All these require more consideration on both signal processing and system design. In order to optimize the whole performance of GPR, the signal processing is no longer a simple processing of the echo data of radar signal, it also requires the improvement of the radar system structure.
     The contents and innovations of this dissertation are as follows:
     1. A method of radio frequency interference (RFI) suppressing is proposed by using random equivalent time sampling in the impulse GPR. The property of the RFI after average filter is compared among real time sampling mode, periodic equivalent time sampling mode and random equivalent time sampling mode. The analysis indicates that the RFI can be transformed into zero-mean random signal by random equivalent time sampling without effect on the object's information and it can be suppressed easily by a classical average filter. Experimental results conform to the theoretic analysis and indicate the proposed method is effective.
     2. A RFI suppression method is proposed by using random phase codes in the stepped-frequency GPR. The random phase-coded method transforms the RFI into zero-mean random signal without effect on the object's information and makes the RFI be suppressed easily. It makes the stepped-frequency radar have the same Anti-RFI performance as that of the noise radar and reserve the low sidelobe performance. Monte Carlo simulations conform to the theoretic analysis and indicate the proposed method is effective.
     3. A novel clutter reduction method is proposed by using two-dimensional band-pass filter in frequency domain and symmetry filter based on the symmetry difference between the target reflection and the clutter in B-scan. The two-dimensional band-pass filter can effectively reduce the antenna coupling clutter, the ground clutter and the radar vibration noise. The symmetry filter can reduce the undulated ground clutter, soil roughness reflection and reflection signals from external anomalies. Experimental results confirm the effectiveness of the method.
     4. A fast method of propagation velocity estimation is proposed. The hyperbolic signatures and the apex in B-scan are extracted based on peak tracing and the symmetry of hyperbola. Moreover, according to the effect to velocity estimation in the apex section of the hyperbola, a weighted method of velocity estimation is proposed. The method is evaluated to be effective by using experimental results.
     5. A method of equivalent lateral velocity synthetic aperture imaging (SAI) is proposed. The object signal often is departure from the standard hyperbola in practice. The traditional algorithm using constant velocity can hardly amend the different. The proposed method amends it by using the equivalent lateral velocity which can be estimated quickly by using the hyperbolic signatures of echo in B-scan. The precise SAR imaging can be achieved by lateral variable velocity F-K migration. The experimental results demonstrate that the proposed method is more effective than constant velocity migration.
引文
[1]Daniels, D.J.Ground penetrating radar.Second edition, London, United Kingdom, the Institution of Electrical Engineers, 2004
    [2]李大心.探地雷达方法与应用北京:地质出版社,1994
    [3]周学松.地下目标无损探测技术.北京:国防工业出版社,2005
    [4]粟毅,黄春琳,雷文太.探地雷达理论与应用.北京:科学出版社,2006
    [5]曾昭发,刘四新,王者江,等.探地雷达方法原理及应用.北京:科学出版社,2006
    [6]孔令讲.浅地层探地雷达信号处理算法的研究:[博士论文],成都:电子科技大学,2003
    [7]张春城.浅地层探地雷达中的信号处理技术研究:[博士论文],成都:电子科技大学,2005
    [8]胡进峰.合成孔径探地雷达探测浅埋小目标的信号处理算法研究:[博士论文],成都:电子科技大学,2005
    [9]David Andrew Noon.Stepped-frequency radar design and signal processing enhances ground penetrating radar performance: [Ph.D thesis], University of Queensland, Australia, 1996
    [10]Adam Rhett Isaacson.Frequency borehole tomographic imaging system:[Ph.D thesis], University of Cape Town,2002
    [11]Gordon Farquharson.Design and implementation of 200 to 1600 MHz stepped frequency ground penetrating radar transceiver:[Master thesis],University of Cape Town, 1999
    [12]Alan Langman.The design of hardware and signal processing for a stepped frequency continuous wave ground penetrating radar:[Ph.D thesis],University of Cape Town,2002
    [13]Carl Leuschen.Surface penetrating radar for Mars exploration:[Ph.D thesis], University of Kansas,2001
    [14]Egil S.Eide.Radar Imaging of Small Objects Closely Below the Earth Surface: [Ph.D thesis],Department of Telecommunications Norwegian University,2000
    [15]Bart Scheers.Ultra-Wideband Ground Penetrating Radar with Application to the Detection of Anti Personnel Landmines:[Ph.D thesis], Royal Military Academy Department of Electrical Engineering and Telecommunication,Brussels,2001
    [16]Chi-Chih Chen, S.Nag, W.D.Burnside, et al.A standoff, focused-beam land mine radar.IEEE Transactions on Geoscience and Remote Sensing,2000,39(6):507-514
    [17] Chi-Chih Chen, M. B. Higgins, K-O'Neill. Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance. IEEE Transactions on Geoscience and Remote Sensing,2001,39(6):1221-1230
    [18] Wilson Joseph N., Gader Paul, et al. A large-scale systematic evaluation of algorithms using ground-penetrating radar for landmine detection and discrimination. IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2560-2572
    [19] Gader Paul D., Ho K.C.. A linear prediction land mine detection algorithm for hand held ground penetrating radar. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(6): 1374-1384
    [20] Sun Yijun, Li Jian. Adaptive learning approach to landmine detection. IEEE Transactions on Aerospace and Electronic Systems,2005,41(3):973-985
    [21] Gader Paul, Lee Wen-Hsiung, Wilson Joseph N.. Detecting landmines with ground-penetrating radar using feature-based rules, order statistics, and adaptive whitening. IEEE Transactions on Geoscience and Remote Sensing,2004,42(l l):2522-2534
    [22] Zhao Yunxin, Gader Paul, et al. Training DHMMs of mine and clutter to minimize landmine detection errors. IEEE Transactions on Geoscience and Remote Sensing,2003,41(5):1016-1024
    [23] Gader P.D., Mystkowski M., Zhao Y.. Landmine detection with ground penetrating radar using hidden Markov models. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(6):1231-1244
    [24] Gader P.D., Keller J.M., Nelson B.N.. Recognition technology for the detection of buried land mines. IEEE Transactions on Fuzzy Systems,2001,9(l):31-43
    [25] Ho K.C., Collins Leslie M., et al. Discrimination mode processing for EMI and GPR sensors for hand-held land mine detection. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(1):249-263
    [26] Zhu Quan, Collins Leslie M.. Application of feature extraction methods for landmine detection using the wichmann/niitek ground-penetrating radar. IEEE Transactions on Geoscience and Remote Sensing,2005,43(l):81-85
    [27] Torrione Peter, Collins Leslie M.. Texture features for antitank landmine detection using ground penetrating radar. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(7):2374-2382
    [28] Song Jiayu, Liu Qing Huo, et al. Two-dimensional and three-dimensional NUFFT migration method for landmine detection using ground-penetrating radar. IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1462-1469
    [29] Yanting Dong, P. R. Runkle, L. Carin, et al. Multi-aspect detection of surface and shallow-buried unexploded ordnance via ultra-wideband synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing,2001 ,vol.39(6): 1259-1270.
    [30] Cosgrove Russell B., Milanfar Peyman, Kositsky Joel. Trained detection of buried mines in SAR images via the deflection-optimal criterion. IEEE Transactions on Geoscience and Remote Sensing,2004,42(l l):2569-2575
    [31] Gaunaurd GC, Nguyen L.H.. Detection of land-mines using ultra-wideband radar data and time-frequency signal analysis. IEE Proceedings: Radar, Sonar and Navigation, 2004, 151(5):307-316
    [32] Sai Bin, Ligthart Leo P.. GPR Phase-Based Techniques for Profiling Rough Surfaces and Detecting Small, Low-Contrast Landmines Under Flat Ground. IEEE Transactions on Geoscience and Remote Sensing,2004,42(2):318-326
    [33] Morrow Ivor L., Van Genderen Piet. Effective imaging of buried dielectric objects. IEEE Transactions on Geoscience and Remote Sensing,2002,40(4):943-949
    [34] Masuyama Soichi, Hirose Akira. Walled LTSA array for rapid, high spatial resolution, and phase-sensitive imaging to visualize plastic landmines. IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2536-2543
    [35] Feng Xuan, Sato Motoyuki. Landmine imaging by a Hand-held GPR and metal detector sensor (ALIS). International Geoscience and Remote Sensing Symposium,2005,Vol.1:379-382
    [36] Cooper Peter, Verwey Giles, Purry Christopher. Ultra Wideband Endfire Synthetic Aperture Radar for Landmine Detection. International Geoscience and Remote Sensing Symposium, 2003, Vol.2:752-754
    [37] Potin Delphine, Vanheeghe Philippe, et al. An abrupt change detection algorithm for buried landmines localization. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2):260-272
    [38] Daniels David J.. A review of GPR for landmine detection. Sensing and Imaging, 2006, 7(3):90-123
    [39] Fang Guangyou. The Research Activities of Ultrawide-band (UWB) Radar in China. ICUWB 2007,p43-45.
    [40]周智敏,金添,宋千,等.超宽带SAR探雷试验系统.电子与信息学报,2007,29(8):1805-1808
    [41]杨延光,周智敏,等.基于Rail-GPSAR实测数据的地雷检测新方法.信号处理,2007,23(5):651-656
    [42]常文革,梁甸农,周智敏.轨道超宽带SAR实验技术研究.电子学报,2001,29(9):1213-1216
    [43]Kirsty Langley, Svein-Erik Hamranet al..Use of C-Band Ground Penetrating Radar to Determine Backscatter Sources Within Glaciers.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1236-1246
    [44]Arcone Steven A., Finnegan David C., Liu Lanbo.Target interaction with stratigraphy beneath shallow, frozen lakes: Quarter-wave resonances within GPR profiles.Geophysics, 2006, 71(6):K119-K131
    [45]Van Der Kruk Jan, Arcone Steven A., Liu Lanbo.Fundamental and higher mode inversion of dispersed GPR waves propagating in an ice layer.IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2483-2491
    [46]Hamran S.-E., Berger T., et al.A prototype for the WISDOM GPR on the ExoMars mission.Proceedings of the 2007 4th International Workshop on Advanced Ground Penetrating Radar,2007,p252-255
    [47]C.T.Allen, Kun Shi, R.G.Plumb.The use of ground-penetrating radar with a cooperative target.IEEE Transactions on Geoscience and RemoteSensing,1998,vol.36(5),pp:1821~1825.
    [48]Gomez-Ortiz D., Martin-Velazquez S., et al.Characterization of volcanic materials using ground penetrating radar: A case study at Teide volcano (Canary Islands, Spain).Journal of Applied Geophysics, 2006,59(1):63-78
    [49]Al-Nuaimy W., Huang Y., et al.Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition.Journal of Applied Geophysics, 2000, 43(2-4):157-165
    [50]Nakashima Yuichi, Zhou Hui, Sato Motoyuki.Estimation of groundwater level by GPR in an area with multiple ambiguous reflections.Journal of Applied Geophysics, 2001, 47(3-4):241-249
    [51]Sato Motoyuki, Lu Qi.Groundwater migration monitoring by GPR.International Geoscience and Remote Sensing Symposium, 2002,Vol.1:345-347
    [52]Senechal Pascale, Perroud Herve, et al.Non destructive geophysical monitoring of water content and fluid conductivity anomalies in the near surface at the border of an agricultural field.Subsurface Sensing Technologies and Applications,2005,6(2):167-192
    [53]Gloaguen E., Chouteau M., et al.Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data.Journal of Applied Geophysics,2001, 47(2):135-152
    [54]Shihab S., Al-Nuaimy W.Data fusion for accurate detection of pipe geometry using GPR.Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, 2005,p99-102
    [55]Gamba Paolo, Lossani Simone.Neural detection of pipe signatures in ground penetrating radar images.IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):790-797
    [56]Charlton Matthew, Mulligan Mark.Efficient detection of mains water leaks using ground-penetrating radar (GPR).Proceedings of SPIE-The International Society for Optical Engineering,2001,Vol.4491:375-386
    [57]昝月稳,章锡元,张安学.铁路路基检查车的研究.铁道工程学报,2007,108(9):17-21.
    [58]Andreas Loizos, Christina Plati.Ground Penetrating Radar: A Smart Sensor for the Evaluation of the Railway Trackbed.IEEE Instrumentation and Measurement Technology Conference Proceedings, Warsaw, Poland,2007,p 1-6
    [59]Caorsi S., Cevini G., et al.An innovative on-board processor for the real-time GPR monitoring of railway substructure conditions.Proceedings of the 2007 4th International Workshop on Advanced Ground Penetrating Radar,2007,p284-288
    [60]Roberts R., Schutz A., et al.Characterizing railroad ballast using GPR: Recent experiences in the United States.Proceedings of the 2007 4th International Workshop on Advanced Ground Penetrating Radar,2007,p295-299
    [61]Zhao Taiyin, Zhou Zhengou.Railway substructure lacuna detection using a forward-looking SAR GPR.CIE International Conference of Radar Proceedings,2006,p4148302
    [62]Olhoeft Gary R..Working in a difficult environment: GPR sensing on the railroads.IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2005, Vol.3:108-111
    [63]Manacorda Guido, Morandi Davide, et al.A customized GPR system for railroad tracks verification.Proceedings of SPIE-The International Society for Optical Engineering, 2002,Vol.4758:719-723
    [64]G.S.Baker, H.M.Ambrose.Ground penetrating radar imaging of a 4th Century Roman Fort,Humayma, Jordan.International Workshop on Advanced Ground Penetrating Radar, Aula Magna Partenope, 2007, 54-59
    [65]Hugenschmidt J., Mastrangelo R..The inspection of large retaining walls using GPR.Proceedings of the 2007 4th International Workshop on Advanced Ground Penetrating Radar,2007,p267-271
    [66]Travassos X.L., Vieira D.A.G., Ida N., et al.Inverse Algorithms for the GPR Assessment of Concrete Structures.IEEE Transactions on Magnetics.2008,44(6):994-997
    [67]Liu Lanbo, Guo Tieshuan.Determining the condition of hot mix asphalt specimens in dry, water-saturated, and frozen conditions using GPR.Journal of Environmental and Engineering Geophysics,2003, 8(2):143-149
    [68]Grandjean G., Gourry J.C., Bitri A..Evaluation of GPR techniques for civil-engineering applications: study on a test site.Journal of Applied Geophysics,2000,45(3):141-156
    [69]Chen How-Wei, Kao Huei-Chui.GPR archaeological investigation in central Taiwan.Proceedings of SPIE-The International Society for Optical Engineering, 2000,Vol.4084:899-904
    [70]D.A.Noon, I.D.Longstaff, G.F.Stickley.Wideband quadrature error correction (using SVD) for stepped-frequency radar receivers.IEEE Transactions on Aerospace and Electronic Systems, 1999,35(4): 1444-1449
    [71]方广有,佐藤源之.频率步进探地雷达及其在地雷探测中的应用.电子学报,2005,33(3):436-439.
    [72]Marshall Bradley, Thomas Witten, et al.Anti-tank and side-attack mine detection with a forward-looking GPR.Proceedings of SPIE, Bellingham, WA, 2004, 5415:421-432
    [73]Wang Tsaipei, Keller James M., et al.Frequency subband processing and feature analysis of forward-looking ground-penetrating radar signals for land-mine detection.IEEE Transactions on Geoscience and Remote Sensing,2007,45(3):718-728
    [74]Sun Y., Li X., Li J..Practical landmine detector using forward-looking ground penetrating radar.Electronics Letters,2005,41(2):97-98
    [75]Sun Y., Li J..Time-frequency analysis for plastic landmine detection via forward-looking ground penetrating radar.IEE Proceedings: Radar, Sonar and Navigation,2003,150(4):253-261
    [76]Wang Yanwei, Li Xi, et al.Adaptive imaging for forward-looking ground penetrating radar.IEEE Transactions on Aerospace and Electronic Systems,2005,41(3):922-936
    [77]Wang Tsaipei, Sjahputera Ozy, et al.Feature analysis for forward-looking landmine detection using GPR.Proceedings of SPIE-The International Society for Optical Engineering, 2005.Vol.5794(2):1233-1244
    [78]Liu Guoqing, Wang Yanwei, et al.SAR imaging for a forward-looking GPR system.Proceedings of SPIE-The International Society for Optical Engineering, 2003, Vol.5089(1):322-333
    [79]Nguyen Lam, Ton Tuan, et al.Signal Processing Techniques for Forward Imaging Using Ultra-Wideband Synthetic Aperture Radar.Proceedings of SPIE-The International Society for Optical Engineering,2003,Vol.5083:505-518
    [80]Kositsky Joel.Results from a forward-looking GPR mine detection system.Proceedings of SPIE-The International Society for Optical Engineering,2000,Vol.4038(2):1077-1087
    [81]Kwan-Ho Lee.Development of four novel UWB antennas assisted by FDTD method dissertation: [Ph.D thesis].the Ohio State University,2004
    [82]Lestari A.A., Yulian D., et al.Improved bow-tie antenna for pulse radiation and its implementation in a GPR survey.Proceedings of the 2007 4th International Workshop on Advanced Ground Penetrating Radar,2007,p197-202
    [83]Wang Stanley Bo-Ting, Niknejad Ali M., Brodersen Robert W..Modeling omnidirectional small antennas for UWB applications.IEEE Antennas and Propagation Society, AP-S International Symposium (Digest),2004,Vol.2:1295-1298
    [84]Lampe Bernhard, Holliger Klaus.Resistively loaded antennas for ground-penetrating radar: A modeling approach.Geophysics,2005,70(3):K23-K32
    [85]Maksimovitch Ye., Mikhnev V., et al.UWB antenna array development for GPR applications.2007 6th International Conference on Antenna Theory and Techniques,2007,p348-350
    [86]方广有.无载波脉冲探地雷达天线及其实验研究.电波科学学报,1995,10(1,2):75-81
    [87]Uduwawala Disala, Norgren Martin, et al.A deep parametric study of resistor-loaded bow-tie antennas for ground-penetrating radar applications using FDTD.IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):732-742
    [88]Y.Yamaguchi, M.Mitsumoto, M.Sengoku, et al.Synthetic aperture FM-CW radar applied to the detection of objects buried in snowpack.IEEE Transactions on Geoscience and Remote Sensing, 1994,32(1): 11-18
    [89]T.Moriyama, H.Kasahara, Y.Yamaguchi, et al.Advanced polarimetric subsurface FM-CW radar.IEEE Transactions on Geoscience and Remote Sensing, 1998,36(3):725-731
    [90]S.Vitebskiy, L.Carin, M.A.Ressler, et al.Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement.IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):762-772
    [91]Xu Y., Narayanan R.M., et al.Polarimetric processing of coherent random noise radar data for buried object detection.IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):467-478
    [92]Xu Xiaojian, Narayanan Ram M..FOPEN SAR imaging using UWB step-frequency and random noise waveforms.IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4):1287-1300
    [93]Xu Xiaojian, Narayanan Ram M..A Comparative study of UWB FOPEN radar imaging using step-frequency and random noise waveforms.IEEE Antennas and Propagation Society, AP-S International Symposium,2000,Vol.4:1956-1959
    [94]Xu Xiaojian,Narayanan Ram M..Impact of Different Correlation Receiving Techniques on the Imaging Performance of UWB Random Noise Radar.International Geoscience and Remote Sensing Symposium,2003,Vol.7:4525-4527
    [95]Narayanan Ram M., Kumru Cihan.Implementation of fully polarimetric random noise radar.IEEE Antennas and Wireless Propagation Letters,2005,4(1):125-128
    [96]Bell Daryl C., Narayanan Ram M..Polarimetric ISAR imaging using a coherent ultrawideband random noise radar: Proceedings of SPIE,1999,Vol.3810:215-222
    [97]Garmatyuk Dmitriy S., Narayanan Ram M..Ultra-wideband continuous-wave random noise Arc-SAR.IEEE Transactions on Geoscience and Remote Sensing,2002,40(12):2543-2552
    [98]Axelsson Sune R.J.Noise radar using random phase and frequency modulation.IEEE Transactions on Geoscience and Remote Sensing,2004,42(11):2370-2384
    [99]Axelsson Stine R.J..Analysis of Random Step Frequency Radar and Comparison With Experiments.IEEE Transactions on Geoscience and Remote Sensing,2007,45(4):890-904
    [100]张先义,苏卫民,顾红,刘中.噪声超宽带成像雷达技术及其发展.现代雷达,2006,28(8):7-10
    [101]刘国岁,顾红,苏卫民.随机信号雷达.北京:国防工业出版社,2005
    [102]谢处方,饶克谨.电磁场与电磁波.北京:高等教育出版社,2006
    [103]李禹,粟毅,黄春琳,等.冲激雷达接收中的随机射频干扰抑制方法.电子与信息学报,2004,26(5):733-738
    [104]Rogers A.E.E., Salah J.E., Smythe D.L., et al.Interference temperature measurements from 70 to 1500 MHz in suburban and rural environments of the Northeast.IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks,2005,p1 19-123
    [105]Johnson Joel T., Gasiewski Albin J., Guner Baris,et al.Airborne radio-frequency interference studies at C-band using a digital receiver.IEEE Transactions on Geoscience and Remote Sensing,2006,44(7):1974-1984
    [106]Zhou Hao, Wen Biyang, Wu Shicai.Dense radio frequency interference suppression in HF radars.IEEE Signal Processing Letters, 2005, 12(5):361-364
    [107]Huang Xiaotao, Zhou Zhimin, Liang Diannong.Effects of RFI on UWB-SAR using LFM wavefonns.CIE International Conference of Radar Proceedings,2001,p631-633
    [108]Jun Y., Biyang W., Shicai W..Method to suppress radio-frequency interference in HF radars.Electronics Letters,2004,40(2):145-146
    [109]Timothy Miller, Lee Potter, John McCorkle.RFI suppression for ultra wideband radar.IEEE transactions on aerospace and electronic systems, 1997, 33(4):1142-1156
    [110]黄晓涛,梁甸农,匡纲要.UWB-SAR抑制RFI的ML参数估计方法.电子与信息学报.2001,23(6):569-576
    [111]黄晓涛,梁甸农.UWB-SAR抑制RFI技术的参数化方法.系统工程与电子技术.2000,22(6):94-97
    [112]黄晓涛,梁甸农,周智敏.基于TH神经网络的UWB-SAR抑制RFI方法.电子学报 .2000,28(9):23-26
    [113]Huang X., Liang D..Gradual RELAX algorithm for RFI suppression in UWB-SAR.Electronics Letters, 1999,35(22):1916-1917
    [114]Nguyen Lam, Ton Tuan, Wong David, et al.Adaptive coherent suppression of multiple wide-bandwidth RFI sources in SAR.Proceedings of SPIE-The International Society for Optical Engineering,2004,Vol.5427:1-16
    [115]Andreas Reigber, Laurent Ferro-Famil.Interference suppression in synthesized SAR images.IEEE Geoscience and Remote Sensing Letters,2005,2(1):45-49
    [116]董臻,梁甸农,黄晓涛.VHF/UHF UWB SAR基于通道均衡的RFI抑制方法.电子与信息学报,2008,30(3):550-553
    [117]Jin Tian, Zhou Zhimin, Song Qian, et al.UWB SAR RFI suppression based on region of support in 2-D wavenumber domain.Journal of Electronics(China),2007,24(4):503-508
    [118]周维,王赤,田茂,等.基于等效时间采样的探地雷达回波信号采样方法研究.雷达科学与技术.2004,2(1):43-47
    [119]Ivchenko V.G., Kalashnikov A.N., Challis R.E., et al.High-Speed digitizing of repetitive waveforms using accurate interleaved sampling.IEEE Transactions on Instrumentation and Measurement.2007.56(4):1322-1328
    [120]Lopera, Olga Slob, Evert C., et al.Filtering soil surface and antenna effects from GPR data to enhance landmine detection.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3):707-717
    [121]Potin, Delphine, Duflos, et al.Landmines ground-penetrating radar signal enhancement by digital filtering.IEEE Transactions on Geoscience and Remote Sensing,2006,44(9):2393-2406
    [122]R.Wu, A.Clement, J.li, et al.Adaptive ground bounce removal.Electronics Letters, 2001, 37(20):1250-1252
    [123]Van der Merwe, Andria, Gupta, Inder J..A Novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines.IEEE Transactions on Geoscience and Remote Sensing,2000,38(6):2627-2637
    [124]Abujarad, Fawzy, Jostingmeier, et al.Clutter removal for landmine using different signal processing techniques.Proceedings of the Tenth International Conference Ground Penetrating Radar, GPR 2004,Vol.2:697-700
    [125]Brian Karlsen, Helge B.D.S rensen, et al.Independent component analysis for clutter reduction in ground penetrating radar data.SPIE, 2002,Vol.4742:378-389
    [126]Abujarad Fawzy, Omar Abbas.GPR data processing using the component-separation methods PCA and ICA.IST 2006-Proceedings of the 2006 IEEE International Workshop on Imagining Systems and Techniques,2006,Vol.2006,p60-64
    [127]Dragana Carevic.Clutter reduction and detection of minelike objects in ground penetrating radar data using wavelets.Subsurface Sensing Technologies and Applications, 2000, 1(1):101-118
    [128]Luo Yuan, Fang Guang-You.GPR clutter reduction and buried target detection by improved Kalman filter technique.International Conference on Machine Learning and Cybernetics, 2005, p5432-5436
    [129]Van Kempen L., Sahli H..Signal processing techniques for clutter parameters estimation and clutter removal in GPR data for landmine detection.IEEE Workshop on Statistical Signal Processing Proceedings,2001,p158-161
    [130]Carevic, Dragana.Kalman filter-based approach to target detection and target-background separation in ground penetrating radar data.Proceedings of SPIE-The International Society for Optical Engineering, 1 999,Vol.3710:1284-1288
    [131]陈文超,师振盛,汪文秉,等.小波变换在去除探地雷达信号直达波的应用.电波科学学报.2000,15(3):352-357
    [132]李昂,蒋延生,张安学,等.自适应对消在去除探地雷达信号直达波的应用.电波科学学报,2004,19(2):223-227
    [133]张春城,孔令讲,周正欧.基于双曲线特征的浅地层探地雷达杂波抑制与合成孔径成像研究.电子与信息学报,2005,27(11):1790-1794
    [134]Kovalenko Vsevolod, Yarovoy Alexander G., Ligthart Leo P..A novel clutter suppression algorithm for landmine detection with GPR.IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3740-3750
    [135]Gao Qian, Li Tang, Wu, Renbiao.A novel KICA method for ground bounce removal with GPR.CIE International Conference of Radar Proceedings,2006,p4148379
    [136]Hu Jin-Feng, Zhou Zheng-Ou.A novel method for clutter reduction in the FLGPR measurements.2004 International Conference on Communications, Circuits and Systems,Vol.2:896-900
    [137]Carhoun Dean O..Adaptive clutter suppression for ground penetrating radar.Proceedings of SPIE-The International Society for Optical Engineering,2005,Vol.5794:1182-1191
    [138]Ossberger Gerald, Buchegger Thomas, et al.Adaptive ground clutter removal algorithm for ground penetrating radar applications in harsh environments.Sensing and Imaging, 2006,7(3):71-89
    [139]Abujarad Fawzy, Nadim Galal, Omar Abbas.Clutter reduction and detection of landmine objects in ground penetrating radar data using singular value decomposition (SVD).Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, 2005,Vol.2005:37-41
    [140]van der Merwe A., Gupta I.J., Peters L.Jr..Clutter reduction technique for GPR data from mine like targets.Proceedings of SPIE-The International Society for Optical Engineering, 1999, Vol.3710(II):1094-1105
    [141]Steinway William, Reidy Denis Michael.Clutter removal processing for improved mine detection using a frequency stepped GPR.Proceedings of SPIE-The International Society for Optical Engineering,2004,Vol.5415(2):896-904
    [142]Kolba Mark P., Jouny Ismail I.Clutter suppression and feature extraction for land mine detection using ground penetrating radar.IEEE Antennas and Propagation Society, AP-S International Symposium (Digest),2003,Vol.2:203-206
    [143]Karlsen Brian, Larsen Jan, et al.Comparison of PCA and ICA based clutter reduction in GPR systems for anti-personal landmine detection.IEEE Workshop on Statistical Signal Processing Proceedings, 2001,p 146-149
    [144]Sai Bin, Ligthart Leo P..Effective Clutter Removal for Detecting Non-Metallic Mines in Various Soil Fields.International Geoscience and Remote Sensing Symposium (IGARSS), 2003, Vol.2:764-766
    [145]Yarovoy A., Kovalenko V., Fogar, A..Impact of ground clutter on buried object detection by Ground Pentertaing Radar.International Geoscience and Remote Sensing Symposium (IGARSS), 2003,Vol.2:755-757
    [146]Yarovoy A.G..Monte-Carlo Simulations of Surface Clutter in GPR scenarios.International Geoscience and Remote Sensing Symposium,2003,Vol.1: 130-13 2
    [147]Sagues L., Lopez-Sanchez J.M., et al.Polarimetric radar interferometry for improved mine detection and surface clutter rejection.IEEE Transactions on Geoscience and Remote Sensing,2001,39(6):1271-1278
    [148]van der Kruk J., Slob E.C..Reduction of reflections from above surface objects in GPR data.Journal of Applied Geophysics,2004,55(3):271-278
    [149]Lars(?)on Erik G, Li Jian, et al.Removal of surface returns in ground-penetrating radar data.Proceedings of SPIE-The International Society for Optical Engineering, 2001, Vol.4394(2):764-775
    [150]Rappaport Carey M..Soil moisture and surface roughness effects in ground penetrating radar detection of land mines.IEEE MTT-S International Microwave Symposium Digest, 2006, p280-283
    [151]Jiaxue Liu, Renbiao Wu.Training method for ground bounce removal with ground penetrating radar.IEEE National Radar Conference-Proceedings, IEEE 2007 Radar Conference, 2007,p875-878
    [152]刘立业,粟毅,黄春琳,等.采用阻抗匹配抑制探地雷达中的地面杂波.现代雷达,2006, 28(1):55-60
    [153]高守传,黄春琳,粟毅.基于RLS横向滤波自适应抵消法的直达波抑制.信号处理,2004,20(6):566-571
    [154]Kao Chien-Ping, Li Jing, et al.Measurement of layer thickness and permittivity using a new multilayer model from GPR data.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8):2463-2470
    [155]Liu C.R., Li J., et al.New model for estimating the thickness and permittivity of subsurface layers from GPR data.IEE Proceedings: Radar, Sonar and Navigation,2002,149(6):315-318
    [156]Spagnolini Umberto.Permittivity measurements of multilayered media with monostatic pulse radar.IEEE Transactions on Geoscience and Remote Sensing, 1997,35(2):454-463
    [157]Arcone Steven A., Peapples Paige R., Liu Lanbo.Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide.Geophysics,2003,68(6):1922-1933
    [158]Jan van der Kruk.Properties of Surface Waveguides Derived From Inversion of Fundamental and Higher Mode Dispersive GPR Data.IEEE Transactions on Geoscience and Remote Sensing, 2006,44(10):2908-2915
    [159]Bastard Cedric Le, Baltazart Vincent, et al.Thin-pavement thickness estimation using GPR with high-resolution and superresolution methods.IEEE Transactions on Geoscience and Remote Sensing,2007,45(8):2511-2519
    [160]Rappaport Carey M..Accurate determination of underground GPR wavefront and B-scan shape from above-ground point sources.IEEE Transactions on Geoscience and Remote Sensing, 2007,45(8):2429-2434
    [161]Martin Eriksson, et at.Eye-tracking for detection of driver fatigue.Conference on Intelligent Transportation Systems, Proceedings, ITSC, 1997,p314-319
    [162]Brunzell, Hakan.Detection of shallowly buried objects using impulse radar.IEEE Transactions on Geoscience and Remote Sensing, 1999,37(2):875-886
    [163]Osumi Noriyoshi, Ueno Keiichi.Microwave holographic imaging of underground objects.IEEE Transactions on Antennas and Propagation, 1985,AP-33(2):152-159
    [164]孔令讲,周正欧.波速误差对浅地层探地雷达SAR算法影响的研究.电波科学学报,2005,20(6):819-823
    [165]张安学,蒋延生,汪文秉.探地雷达频率波数域速度估计和成像方法的实验研究.电子学报,2001,29(3):315-317
    [166]Golovko M.M.The Automatic Determination of Soil Permittivity Using the Response from a Subsurface Local Object.Second International Workshop, Ultrawideband and Ultrashort Impulse Signals Proceedings, UWBUSIS 2004,p248-250
    [167]孔令讲,周正欧.浅地层探地雷达波速测量方法的研究.电子学报,2002,30(9):1330-1332
    [168]V.Shiv Naga Prasad, B.Yegnanarayana.Finding Axes of Symmetry From Potential Fiels.IEEE Transactions on Image Processing, 2004, 13(12):1559-1566
    [169]胡进峰,孔令讲,周正欧.浅地层探地雷达波速估计和成像方法的研究.电子与信息学报,2006, 28(11):2003-2006
    [170]于景兰,王春和.探地雷达探测地下目标时的波速估计.地球物理学进展,2003,18(3):477-480
    [171]胡进峰,周正欧,等.一种前视探地雷达波速估计方法.电子学报,2007, 35(6):1113-1117
    [172]Sava Paul C., Biondi Biondo, Etgen John.Wave-equation migration velocity analysis by focusing diffractions and reflections.Geophysics,2005,70(3):U 1 9-U27
    [173]Feng Xuan, Zhou Zheng-Shu, et al.Estimation of ground surface topography and velocity model by SAR-GPR and its application to landmine detection.Proceedings of SPIE-The International Society for Optical Engineering,2005,Vol.5794:514-521
    [174]Zhou Hui, Sato Motoyuki, Liu Hongjun.Migration velocity analysis and prestack migration of common-transmitterGPRdata.IEEETransactionsonGeoscienceand Remote Sensing,2005,43(I ):86-91
    [175]Hayakawa Hideki, Kawanaka Akira.Radar imaging of underground pipes by automated estimation of velocity distribution versus depth.Journal of Applied Geophysics, 1998,40(1):37-48
    [176]Walker Paul D., Bell Mark R..Subsurface permittivity estimation from ground-penetrating radar measurements.IEEE National Radar Conference-Proceedings,2000,p341-346
    [177]Murray Wayne,Lewis Chris, Williams Chris.Measurement of near surface permittivity and its variations.International Geoscience and Remote Sensing Symposium, 1998, Vol.4:2084-2085
    [178]Scott Waymond R.Jr., Smith Glenn S..Measured electrical constitutive parameters of soil as functions of frequency and moisture content.IEEE Transactions on Geoscience and Remote Sensing, 1992,30(3):621-623
    [179]张安学,蒋延生,等.探地雷达有效口径和扫描点间距的实验研究.电波科学学报,2001,16(2):256-259
    [180]Waleed Al-Nuaimy, Yi Huang, et al.Automatic Detection of Hyperbolic Signatures in Ground Penetrating Radar Data.Proceedings of SPIE-The International Society for Optical Engineering,2001,4491:p327-335.
    [181]陈德莉,黄春琳,粟毅.用统计方法和Hough变换进行GPR目标检测与定位.电子学报,2004,32(9):1468-1471
    [182]Yuji Nagashima, Hirotaka Yoshida, et al.Single-Unit Underground Radar Utilizing Zero-Crossed Synthetic Aperture.IEICE Trans.Commun,1993,E76B(10):1290-1296
    [183]Hansen Kim V., Toft Peter A.Fast curve estimation using preconditioned generalized Radon transform.IEEE Transactions on Image Processing, 1996,5(12): 1651-1661
    [184]Wu Renbiao, Gu Kunlong, Li Jian, et al.Propagation velocity uncertainty on GPR SAR processing.IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):849-861
    [185]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2006
    [186]修志杰,陈洁,方广有,等.基于 F-K偏移及最小熵技术的探地雷达成像法.电子与信息学报,2007,29(4):827-830
    [187]金添,周智敏.车载前视地表穿透SAR多视处理中的关键技术研究.电子与信息学报,2008, 30(4):925-928
    [188]金添,周智敏,常文革.基于两层均匀介质的GPEN SAR地下目标成像方法及其性能分析.信号处理,2006,22(2):238-243
    [189]Jin T., Zhou Z., Chang W..Modified wavefront reconstruction imaging formation for stand-off GPEN SAR.Electronics Letters,2005,41(10):616-618
    [190]胡进峰,周正欧.前视探地雷达合成孔径成像方法的研究.电子与信息学报,2007, 28(12):2219-2223
    [191]Fan Yong, Zhou Zhengou, et al.SAR imaging algorithm based on nonstationary filter for FLGPR.Chinese Journal of Electronics,2008,17(1):173-177
    [192]张春城,周正欧.基于Stolt偏移的探地雷达合成孔径成像研究.电波科学学报,2004, 19(3):316-320
    [193]雷文太,粟毅,黄春琳.表层穿透雷达递归反向投影成像算法.电子学报,2005,33(12):2115-2119
    [194]冯德山,戴前伟.探地雷达小波域三维波动方程偏移.地球物理学报,2008,51(2):566-574
    [195]张安学,蒋延生,汪文秉,等.探地雷达扫频三维成像方法.电波科学学报,2000,15(3):313-316
    [196]张安学,蒋延生,汪文秉.圆周探地雷达测量和成像方法的研究.电子学报,2002,30(6):853-856
    [197]Leuschen C.J., Plumb R.G..A matched-filter-based reverse-time migration algorithm for ground-penetratingradardata.IEEETransactionsonGeoscienceand Remote Sensing,2001,39(5):929-936
    [198]Streich Rita, Van Der Kruk Jan.Accurate imaging of Multicomponent GPR data based on exact radiation patterns.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1):93-103
    [199]Milisavljevic Nada, Yarovoy Alexander G..An effective algorithm for subsurface SAR imaging.IEEE Antennas and Propagation Society, AP-S International Symposium (Digest),2002,Vol.4:314-317
    [200] Wong David, Carin Lawrence. Analysis and processing of ultra wide-band SAR imagery for buried landmine detection. IEEE Transactions on Antennas and Propagation, 1998,46(11): 1747-1748
    [201] Gilmore Colin, Jeffrey Ian, Lovetri Joe. Derivation and comparison of SAR and frequency-wavenumber migration within a common inverse scalar wave problem formulation. IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1454-1460
    [202] Yigit Enes, Demirci Sevket, Ozdemir Caner. Ground penetrating radar image focusing using frequency-wavenumber based synthetic aperture radar technique. International Conference on Electromagnetics in Advanced Applications,2007,p344-347
    [203] Gurbuz Ali Cafer, McClellan James H., et al. Imaging of subsurface targets using a 3D quadtree algorithm. IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings,2005,Vol.4:Ⅳ1105-Ⅳ1108
    [204] Oden Charles P., Powers Michael H., et al. Improving GPR image resolution in lossy ground using dispersive migration. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(8):2492-2499
    [205] Gu K., Wang G, Li J.. Migration based SAR imaging for ground penetrating radar systems. IEE Proceedings: Radar, Sonar and Navigation,2004,151(5):317-325
    [206] Feng Xuan, Kobayashi Takao, Sato Motoyuki. Migration trajectory and migration aperture of SAR-GPR in rough ground area. Proceedings of SPIE - The International Society for Optical Engineering,2006,Vol.6217(Ⅱ):621725
    [207] Greenhalgh Stewart A., Marescot Laurent. Modeling and migration of 2-D georadar data: A stationary phase approach. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(9):2421-2429
    [208] Sacchi Mauricio D., Velis Danilo R., Cominguez Alberto H.. Minimum entropy deconvolution with frequency-domain constraints. Geophysics,1994,59(6):938-945
    [209] D. Bevc, J.L. Black, G Palacharla. Plumes: Response of time migration to lateral velocity variation. Geophysics,1995,60(4): 1118-1127
    [210] Alaei Behzad. An integrated procedure for migration velocity analysis in complex structures of thrust belts. Journal of Applied Geophysics,2006,59(2):89-105
    [211] Fei Weihong, George A. McMechan. CRP-based seismic migration velocity analysis. Geophysics, 2006, 71(3):U21-U28
    [212] Xu Xiaoyin, Miller Eric L., et al. Minimum entropy regularization in frequency-wavenumber migration to localize subsurface objects. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(8):1804-1812
    [213] Xu Xiaoyin, Miller Eric L.. Entropy optimized contrast stretch to enhance remote sensing imagery. Proceedings - International Conference on Pattern Recognition, 2002, Vol.16(3):915-917
    [214] Xu Xiaoyin, Miller Eric L.. Optimization of migration method to locate buried object in lossy medium. International Geoscience and Remote Sensing Symposium,2002,Vol.1:337-339
    [215] Xu Xiaoyin, Miller Eric L.. A statistical method to localize buried landmines from GPR array measurement. Proceedings of SPIE - The International Society for Optical Engineering, 2001,Vol.4394(2):742-753
    [216] Zhao Taiyin, Zhou Zhengou. Railroad Tracks Verification Using a Forward-Looking SAR GPR. Journal of Electronic Science and Technology of China,2007,5(2): 167-171
    [217] Enders A.Robinson. Migration of seismic data by the WKBJ method, Proceedings of the IEEE, 1986,74(3):428-439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700