综合孔径微波辐射计天线阵排列优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波辐射计在地球遥感、深空探测、制导、安检、医疗等领域有着广泛应用。上世纪80年代末发展起来的综合孔径微波辐射计(ASR)引入射电天文学“孔径综合”的思想,通过阵列稀疏、相关接收等技术,有效解决了传统微波辐射计口径有限、机械扫描困难等问题,极大提高了观测的空间分辨率,因而成为近年来被动微波遥感的一个发展方向。
     阵列排列优化是ASR的一项关键技术。它通过基线设计和组合,决定可见度函数采样分布,而可见度函数采样分布又决定图像重建的质量。本文着重研究综合孔径微波辐射计的天线阵稀疏排列优化方法:包括基于分辨率最佳的最小冗余天线阵排列优化方法;基于系统灵敏度最佳的天线阵排列优化方法。在此基础上,设计并实现了一种新型的综合孔径毫米波辐射计天线阵物理结构;最后,对最小冗余阵在其它领域的应用进行了拓展研究。本文主要内容包括:
     在总结大阵元数低冗余线阵(LRLA)排列的一般结构的基础上,提出了一种排列结构与蚁群优化(ACO)相结合的约束搜索算法,其思想是利用LRLA排列的一般结构缩小解空间,在大大缩减求解规模从而减少计算时间的同时,使所得排列具有较低的冗余度。进一步地,归纳出多种适合任意阵元数LRLA排列的解析解。
     针对U、T型阵冗余度较大的问题,提出了一种矩形平面阵排列方法。从理论上证明了该方法构造的二维稀疏阵UV覆盖的完备性,导出了由该方法构造的二维稀疏阵的冗余度理论上限,并证明其优于U、T型阵。针对均匀圆环阵(UCA)基线长度存在大量冗余的问题,以最小化UCA基线长度冗余为优化目标,提出了两种稀疏优化方法:一种是基于受限差基的半圆环阵稀疏方法;一种是基于循环差集的全圆环阵稀疏方法。这两种方法均可大大减小阵元数,节约硬件成本;且均可解析地求出稀疏阵元位置,适于任意大阵元数的圆环阵稀疏优化。运用微粒群(PSO)算法优化圆环阵阵元位置,以改善圆环阵UV覆盖。设计了一种新的衡量圆环阵UV覆盖均匀程度的目标函数,与现有文献采用的目标函数相比,其计算复杂度大大降低,且能更准确地度量圆环阵UV覆盖的均匀程度。
     分析了冗余基线对ASR灵敏度的影响,并定义阵列退化因子(DF)来度量这种影响;以最小化DF为优化目标,提出两种寻求最小退化阵(MDA)以实现系统最佳灵敏度的方法:一是基于贪婪思想的构建性算法,二是基于模拟退火(SA)的随机优化方法,并比较两种算法的性能。为克服阵列填充率较大时DF优化缓慢的问题,提出增广最大基线的思想。进一步地,导出了DF的下界。仿真和实验验证了MDA设计对系统灵敏度的改善。
     提出了一种一维实孔径/一维综合孔径的综合孔径毫米波辐射计天线阵结构:共享偏置抛物柱面的16单元毫米波稀疏天线阵。每个ASR天线单元由一个馈源喇叭和柱形反射面组成,提供系统所需的扇形波束。这些天线单元排成最小冗余线阵,共享同一个反射面。理论计算和测量结果均表明,该天线阵具有窄主瓣、低旁瓣、低驻波比的特点,适合高分辨率被动微波成像应用。
     将最小冗余阵(MRA)的研究拓展到其它应用领域。以实现最小冗余MIMO虚拟阵为优化目标,提出了两种快速构造MIMO雷达天线阵的方法:一种是基于差基和循环差集的组合方法;一种是差基/循环差集约束的SA随机搜索方法。数值计算验证了这两种方法的有效性。还研究了MRA在波束形成中的应用:由阵列自相关函数(Coarray)与波束形成方向图之间的傅氏变换对出发,建立了方向图旁瓣分布与Coarray特性之间的定量关系。进一步地,导出了MRA峰值旁瓣电平(PSL)的理论上界。
During the past few decades, there has been growing interest in the use of microwave radiometers for remote sensing of the Earth, space exploration, navigation, survillance and medical imaging. In order to provide high spatial resolution without requiring the very large and massive scanning antenna of a real-aperture system, aperture synthesis radiometers (ASR) are proposed. ASR can synthesize a large aperture by sparsely arranging a number of small aperture antennas and cross-correlating of these antenna pairs.
     As a crucial technique for ASRs, antenna array design plays an important role in radiometric imaging. In this thesis, several aspects of antenna array design in ASR are addressed, including different design criterions, new placement algorithms as well as corresponding array configurations, novel design of millimeter wave array antenna and so on. The main contributions of the thesis are presented as follows:
     An ant-colony-optimization-based method exploiting the general structure of low-redundancy linear arrays (LRLAs) is proposed, which can ensure obtaining large LRLAs while greatly reducing the size of the search space, therefore greatly reducing computation time. Based on the method, several analytical patterns for LRLAs are further derived, which can yield various array configurations with very low redundancy in nearly zero computation time.
     A combinatorial method for optimal thinned rectangular arrays is proposed. The completeness of (u,v) coverage provided by the thinned rectangular array constructed by the method is proved and the theoretical upper bound of the array's redundancy is derived, which is superior to that of U or T array.
     Two combinatorial methods for optimal thinned circular arrays are proposed to achieve the least redundancy in baseline length (modulus of baseline vector). One is half-circle thinning based on the restricted difference basis, the other is full-circle thinning based on the cyclic difference set (CDS). Both methods can greatly reduce the number of antennas and channels and provide analytical solutions for the element positions of thinned circular arrays.
     A particle-swarm-optimization-based method is proposed to optimize the element locations of the circular array for the uniform (u,v) coverage. By designing an effective objective function for the optimization procedure, the computational complexity is greatly reduced and more uniform (u,v) coverage is achieved compared to the previous methods in the literature.
     The minimum degradation array (MDA) is suggested for the optimum radiometric sensitivity of ASR (△TASR). Aiming at minimizing DF which characterizes the effect of redundant baselines on△TASR, two methods are proposed to search for MDA:one is a greedy constructive algorithm; the other is a simulated-annealing-based method. Numerical comparison of both methods'performance is presented. To further improve DF especially for a densely populated array, a concept of augmented maximum baseline (CAMB) is proposed. Also, the lower bound of DF is derived. Simulation and experiment results demonstrate that the proposed MDA design can ensure the optimum sensitivity of ASR.
     A novel antenna array for ASR prototype is presented, which is a sparse antenna array with an offset parabolic cylinder reflector at millimeter wave band. The characterization of the whole antenna array architecture and each part of it are detailed. All measured results indicate that the antenna array performs well with narrow main beamwidth, low peak sidelobe level and small VSWR, which are all desired for passive imaging radiometer.
     Research on minimum redundancy array (MRA) is also extended to other fields like beamforming and MIMO radars. Antenna array design in minimum redundancy MIMO radars is addressed and two methods are proposed to achieve the minimum redundancy virtual array:one is the combinatorial method based on difference bases and CDSs; the other is the simulated-annealing-based method incorperating difference bases and CDSs as a-priori knowledge. Numerical studies show the effectiveness of both methods. Also, based on the Fourier properties of arrays with optimal coarray properties, the coarray properties of MRAs with minimum sidelobe level are presented for the first time. Further, the upper bound of the peak sidelobe level (PSL) of an MRA is derived.
引文
[1]F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing Fundamentals and Radiometry vol.1. Massachusetts:Addison-Wesley Publishing Company,1981.
    [2]L. Yujiri, M. Shoucri, and P. Moffa, "Passive millimeter wave imaging," Microwave Magazine, IEEE, vol.4, pp.39-50,2003.
    [3]王晓海 李浩,“国外星载微波辐射计应用现状及未来发展趋势,”中国航天,pp.16-20,2005.
    [4]U. R. Kraft, "Two-dimensional aperture synthesis radiometers in a low earth orbit mission and instrument analysis," in Geoscience and Remote Sensing Symposium, 1996. IGARSS'96.'Remote Sensing for a Sustainable Future.', International,1996, pp.866-868 vol.2.
    [5]D. M. Le Vine, "Synthetic aperture radiometer systems," Microwave Theory and Techniques, IEEE Transactions on, vol.47, pp.2228-2236,1999.
    [6]C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M. Le Vine, "Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth," Geoscience and Remote Sensing, IEEE Transactions on, vol.26, pp.597-611,1988.
    [7]C. T. Swift, D. M. LeVine, and C. S. Ruf, "Aperture synthesis concepts in microwave remote sensing of the Earth," Microwave Theory and Techniques, IEEE Transactions on, vol.39, pp.1931-1935,1991.
    [8]吴季,刘浩,孙伟英,姜景山,“综合孔径微波辐射计的技术发展及其应用展望,”遥感技术与应用,vol.20,pp.24-29,2005.
    [9]A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy,2nd ed. New York:John Wiley & Sons, Inc.,2001.
    [10]王绶琯,吴盛殷,崔振兴,射电天文方法.北京:科学出版社,1988.
    [11]向德琳,射电天文观测.北京:科学出版社,1990.
    [12]汪定伟,王俊伟,王洪峰,智能优化方法.北京:高等教育出版社,2007.
    [13]黄友锐,智能优化算法及其应用.北京:国防工业出版社,2008.
    [14]M. Ishiguro, "Minimum redundancy linear arrays for a large number of antennas," Radio Sci., vol.15, pp.1163-1170,1980.
    [15]K. A. Blanton and J. H. McClellan, "New search algorithm for minimum redundancy linear arrays," in Acoustics, Speech, and Signal Processing,1991. ICASSP-91.,1991 International Conference on,1991, pp.1361-1364 vol.2.
    [16]Y. Lee and S. U. Pillai, "An algorithm for optimal placement of sensor elements," in Acoustics, Speech, and Signal Processing,1988. ICASSP-88.,1988 International Conference on,1988, pp.2674-2677 vol.5.
    [17]C. S. Ruf, "Numerical annealing of low-redundancy linear arrays," Antennas and Propagation, IEEE Transactions on, vol.41, pp.85-90,1993.
    [18]D. A. Linebarger, "A fast method for computing the coarray of sparse linear arrays," Antennas and Propagation, IEEE Transactions on, vol.40, pp.1109-1112, 1992.
    [19]B. Wichmann, "A note on restricted difference bases," J. Lon. Math. Soc., vol.38, pp.465-466,1963.
    [20]D. Pearson, S. U. Pillai, and Y. Lee, "An algorithm for near-optimal placement of sensor elements," Information Theory, IEEE Transactions on, vol.36, pp. 1280-1284,1990.
    [21]D. A. Linebarger, I. H. Sudborough, and I. G. Tollis, "Difference bases and sparse sensor arrays," Information Theory, IEEE Transactions on, vol.39, pp.716-721, 1993.
    [22]L. E. Kopilovich, "Minimization of the number of elements in large radio interferometers," R. Astron. Soc., pp.544-546,1995.
    [23]A. Camps, A. Cardama, and D. Infantes, "Synthesis of large low-redundancy linear arrays," Antennas and Propagation, IEEE Transactions on, vol.49, pp.1881-1883, 2001.
    [24]A. Camps, "Application of interferometric radiometry to earth observation," in Department of Signal Theory and Communications. vol. Ph.D Barcelona, Spain: Univ. Politecnica de Catalunya,1996.
    [25]L. E. Kopilovich, "New approach to constructing two-dimensional aperture synthesis systems," Radar and Signal Processing, IEE Proceedings F, vol.139, pp. 365-368,1992.
    [26]L. E. Kopilovich and L. G. Sodin, "Aperture optimization of telescopes and interferometers:A combinatorial approach," Astron. Astrophys. Suppl. Ser., pp. 177-185,1996.
    [27]R. M. Mersereau, "The processing of hexagonally sampled two-dimensional signals," Proceedings of the IEEE, vol.67, pp.930-949,1979.
    [28]K. Sunghyun, C. Junho, P. Hyuk, L. Hojin, K. Yonghoon, and K. Gum-sil, "Point target angular resolution in near field for Ka-band interferometric synthetic aperture radiometer with sub-Y-type array configuration," in Proceedings of IGARSS,2004, pp.2234-2236.
    [29]L. Ho-Jin, P. Hyuk, K. Sung-Hyun, K. Yong-Hoon, and K. Geum-Sil, "Evaluation of angular resolution in near field using two point targets for Ka-band interferometric synthetic aperture radiometer with sub-Y-type array configuration," in Proceedings of IGARSS,2005, pp.4921-4924.
    [30]A. B. Tanner, W. J. Wilson, P. P. Kangaslahti, B. H. Lambrigsten, S. J. Dinardo, J. R. Piepmeier, C. S. Ruf, S. Rogacki, S. M. Gross, and S. Musko, "Prototype development of a geostationary synthetic thinned aperture radiometer, GeoSTAR," in Proceedings of IGARSS,2004, pp.1256-1259.
    [31]L. E. Kopilovich, "Configuration of a multielement interferometer covering hexagonal domains in the spatial-frequency plane," Astron.& Astrophys., pp. 758-760,2001.
    [32]L. G. Sodin and L. E. Kopilovich, "Hexagonal configuration of cross-correlation interferometers," Astron.& Astrophys., pp.747-748,2001.
    [33]L. G. Sodin and L. E. Kopilovich, "Hexagonal arrays for radio interferometers," Astron.& Astrophys., pp.1149-1152,2002.
    [34]Y L. Chow, "Comparison of some correlation array configurations for radio astronomy," Antennas and Propagation, IEEE Transactions on, vol.18, pp. 567-569,1970.
    [35]E. Keto, "The Shapes of Cross-correlation Interferometers," The Astrophysical Journal, pp.843-852,1997.
    [36]T. J. Cornwell, "A novel principle for optimization of the instantaneous Fourier plane coverage of correction arrays," Antennas and Propagation, IEEE Transactions on, vol.36, pp.1165-1167,1988.
    [37]何云涛,江月松,刘广达,“基于遗传算法的光综合孔径圆周阵优化,”光学学报,vol.27,pp.1611-1616,2007.
    [38]J. Nanbo and Y. Rahmat-Samii, "Analysis and Particle Swarm Optimization of Correlator Antenna Arrays for Radio Astronomy Applications," Antennas and Propagation, IEEE Transactions on, vol.56, pp.1269-1279,2008.
    [39]M. Jirousek, M. Peichl, A. Voegele, and H. A. Suess, "A multi-frequency microwave aperture synthesis radiometer for high-resolution imaging," in Geoscience and Remote Sensing Symposium,2004. IGARSS'04. Proceedings. 2004 IEEE International,2004, pp.2222-2225 vol.3.
    [40]M. Jirousek, M. Peichl, and H. Suess, "High-resolution spectral radiometer imaging system," in Microwave Radiometry and Remote Sensing of the Environment,2008. MICRORAD 2008,2008, pp.1-4.
    [41]D. M. Le Vine, M. Kao, C. T. Swift, A. Griffis, and A. B. Tanner, "Initial Results In The Development Of A Synthetic Aperture Microwave Radiometer," Geoscience and Remote Sensing, IEEE Transactions on, vol.28, pp.614-619,1990.
    [42]D. M. Le Vine, C. T. Swift, and M. Haken, "Development of the synthetic aperture microwave radiometer, ESTAR," Geoscience and Remote Sensing, IEEE Transactions on, vol.39, pp.199-202,2001.
    [43]C. Ruf, C. Principe, T. Dod, B. Gosselin, B. Monosmith, S. Musko, S. Rogacki, A. Stewart, and Z. Zhaonan, "Lightweight rainfall radiometer STAR aircraft sensor," in Geoscience and Remote Sensing Symposium,2002. IGARSS'02.2002 IEEE International,2002, pp.850-852 vol.2.
    [44]R. B. Gosselin, S. E. Seufert, and L. R. Dod, "Design of a resonant edge-slot waveguide array for the Lightweight Rainfall Radiometer (LRR)," in Geoscience and Remote Sensing Symposium,2003. IGARSS'03. Proceedings.2003 IEEE International,2003, pp.509-511 vol.1.
    [45]D. Xiaolong, W. Ji, Z. Su Yun, S. Bo, and J. Jingshan, "The design and implementation of CAS C-band interferometric synthetic aperture radiometer," in Proceedings of IGARSS,2000, pp.866-868 vol.2.
    [46]L. Hao, W. Ji, B. Shouzheng, L. Jie, Y. Jingye, Z. Suyun, Z. Shifeng, J. Changhong, and W. Qiong, "The CAS airborne X-band synthetic aperture radiometer:system configuration and experimental results," in Proceedings of IGARSS,2004, pp. 2230-2233 vol.3.
    [47]H. Jian and G. Tiguo, "A novel millimeter wave synthetic aperture radiometer passive imaging system," in Proc. IEEE ICMMT 2004, International Conference on Microwave and Millimeter Wave Technology,2004, pp.414-417.
    [48]B. Laursen and N. Skou, "A spaceborne synthetic aperture radiometer simulated by the TUD demonstration model," in Proceedings of IGARSS,1994, pp.1314-1316.
    [49]M. Martin-Neira, Y. Menard, J. M. Goutoule, and U. Kraft, "MIRAS, a two-dimensional aperture synthesis radiometer," in Proceedings of IGARSS,1994, pp.1323-1325.
    [50]S. Ribo, M. Martin-Neira, I. Cabeza, S. Tauriainen, and N. Duffo, "MIRAS Airborne Demonstrator," in IEEE MicroRad,2006, pp.45-49.
    [51]D. M. Le Vine and M. Haken, "RFI at L-band in synthetic aperture radiometers," in Proceedings of IGARSS,2003, pp.1742-1744.
    [52]D. M. Le Vine, M. Haken, and C. T. Swift, "Development of the synthetic aperture radiometer ESTAR and the next generation," in Geoscience and Remote Sensing Symposium,2004. IGARSS'04. Proceedings.2004 IEEE International,2004, pp. 1260-1263 vol.2.
    [53]K. Rautiainen, H. Valmu, P. Jukkala, G. Moren, and M. Hallikainen, "Four-element prototype of the HUT interferometric radiometer," in Geoscience and Remote Sensing Symposium,1999. IGARSS'99 Proceedings. IEEE 1999 International, 1999, pp.234-236 vol.1.
    [54]K. Rautiainen, R. Butora, T. Auer, J. Kettunen, J. Kainulainen, I. Mononen, D. Beltrami, and Hallikainen, "Development of airborne aperture synthetic radiometer (HUT-2D)," in Proceedings of IGARSS,2003, pp.1232-1234 vol.2.
    [55]J. Kainulainen, K. Rautiainen, S. Tauriainen, T. Auer, J. Kettunen, and M. Hallikainen, "First 2-D Interferometric Radiometer Imaging of the Earth From an Aircraft," Geoscience and Remote Sensing Letters, IEEE, vol.4, pp.241-245, 2007.
    [56]K. Rautiainen, J. Kainulainen, T. Auer, J. Pihlflyckt, J. Kettunen, and M. T. Hallikainen, "Helsinki University of Technology L-Band Airborne Synthetic Aperture Radiometer," Geoscience and Remote Sensing, IEEE Transactions on, vol.46, pp.717-726,2008.
    [57]A. B. Tanner, W. J. Wilson, B. H. Lambrigsten, S. J. Dinardo, S. T. Brown, P. P. Kangaslahti, T. C. Gaier, C. S. Ruf, S. M. Gross, B. H. Lim, S. B. Musko, S. Rogacki, and J. R. Piepmeier, "Initial Results of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) Demonstrator Instrument," Geoscience and Remote Sensing, IEEE Transactions on, vol.45, pp.1947-1957,2007.
    [58]W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, The Art of Scientific Computing,3rd ed. New York:Cambridge Univ. Press,2007.
    [59]袁亚湘 孙文瑜,最优化理论与方法.北京:科学出版社,1997.
    [60]傅英定,成孝予,唐应辉,最优化理论与方法.北京:国防工业出版社,2008.
    [61]S. Kirkpatrick, C. D. Gelatt, and M. p. Vecchi, "Optimization by simulated annealing," Sci., vol.220, pp.671-680,1983.
    [62]康立山,谢云,尤矢勇,罗祖华,非数值并行算法(第一册)——模拟退火算法.北京:科学出版社,1998.
    [63]D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:Addison-Wesley,1989.
    [64]M. Dorigo and T. Stutzle, Ant Colony Optimization. Cambridge, MA:MIT Press, 2004.
    [65]J. Kennedy and R. Eberhart, "Particle swarm optimization," in Neural Networks, 1995. Proceedings., IEEE International Conference on,1995, pp.1942-1948 vol.4.
    [66]曾建潮,介婧,崔志华,微粒群算法.北京:科学出版社,2004.
    [67]K. Socha and M. Dorigo, "Ant colony optimization for continuous domains," Eur. J. Open Res., vol.185, pp.1155-1173,2008.
    [68]L. D. Baumert, Cyclic Difference Sets. New York:Springer-Verlag,1971.
    [69]J. M. Hall, Combinatorial Theory,2nd ed. New York:Wiley,1986.
    [70]靳蕃 陈志,组合编码原理及应用.上海:上海科学技术出版社,1995.
    [71]K. COOLSAET, "Cyclic difference sets," http://www.inference.phy.cam.ac.uk/cds, 2003.
    [72]C. Ding, T. Helleseth, and K. Y. Lam, "Several classes of binary sequences with three-level autocorrelation," IEEE Trans. Inf. Theory, vol.45, pp.2606-2612, 1999.
    [73]K. T. Arasu, C. Ding, T. Helleseth, P. V. Kumar, and H. M. Martinsen, "Almost difference sets and their sequences with optimal autocorrelation," IEEE Trans. Inf. Theory, vol.47, pp.2934-2943,2001.
    [74]R. J. Turyn, "Character sums and difference sets," Pacific J. Math., vol.15, pp. 319-346,1965.
    [75]L. E. Kopilovich and L. G. Sodin, "Two-dimensional aperiodic antenna arrays with a low sidelobe level," Microwaves, Antennas and Propagation, IEE Proceedings H, vol.138, pp.233-237,1991.
    [76]D. G. Leeper, "Isophoric arrays-massively thinned phased arrays with well-controlled sidelobes," Antennas and Propagation, IEEE Transactions on, vol. 47, pp.1825-1835,1999.
    [77]L. E. Kopilovich, "Square Array Antennas Based on Hadamard Difference Sets," Antennas and Propagation, IEEE Transactions on, vol.56, pp.263-266,2008.
    [78]G. Oliveri, M. Donelli, and A. Massa, "Linear Array Thinning Exploiting Almost Difference Sets," Antennas and Propagation, IEEE Transactions on, vol.57, pp. 3800-3812,2009.
    [79]L. Redei and A. Renyi, "On the representation of 1,2,...,n by differences (in Russian)," Mat. Sbornik (Recueil Math.), vol.66 (NS 24), pp.385-389 1949.
    [80]J. Leech, "On the representation of 1,2,...,n by differences " J. London Math. Soc., vol.31, pp.160-169,1956.
    [81]M. J. E. Golay, "Notes on the representation of 1,2,...,n by differences," J. Lon. Math. Soc., vol.4, pp.729-734,1972.
    [82]J. Miller, "Difference bases, three problems in additive number theory," in Computer in Number Theory London:Academic Press,1971, pp.229-322.
    [83]S. Caorsi, A. Lommi, A. Massa, and M. Pastorino, "Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets," Antennas and Propagation, IEEE Transactions on, vol.52, pp.1116-1121,2004.
    [84]M. Donelli, A. Martini, and A. Massa, "A Hybrid Approach Based on PSO and Hadamard Difference Sets for the Synthesis of Square Thinned Arrays," Antennas and Propagation, IEEE Transactions on, vol.57, pp.2491-2495,2009.
    [85]I. Corbella, N. Duffo, M. Vall-llossera, A. Camps, and F. Torres, "The visibility function in interferometric aperture synthesis radiometry," IEEE Transactions on Geoscience and Remote Sensing, vol.42, pp.1677-1682,2004.
    [86]R. A. Haubrich, "Array Design," Bull. Seismol. Soc. Am., vol.58, pp.977-991, June 1968.
    [87]R. T. Hoctor and S. A. Kassam, "The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging," Proceedings of the IEEE, vol.78, pp.735-752,1990.
    [88]R. J. Kozick and S. A. Kassam, "Coarray synthesis with circular and elliptical boundary arrays," Image Processing, IEEE Transactions on, vol.1, pp.391-405, 1992.
    [89]A. Camps, I. Corbella, J. Bara, and F. Torres, "Radiometric sensitivity computation in aperture synthesis interferometric radiometry," Geoscience and Remote Sensing, IEEE Transactions on, vol.36, pp.680-685,1998.
    [90]L. Kogan, "Optimizing a large array configuration to minimize the sidelobes," Antennas and Propagation, IEEE Transactions on, vol.48, pp.1075-1078,2000.
    [91]J. Bara, A. Camps, F. Torres, and I. Corbella, "The correlation of visibility noise and its impact on the radiometric resolution of an aperture synthesis radiometer," Geoscience and Remote Sensing, IEEE Transactions on, vol.38, pp.2423-2426, 2000.
    [92]R. Butora and A. Camps, "Noise maps in aperture synthesis radiometric images due to cross-correlation of visibility noise," Radio Sci., vol.38, pp.1067-1074, 2003.
    [93]R. M. Hjellming, "The Design of Aperture Synthesis Arrays," in Synthesis imaging in radio astronomy, ASP Conference Series,1989, pp.477-509.
    [94]M. A. Holdaway and T. T. Helfer, "Interferometric array design," in Synthesis Imaging in Radio Astronomy Ⅱ, ASP Conference Series,1999, pp.537-563.
    [95]王书振,日像仪天线阵系统设计研究:[博士学位论文].机械制造及其自动化.西安电子科技大学,2005.
    [96]A. T. Moffet, "Minimum-redundancy linear arrays," Antennas and Propagation, IEEE Transactions on, vol.16, pp.172-175,1968.
    [97]S. D. Bedrosian, "Nonuniform linear arrays:Graph-theoretic approach to minimum redundancy," Proceedings of the IEEE, vol.74, pp.1040-1043,1986.
    [98]卢军,林士杰,张祖荫,黄铁侠,“获得最小剩余度线性阵列的排列方法,”华中理工大学学报,vol.23,pp.64-69,1995.
    [99]M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system:optimization by a colony of cooperating agents," Systems, Man, and Cybernetics, Part B, IEEE Transactions on, vol.26, pp.29-41,1996.
    [100]T. Stutzle and H. H. Hoos, "Max-Min Ant System," Future Generation Computer Systems, pp.889-914,2000.
    [101]董健,李青侠,靳榕,郭伟,黄全亮,“一种获取大阵元数低冗余度线阵排列的方法,”电子学报,vol.37,pp.2348-2352,2009.
    [102]J. Dong, Q. Li, R. Jin, Y. Zhu, Q. Huang, and L. Gui, "A Method for Seeking Low-Redundancy Large Linear Arrays in Aperture Synthesis Microwave Radiometers," Antennas and Propagation, IEEE Transactions on, vol. PP, pp.1-1.
    [103]J. C. Ehrhardt, "Hexagonal fast Fourier transform with rectangular output," Signal Processing, IEEE Transactions on, vol.41, pp.1469-1472,1993.
    [104]B. Y. Mills and A. G. Little, "A high resolution aerial system of a new type," Aust. J. Phys., vol.6, p.272,1953.
    [105]M. Peichl, M. Greiner, and H. Suess, "DLR activities on aperture synthesis radiometry," in Geoscience and Remote Sensing Symposium,2000. Proceedings. IGARSS 2000. IEEE 2000 International,2000, pp.2981-2983 vol.7.
    [106]A. Camps, J. Bara, I. C. Sanahuja, and F. Torres, "The processing of hexagonally sampled signals with standard rectangular techniques:application to 2-D large aperture synthesis interferometric radiometers," IEEE Transactions on Geoscience and Remote Sensing, vol.35, pp.183-190,1997.
    [107]P. J. Napier, A. R. Thompson, and R. D. Ekers, "The very large array:Design and performance of a modern synthesis radio telescope," Proceedings of the IEEE, vol. 71, pp.1295-1320,1983.
    [108]A. Camps, M. Vall-llossera, I. Corbella, F. Torres, and N. Duffo, "Angular and Radiometric Resolution of Y-Shaped Nonuniform Synthetic Aperture Radiometers for Earth Observation," Geoscience and Remote Sensing Letters, IEEE, vol.5, pp. 793-795,2008.
    [109]M. J. E. Golay, "Point arrays having compact nonredundant autocorrelations," J. Opt. Soc. America, pp.272-273,1971.
    [110]陈海亭,江月松,钟宇,“二维圆周光综合孔径阵的优化排列及其成像特性研究,”光学学报,vol.25,pp.1616-1622,2005.
    [111]何云涛,江月松,陈海亭,“二维圆周综合孔径阵列优化及其毫米波成像特性研究,”遥感学报,vol.11,pp.33-38,2007.
    [112]胡岸勇 苗俊刚,“二维综合孔径辐射计中的稀疏天线布局,”遥感技术与应用,vol.22,pp.158-161,2007.
    [113]C. S. Ruf, "Antenna Performance For A Synthetic Aperture Microwave Radiometer In Geosynchronous Earth Orbit," in Geoscience and Remote Sensing Symposium, 1990. IGARSS'90.'Remote Sensing Science for the Nineties'.,10th Annual International,1990, pp.1589-1592.
    [114]Z. Xi, S. Houjun, H. Jiwei, and L. Xin, "NUFFT-Based Iterative Reconstruction Algorithm for Synthetic Aperture Imaging Radiometers," Geoscience and Remote Sensing Letters, IEEE, vol.6, pp.273-276,2009.
    [115]L. Hao, P. de Maagt, J. Christensen, A. A. E. A. Emrich, and W. Ji, "Radiometric analysis of the rotating synthetic aperture radiometers utilizing grid-based measurement approach," in Geoscience and Remote Sensing Symposium,2007. IGARSS 2007. IEEE International,2007, pp.235-238.
    [116]W. Ji, Z. Cheng, L. Hao, S. Weiying, and Y. Jingye, "Clock scan of imaging interferometric radiometer and its applications," in Geoscience and Remote Sensing Symposium,2007. IGARSS 2007. IEEE International,2007, pp. 5244-5246.
    [117]F. Boone, "Interferometric array design:Optimizing the locations of the antenna pads.," Astron.& Astrophys., pp.368-376,2001.
    [118]苏彦,干涉阵u-v覆盖的优化及宽带馈源和OMT的研制:[博士学位论文].天体物理 中国科学院国家天文台,2003.
    [119]C. FARIA, S. STEPHANY, and H. S. SAWANT, "A NEW ENTROPY-BASED STRATEGY FOR THE INVERSE DESIGN OF A RADIO INTERFEROMETRIC ARRAY," in Proceedings of the 5th International Conference on Inverse Problems in Engineering:Theory and Practice Cambridge, UK,2005.
    [120]A. Camps, "Impact of antenna errors on the radiometric accuracy of large aperture synthesis radiometers," Radio Sci., vol.32, pp.657-668,1997.
    [121]何宝宇吴季,“二维综合孔径微波辐射计圆环结构天线阵及其稀疏方法,”电子学报,vol.33,pp.1607-1610,2005.
    [122]董健,李青侠,郭伟,朱耀庭,“综合孔径辐射计二维稀疏天线阵列排布方法,”微波学报,vol.25,pp.83-86,2009.
    [123]董健,李青侠,靳榕,黄全亮,桂良启,朱耀庭,“基于差集的综合孔径圆环天线阵稀疏优化方法,”微波学报,vol.25,pp.27-31,2009.
    [124]D. M. Le Vine, "The sensitivity of synthetic aperture radiometers for remote sensing applications from space," Radio Sci., vol.25, pp.441-453,1990.
    [125]I. Corbella, A. Camps, N. Duffo, and M. Vall-llossera, "Optimum redundant array configurations for Earth observation aperture synthesis microwave radiometers," Electronics Letters, vol.38, pp.1205-1207,2002.
    [126]F. Torres, A. B. Tanner, S. T. Brown, and B. H. Lambrigsten, "Robust Array Configuration for a Microwave Interferometric Radiometer:Application to the GeoSTAR Project," Geoscience and Remote Sensing Letters, IEEE, vol.4, pp. 97-101,2007.
    [127]F. Torres, A. B. Tanner, S. T. Brown, and B. H. Lambrigsten, "Analysis of Array Distortion in a Microwave Interferometric Radiometer:Application to the GeoSTAR Project," Geoscience and Remote Sensing, IEEE Transactions on, vol. 45, pp.1958-1966,2007.
    [128]M. Vall-llossera, N. Duffo, A. Camps, I. Corbella, F. Torres, and J. Bara, "Reliability analysis in aperture synthesis interferometric radiometers:Application to L-band Microwave Imaging Radiometer with Aperture Synthesis instrument," Radio Sci., vol.36, pp.107-117,2001.
    [129]D. M. Le Vine, A. J. Griffis, C. T. Swift, and T. J. Jackson, "ESTAR:a synthetic aperture microwave radiometer for remote sensing applications," in Proceedings of the IEEE,1994.
    [130]T. A. Doiron and J. R. Piepmeier, "Hybrid synthetic/real aperture antenna for high resolution microwave imaging," in Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings.2003 IEEE International,2003, pp.4368-4370 vol.7.
    [131]T. A. Doiron, J. R. Piepmeier, J. M. Hilliard, E. J. Kim, B. Shirgur, R. Kelly, and D. Cline, "One dimensional synthetic aperture radiometer using a parabolic cylinder reflector," in Aerospace Conference,2004. Proceedings.2004 IEEE,2004, pp. 987-992 Vol.2.
    [132]W. J. Wilson, A. B. Tanner, B. H. Lambrigtsen, T. A. Doiron, J. R. Piepmeier, and C. S. Ruf, "STAR concept for passive microwave temperature sounding from middle Earth orbit (MeoSTAR)," in Geoscience and Remote Sensing Symposium, 2004. IGARSS'04. Proceedings.2004 IEEE International,2004, pp.789-790 vol.2.
    [133]T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridge, MA:MIT Press,1990.
    [134]N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, "Equation of State Calculations by Fast Computing Machines," J. Chem. Phys., vol.21, pp. 1087-1092,1953.
    [135]H. Cohn and M. Fielding, "Simulated annealing:Searching for an optimal temperature schedule," Soc. Industr. Appl. Mathemat. J. Optimization, vol.9, no.3, pp.779-802,1999.
    [136]M. Lundy and A. Mees, "Convergence of an annealing algorithm," Math. Programming, vol.34, pp.111-124,1986.
    [137]E. F. Beckenbach and R. Bellman, Inequalities. New York:Springer-Verlag,1983.
    [138]L. Qingxia, C. Ke, and G. Wei, "An Aperture Synthesis Radiometer at Millimeter Wave Band," in Proc. IEEE ICMMT 2008, International Conference on Microwave and Millimeter Wave Technology,2008, pp.1699-1701.
    [139]L. Qingxia, H. Fei, G. Wei, C. Ke, L. Liang, Z. Jing, Z. Yaoting, and Z. Zuyin, "A General Platform for Millimeter Wave Synthetic Aperture Radiometers," in Geoscience and Remote Sensing Symposium,2008. IGARSS 2008. IEEE International,2008, pp.1156-1159.
    [140]B. Laursen and N. Skou, "Synthetic aperture radiometry evaluated by a two-channel demonstration model," IEEE Transactions on Geoscience and Remote Sensing, vol.36, pp.822-832,1998.
    [141]K. Gum-Sil and K. Yong-Hoon, "Spatial and temperature resolution of sub-Y type antenna array configuration for high resolution interferometric synthetic aperture radiometer," in Proceedings of IGARSS,2002, pp.844-846.
    [142]卢军 林士杰,“星载合成孔径微波辐射计的反演公式,”遥感学报,vol.39,pp.20-27,1994.
    [143]章勇,李兴国,王华力,“毫米波合成孔径成像辐射计,”系统工程与电子技术,pp.11-14,1998.
    [144]X. Yong, M. Jungang, W. Guolong, H. Anyong, and Z. Feng, "Development of the disk antenna array aperture synthesis millimeter wave radiometer," in Microwave and Millimeter Wave Technology,2008. ICMMT 2008. International Conference on,2008, pp.806-809.
    [145]X. Yong, M. Jungang, W. Guolong, H. Anyong, Z. Feng, and W. Huaming, "Prototype Development of an 8mm Band 2-Dimensional Aperture Synthesis Radiometer," in Geoscience and Remote Sensing Symposium,2008. IGARSS 2008. IEEE International,2008, pp. V-413-V-416.
    [146]I. Corbella, F. Torres, N. Duffo, M. Martin-Neira, V. Gonzalez-Gambau, A. Camps, and M. Vall-llossera, "On-Ground Characterization of the SMOS Payload," Geoscience and Remote Sensing, IEEE Transactions on, vol.47, pp.3123-3133, 2009.
    [147]B. Lambrigtsen, W. Wilson, A. Tanner, and T. Gaier, "GeoSTAR-a synthetic aperture approach for a geostationary microwave sounder," in IEEE Aerospace Conference,2004, pp.1008-1014 Vol.2.
    [148]B. Lambrigtsen, W. Wilson, A. Tanner, T. Gaier, C. Ruf, and J. Piepmeier, "GeoSTAR-a microwave sounder for geostationary satellites," in Proceedings of IGARSS,2004, pp.777-780.
    [149]J. Kainulainen, K. Rautiainen, M. Hallikainen, and M. Takala, "Radiometric performance of interferometric synthetic aperture radiometer HUT-2D," in Geoscience and Remote Sensing Symposium,2007. IGARSS 2007. IEEE International,2007, pp.243-246.
    [150]L. M. Hilliard, N. L. Phelps, J. T. Riley, T. M. Markus, G. L. Bland, C. Ruf, R. W. Lawrence, S. C. Reising, and T. Pichel, "Prototype cryospheric experimental synthetic aperture radiometer (CESAR)," in Proceedings of IGARSS,2005, pp. 4925-4928.
    [151]林昌禄 聂在平,天线工程手册.北京:电子工业出版社,2002.
    [152]C. A. Balanis, Antenna Theory-Analysis and Design,3rd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.,2005.
    [153]D. Jian, L. Qingxia, G. Wei, and Z. Yaoting, "A Sparse Antenna Array with offset Parabolic Cylinder Reflector at Millimeter Wave Band," in Microwave and Millimeter Wave Technology,2008. ICMMT 2008. International Conference on, 2008, pp.1667-1670.
    [154]M. B. Jorgenson, M. Fattouche, and S. T. Nichols, "Applications of minimum redundancy arrays in adaptive beamforming," Microwaves, Antennas and Propagation, IEE Proceedings H, vol.138, pp.441-447,1991.
    [155]C. Y. Tseng and L. J. Griffiths, "Sidelobe suppression in minimum redundancy linear arrays," in Statistical Signal and Array Processing,1992. Conference Proceedings., IEEE Sixth SP Workshop on,1992, pp.288-291.
    [156]S. U. Pillai, Y. Bar-Ness, and F. Haber, "A new approach to array geometry for improved spatial spectrum estimation," Proceedings of the IEEE, vol.73, pp. 1522-1524,1985.
    [157]G. Gelli and L. Izzo, "Minimum-redundancy linear arrays for cyclostationarity-based source location," Signal Processing, IEEE Transactions on, vol.45, pp.2605-2608,1997.
    [158]C. Chun-Yang and P. P. Vaidyanathan, "Minimum redundancy MIMO radars," in Circuits and Systems,2008. ISC AS 2008. IEEE International Symposium on,2008, pp.45-48.
    [159]M. Karaman, I.O. Wygant, O. Oralkan, and B. T. Khuri-Yakub, "Minimally Redundant 2-D Array Designs for 3-D Medical Ultrasound Imaging," Medical Imaging, IEEE Transactions on, vol.28, pp.1051-1061,2009.
    [160]D. W. Bliss and K. W. Forsythe, "Multiple-input multiple-output (MIMO) radar and imaging:degrees of freedom and resolution," in Signals, Systems and Computers,2003. Conference Record of the Thirty-Seventh Asilomar Conference on,2003, pp.54-59 Vol.1.
    [161]K. W. Forsythe, D. W. Bliss, and G. S. Fawcett, "Multiple-input multiple-output (MIMO) radar:performance issues," in Signals, Systems and Computers,2004. Conference Record of the Thirty-Eighth Asilomar Conference on,2004, pp. 310-315 Vol.1.
    [162]I. Bekkerman and J. Tabrikian, "Target Detection and Localization Using MIMO Radars and Sonars," Signal Processing, IEEE Transactions on, vol.54, pp. 3873-3883,2006.
    [163]E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "MIMO radar:an idea whose time has come," in Radar Conference,2004. Proceedings of the IEEE,2004, pp.71-78.
    [164]H. L. V. Trees, Optimum Array Processing. New York:John Wiley & Sons, Inc., 2002.
    [165]B. D. Steinberg, Principles of Aperture and Array System Design:Including Random and Adaptive Arrays. New York:John Wiley & Sons, Inc.,1976.
    [166]D. Jian, L. Qingxia, and G. Wei, "A Combinatorial Method for Antenna Array Design in Minimum Redundancy MIMO Radars," Antennas and Wireless Propagation Letters, IEEE, vol.8, pp.1150-1153,2009.
    [167]D. Jian, L. Qingxia, H. Fangmin, N. Wei, and Z. Yaoting, "Co-array properties of minimum redundancy linear arrays with minimum sidelobe level," in Antennas, Propagation and EM Theory,2008. ISAPE 2008.8th International Symposium on, 2008, pp.74-77.
    [168]L. Chen, Q. Li, W. Guo, and Y. Zhu, "One-Dimensional Mirrored Interferometric Aperture Synthesis," Geoscience and Remote Sensing Letters, IEEE, vol.7, pp. 357-361.
    [169]石光明,刘丹华,高大化,刘哲,林杰,王良君,“压缩感知理论及其研究进展,”电子学报,vol.37,pp.1070-1081,2009.
    [170]L. Li, W. Zhang, and F. Li, "The Design of Sparse Antenna Array," http://arxiv4.library.cornell.edu/pdf/0811.0705,2009.
    [171]L. Carin, "On the Relationship Between Compressive Sensing and Random Sensor Arrays," Antennas and Propagation Magazine, IEEE, vol.51, pp.72-81,2009.
    [172]Y. Wiaux, L. Jacques, G. Puy, A. M. M. Scaife4, and P. Vandergheynst, "Compressed sensing imaging techniques for radio interferometry," Mon. Not. R. Astron. Soc., vol.000, pp.1-10,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700