镜像综合孔径微波辐射成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合孔径微波辐射计采用稀疏的小口径天线阵列合成一个等效的大口径天线,可有效降低天线的体积与重量,且无需机械扫描即可实现对整个视场的瞬时成像,为提高星载被动微波遥感的空间分辨率提供了一种可行的途径。但是综合孔径辐射计的优点是以系统结构和信号处理复杂度为代价的,特别是对于大型星载综合孔径辐射计,由于阵元数目过多,系统结构和信号处理非常复杂。为了降低大型综合孔径辐射计系统结构和信号处理的复杂度,本文首次提出“镜像综合孔径微波辐射成像”这一新的成像方法,旨在使用较少的天线单元和简单的接收机结构获取更高的空间分辨率。本文将阐述镜像综合孔径微波辐射成像的基本原理及其关键问题,主要内容如下:
     (1)一维镜像综合孔径微波辐射成像原理及成像性能。首先阐述了一维镜像综合孔径辐射成像的基本原理:镜像双天线接收信号的相关输出可以表示为两个余弦可见度的差,通过求解联系余弦可见度和双天线接收信号相关输出的线性方程组可以获得所有基线上的余弦可见度,然后通过反余弦变换重建场景亮温分布图像;接着分析了一维镜像综合孔径辐射成像的空间分辨率和灵敏度,提出了多次联合测量的方法解决基线完整性问题;然后以具体一维镜像综合孔径系统为例,通过仿真验证了一维镜像综合孔径成像的原理、空间分辨率以及灵敏度,仿真结果与理论分析一致;最后从多个方面对一维镜像综合孔径和一维传统综合孔径进行了比较。在同样的空间分辨率下,理论分析和仿真结果均表明一维镜像综合孔径能够大大减少天线、模数转换器(ADC)以及相关器的数目,简化接收机结构。
     (2)二维镜像综合孔径微波辐射成像原理及成像性能。首先阐述了从一维镜像综合孔径扩展到二维镜像综合孔径的思路,然后与一维镜像综合孔径的过程一样,阐述二维镜像综合孔径成像的原理,分析其成像性能,通过仿真验证其原理、空间分辨率以及灵敏度。理论分析和仿真结果表明二维镜像综合孔径可以在两个维度上提供高分辨率。
     (3)系统误差对镜像综合孔径成像性能的影响。首先建立了镜像综合孔径系统中反演亮温准确度与镜像双天线相关误差之间的关系,在此基础上结合Parseval定理提出了图像均方误差评价准则,并从矩阵范数的角度给出了镜像双天线相关误差造成亮温反演准确度的上限。然后分别针对反射面误差、天线误差以及通道误差进行建模,并在该误差评价准则下仿真分析了误差对成像性能的影响。
     (4)镜像综合孔径辐射成像的图象重建方法。受系统误差的影响,利用反余弦变换重建的图像质量较差,为此引入了基于系统冲激响应G矩阵的图像重建方法。镜像综合孔径辐射成像的图象重建是一个病态的反问题,受误差和系统噪声的影响,常用的广义逆图像重建方法稳定性较差,导致结果会远远偏离真实解,丧失其物理意义。为了解决解的稳定性问题,引入了正则化的图象重建方法:截断奇异值求解正则化和Tikhonov正则化,并通过仿真验证了这两种正则化图像重建方法。
     本文从成像原理、成像性能、误差分析以及图像重建等方面对镜像综合孔径辐射成像方法进行了全方位阐述,可为镜像综合孔径辐射成像理论的发展和实际系统的设计提供理论指导,也为星载被动微波遥感的高分辨率成像观测提供了一种可选途径。
An aperture synthesis radiometer has the advantage of reducing antenna volume and weight needed for a given spatial resolution and the advantage of covering a large field of view without mechanical scanning. It provides a means for the radiometers operated at low frequencies to obtain high spatial resolution for the earth observation from space. But the superiority in spatial resolution of the technology is at the price of the complexity of system and signal processing. For a spaceborne aperture synthesis radiometer with hundrends of antennas and thousands of corrleators, the system and the signal processing are very complex, which are obstacles to achieve the required system performance. In this paper, mirrored interferometric aperture synthesis (MIAS) is proposed, which can achieve the same spatial resolution as a large traditional aperture synthesis system but needs fewer antennas and simple receiver structure. The fundamental principle and key problems of MIAS imaging are presented. The main aspects are as follows:
     (1) The fundamental principle and the performances of one-dimansional MIAS. Firstly the pricinple of MIAS imaging is presented. The correlation between the signals collected by a pair of antennas can be represented by the subtraction of the cosine visibility at different two baselines. The cosine visibility can be obtained by solving the linear equations, and the brightness temperature image can be reconstructed from the cosine visibility by the inverse cosine transform. Then the spatial resolution and the sensitivity of MIAS imaging are analyzed, and the method, combing the linear equations at different distances from the array to the reflector, is proposed to guarantee the baseline integrity. Moreover, simulation experiments are conducted to demonstrate the principle of MIAS, the spatial resolution, and the sensitivity. The results are in good agreement with the theoretical. Finally, comparison between MIAS and traditional interferometric aperture synthesis is made. With the same spatial resolution, theoretical analysis and simulation results show that MIAS can greatly reduce the number of antennas, analog-to-digital converters (ADC), and correlators, and simplify the receiver structure.
     (2) The fundamental principle and the performances of two-dimansional MIAS. Firstly, the process how to expand the one-dimensional MIAS to two-dimensional MIAS is presented. Then as the one-dimensional MIAS, the imaging principle and the system performances are presented. Simulation experiments for it are also conducted. The theoretical analysis and the simulation results show that two-dimensional MIAS can provide high spatial resolution in the two dimensional.
     (3) The impacts of system errors on the performances of MIAS The relationship between the system errors and the system performances is established. Based on it and combining the Parseval principle, the root-mean-square rule is proposed to evaluate the impacts, and the upper limit of the impacts on the accuracy is given according to the matrix nrom. Then the model for the reflector imperfection, antenna errors, and channel errors are established, and the impacts of these errors are quantified through simulation.
     (4) Image reconstruction method of MIAS imaging. Due to the impacts of system errors, the reconstructed image by inverse cosine transform is with bad quality. And reconstruction methods based on the impulse response matrix, the G operator, are introduced. The image reconstruction is an ill-posed inverse problem, and due to the impacts of system errors and noise, the common generalized inverse reconstruction is not robust, which cause the solution deviating from the real one severely. In order to solve the problem, two regularization methods, truncated singular value decomposition and tikhonov regularization, are introduced, and the simulation results demonstrate the validity of the two regularization methods.
     In this paper, main aspects of MIAS, including imaging principle, imaging performances, error analysis, and image reconstruction are presented, which provide good references for the evolution of MIAS imaging and the design of a MIAS radiometer. MIAS also provides a means for the earth observation with high spatial resolution from space.
引文
[1]王之卓.遥感与地球的全球性观测.环境遥感.1994,9(3):161-167
    [2]金逸民.论国内外遥感技术系统和应用技术系统的发展.遥感信息.1989(4):23-28
    [3]李昌国.90年代世界遥感技术的发展.国土资源遥感.1991(2):53-59
    [4]NASA. Earth observing system. NASA, Goddard Space Flight Center,1986.
    [5]Arvidson R E, Butler D M, Hartle R E. EOS:the earth observing system of the 1990s. in Proc.of IEEE,1985:1025-1030
    [6]Pfeiffer B R K. The earth observation activities of the european space agency. in international symposium on earth science,1988:133-149
    [7]刘和光.海洋微波遥感有效载荷技术.中国科协第五届青年学术年会文集,2004,176-177
    [8]Ulaby F T, Moore R K, Fung A K. Microwave remote sensing fundamentals and radiometry vol.1. Massachusetts:Addison-Wesley Publishing Company,1981
    [9]Thompson A R, Morgan J M, George J, et al. Interferometry and synthesis in radio astronomy,2nd ed. New York:John Wiley & Sons, Inc.,2001
    [10]Wilheit T T, Chang A T C. An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer. Radio Sci.1980,15:525-544
    [11]Thomann G C. Experimental results of the remote sensing of seasurface salinity at 21-cm wavelength. IEEE Trans. Geosci. Electron.1976, GE-14:198-214
    [12]Wang J R, Al E. Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness. IEEE Trans. Geosci. Remote Sensing.1983, GE-21: 44-51
    [13]Ruf C S, Swift C T, Tanner A B, et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Transactions on Geoscience and Remote Sensing.1988,26(5):597-611
    [14]王绶琯等.射电天文方法.北京:科学出版社,1988:249-254
    [15]Penzias A A, Wilson R W. A measurement of excess antenna temperature at 4080Mc/s. Astrophsical Journal.1965,142:419-421
    [16]Hewish A, Bell S J, Pilkington J D H, et al. Observation of a rapidly pulsating radio source. Nature.1968,217:709-713
    [17]吴盛殷.面向世纪之交的射电天文.电子科技报导.1995(9):13-16
    [18]Mcmullan K D, Brown M A, Martin-neira M, et al. SMOS:the payload. IEEE Transactions on Geoscience and Remote Sensing.2008,46(3):594-605
    [19]Barre H M, Duesmann B, Kerr Y H. SMOS:the mission and the system. IEEE Transactions on Geoscience and Remote Sensing.2008,46(3):587-593
    [20]Lambrigtsen B, Tanner A, Gaier T, et al. Developing a GeoSTAR science mission. in IEEE International Geoscience and Remote Sensing Symposium,2007:5232-5236
    [21]Tanner A, Wilson W, Lambrigsten B, et al. Initial results of the geosynchronous synthetic thinned array radiometer (GeoSTAR). in IEEE International Geoscience and Remote Sensing Symposium,2006:3968-3971
    [22]洪晓瑜.VLBI技术的发展和“嫦娥工程”中的应用.自然杂志,2007(5):297-299
    [23]高峰.地球观测系统(EOS)计划简介.地球科学进展.1992,7:55-56
    [24]Desnos Y, Bergquist K,李增元.欧洲空间局(ESA)与中国在遥感对地观测领域的合作:龙计划.遥感信息.2004(4):78-79
    [25]Pons J, Reising S C, Padmanabhan S, et al. Passive polarimetric remote sensing of the ocean surface during the Rough Evaporation Duct experiment (RED 2001). in IEEE International Geoscience and Remote Sensing Symposium,2003:2732-2734
    [26]Wilson W J, Yueh S H, Li F K, et al. Ocean surface salinity remote sensing with the JPL Passive/Active L-/S-band (PALS) microwave instrument. in IEEE International Geoscience and Remote Sensing Symposium,2001:937-939
    [27]Carswell J, Knapp E, Goodberlet M, et al. Active/passive remote sensing of ocean wind vector for hurricane reconnaissance applications. in IEEE International Geoscience and Remote Sensing Symposium,1999:1854-1856
    [28]Yueh S H, Kwok R, Li F K, et al. Polarimetric passive remote sensing of wind-generated sea surfaces and ocean wind vectors. in OCEANS'93.'Engineering in Harmony with Ocean',1993:31-36
    [29]张杰,黄卫民,纪永刚等.中国海洋微波遥感研究进展.海洋科学进展.2004,22:157-165
    [30]Rubinstein I G, Ramseier R 0. Spaceborne passive microwave observations Of the ocean surface and the atmosphere. in IEEE International Geoscience and Remote Sensing Symposium,1988:961-961
    [31]Khaikin V B, Radzikhovsky V N, Kuzmin S E, et al. A compact highly sensitive radiometer for thermal sounding of atmosphere in 5 MM band. in Microwaves, Radar and Remote Sensing Symposium,2008:66-70
    [32]Kim S, Lee H, Yun S, et al. Design and performance of dual-channel radiometers for earth and atmosphere monitoring (DREAM) protoflight model. in IEEE International Geoscience and Remote Sensing Symposium,2006:3216-3219
    [33]Ho-jin L, Sung-hyun K, Nam-won M, et al. Hardware specification and system performance of Dual-channel radiometers for earth and atmosphere monitoring (DREAM) flight model. in IEEE International Geoscience and Remote Sensing Symposium,2007:4441-4443
    [34]Skoog G, Askne J. The Capability of microwave radiometers for temperature profiling of the atmosphere. in European Microwave Conference,1982:95-100
    [35]Schmugge T. Remote sensing of surface soil moisture. Journal of Applied Meteorology.1978,17(10):1549-1557
    [36]Schmugge T, O N P, Wang J R. Passive microwave soil moisture research. IEEE Transactions on Geoscience and Remote Sensing.1986, GE-24(1):12-22
    [37]Staelin D H, Rosenkranz P W. High resolution passive microwave satellites, applications review panel report. MIT Research Lab. of Electronics.1978
    [38]Wang J R, Shiue J C, Mcmurtrey J E. Microwave remote sensing of soil moisture content over bare and vegetated fields. Geophiysical Research Letters.1980,7(10): 801-804
    [39]Le V D. ESTAR experience with RFI at L-band and implications for future passive microwave remote sensing from space. in IEEE International Geoscience and Remote Sensing Symposium,2002:847-849
    [40]Wilheit T T, Chang A T C. An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer. Radio Sci.1980,15(3):525-544
    [41]Thomann G C. Experimental results of the remote sensing of sea-Surface salinity at 21-cm wavelength. IEEE Transactions on Geoscience Electronics.1976,14(3): 198-214
    [42]Swift C T, Mcintosh R E. Considerations for microwave remote sensing of ocean-surface salinity. IEEE Transactions on Geoscience and Remote Sensing.1983, GE-21(4):480-491
    [43]Kraft U R. Two-dimensional aperture synthesis radiometers in a low earth orbit mission and instrument analysis. in IEEE International Geoscience and Remote Sensing Symposium,1996:866-868
    [44]Le V D. Synthetic aperture radiometer systems. in IEEE International Microwave Symposium Digest,1999:407-410
    [45]Ferraro R R. An eight year(1987-1994) time series of rainfall, cloudes, water vapor, snow cover and sea ice derived from SSM/I measurements. The Bulletin of the American Meteorological Societ.1996,77(5):891-905
    [46]Tachi K, Arai K, Sato Y. Advanced microwave scanning radiometer (AMSR): requirements and preliminary design study. IEEE Transactions on Geoscience and Remote Sensing.1989,27(2):177-183
    [47]张德海,郑震藩,姜景山.“神州”四号中的微波遥感.2004(1):49-53
    [48]李辉,王子滨.国外毫米波制导技术的研究.制导与引信.1991(4):43-55
    [49]彭树生,李兴国.毫米波辐射计反空中涂层隐身飞机的分析.红外与毫米波学报.1998,17:454458
    [50]彭树生,李兴国.主动毫米波辐射计反空中涂层隐身研究.系统工程与电子技术.1998(4):27-30
    [51]严金海,李兴国,汪敏.毫米波辐射计探测直升机研究.探测与控制学报.2001,23:37-40
    [52]董晓龙,吴季,姜景山.微波辐射计用于隐身目标探测的性能分析.系统工程与电子技术.2001,23:54-57
    [53]熊祖彪,胡飞,朱耀庭.综合孔径微波辐射探测系统仿真平台设计.系统仿真学报.2007,19(24):5663-5666
    [54]Li Q, Ke Chen K, Guo W, et al. A general platform for millimeter wave synthetic aperture radiometers. in IEEE International Geoscience and Remote Sensing Symposium,2008:1156-1159
    [55]Li Q, Chen K, Guo W, et al. An aperture synthesis radiometer at millimeter wave band. in International Conference on Microwave and Millimeter Wave Technology, 2008:1699-1701
    [56]Shoucri M, Davidheiser R, Hauss B, et al. A passive millimeter wave camera for aircraft landing in low visibility conditions. IEEE Aerospace and Electronic Systems Magazine.1995,10(5):37-42
    [57]Stewart W L. Passive millimeter wave imaging considerations for tactical aircraft. IEEE Aerospace and Electronic Systems Magazine.2002,17(12):11-15
    [58]Korneev D O, Bogdanov L Y, Nalivkin A V. Passive millimeter wave imaging system with white noise illumination for concealed weapons detection. in International Conference on Infrared and Millimeter Waves, Terahertz Electronics,2004:741-742
    [59]Mcmillan R W, Currie N C, Ferris D D, et al. Concealed weapon detection using microwave and millimeter wave sensors. in International Conference on Microwave and Millimeter Wave Technology,1998:1-4
    [60]Shen Z, Domier C W, Luhmann N C, et al.2-D Passive Millimeter Wave Imaging System for Plasma Diagnostics. in Asia-Pacific Microwave Conference,2007:1-4
    [61]Matono H, Joung M, Suzuki Y, et al. Development of 35 GHz band passive imaging systems and their applications to medical and bio-objects imaging. in Asia-Pacific Radio Science Conference,2004:452-454
    [62]张祖荫,林世杰.微波辐射测量技术及应用.北京:电子工业出版社,1995
    [63]Nakano H, Suzuki N, Ishii T, et al. Mesh antennas for dual polarization. IEEE Transactions on Antennas and Propagation.2001,49(5):715-723
    [64]Wilson W J, Njoku E G, Yueh S H. Active/passive microwave system with deployable mesh antenna for spaceborne ocean salinity measurements. in IEEE International Geoscience and Remote Sensing Symposium,2000:2549-2551
    [65]Njoku E, Wilson W, Yueh S, et al. Large deployable-mesh antenna system for ocean salinity and soil moisture sensing. in IEEE Aerospace Conference,2000:141-150
    [66]Clasen G, Langley R. Meshed patch antennas. IEEE Transactions on Antennas and Propagation.2004,52(6):1412-1416
    [67]Fei Z, Mei C, Wei L, et al. Conceptual design of a new huge deployable antenna structure for space application. in IEEE Aerospace Conference,2008:1-7
    [68]Priest R. Inflatable antenna technology. in IET Seminar on Military Satellite Communication Systems,2008:1-13
    [69]Celis M A, Lien K T, Brown E R, et al. Local thermal management for space-borne inflatable RF antennas. in the Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems,2002:1015-1019
    [70]Hoferer R A, Rahmat-samii Y. RF characterization of an inflatable parabolic torus reflector antenna for space-borne applications. IEEE Transactions on Antennas and Propagation.1998,46(10):1449-1457
    [71]Njoku E G, Rahmat-samii Y, Sercel J, et al. Evaluation of an inflatable antenna concept for microwave sensing of soil moisture and ocean salinity. IEEE Transactions on Geoscience and Remote Sensing.1999,37(1):63-78
    [72]Kendall B M, Bailey M C, Schroeder L C. Inflatable antenna microwave radiometer for soil moisture measurement. in The Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing,1995:217-219
    [73]Hoferer R A, Rahmat-samii Y. Inflatable parabolic torus reflector antenna for space-borne applications:concept, design and analysis. in IEEE Aerospace Conference,1999:249-263
    [74]Spencer M W, Njoku E, Entekhabi D, et al. The HYDROS radiometer/radar instrument. in IEEE International Geoscience and Remote Sensing Symposium,2004: 694
    [75]Entekhabi D, Njoku E G, Houser P, et al. The hydrosphere state (hydros) satellite mission:an earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Transactions on Geoscience and Remote Sensing.2004,42(10): 2184-2195
    [76]章勇,李兴国,王华力.毫米波焦平面阵列成像技术.制导与引信.1998(3)
    [77]Ferris D D, Currie N C. Overview of current technology in MMW radiometric sensors for law enforcement applications. in SPIE,2000:61-71
    [78]Moffa P, Yujiri L, Jordan K, et al. Passive millimeter wave camera flight tests. in SPIE,2000:14-21
    [79]Lettingtona A H, Dunna D, Alexandera N E, et al. Design and development of a high performance passive mm-wave imager for aeronautical applications. in SPIE,2004: 210-218
    [80]Pirogov Y A, Gladun V V, Chzhen S P, et al. Radio thermal images of natural objeets ins 8-mm and 3-mm ranges. in SPIE,2002:318-326
    [81]Martin C A, Clark S E, Lovberg J A, et al. Passive millimeter-wave imaging technology for phased array systems. in SPIE,2003:33-41
    [82]Corporaton T E. PuPil plane array based millimetervave imaging radiometers. AD Report of USA.2004
    [83]Stephan K. Inter-injection-locked oscillators for power combining and phased arrays. IEEE Transactions on Microwave Theory and Techniques.1986,34(10):1017-1025
    [84]Liao P, York R A. A new phase-shifterless beam-scanning technique using arrays of coupled oscillators. IEEE transactions on microwave theory and techniques.1993, 41(10):1810-1815
    [85]Morgan W A, Stephan K D. An X-band experimental model of a millimeter-wave interinjection-locked phased array system. IEEE Transactions on Antennas and Propagation.1988,36(11):1641-1645
    [86]Neil A. Salmon, Steve Hayward, Richard Walke R A. Electronic scanning for passive millimeter waveimaging. in Proceedings of SPIE Passive Millimeter-Wave Imaging Technology Ⅵ and Radar Sensor,2003:7176
    [87]Feldle H-, Solbach K. Passive and active phased arrays using solid state technologies. in IEE Colloquium on Phased Arrays,1991:31-34
    [88]Martynyuk A E, Martinez L J, Martyunuk N A. Reflective passive phased array with open polarization phase shifters. in IEEE International Symposium on Phased Array Systems and Technology,2003:482-487
    [89]Hajian M, Coccia A, Ligthart L P. Design, analysis and measurements of reflected phased array microstrip antennas at Ka-band using passive stubs. in European Conference on Antennas and Propagation,2006:1-5
    [90]Lovberg J A, Martin C, Kolinko V. Video-rate passive millimeter-wave imaging using phased arrays. in IEEE/MTT-S International Microwave Symposium,2007: 1689-1692
    [91]Ryle M. The new cambrige radio telescope. Nature.1962,194:517-518
    [92]Schanda E. Multiple wavelength aperture synthesis for passive sensing of the earth's surface, in Proceedings of IEEE Antennas and Propagation Society,1979:762-763
    [93]Schanda E. High ground resolution in passive microwave earth, observation from space by multiple wavelength aperture synthesis. in Internation Astronautical Fed. Cong.,1976:10-16
    [94]Tanner A B, Wilson W J, Lambrigsten B H, et al. Initial results of the geostationary synthetic thinned array radiometer (GeoSTAR) demonstrator instrument. IEEE Transactions on Geoscience and Remote Sensing.2007,45(7):1947-1957
    [95]Lainbrigtsen B, Wilson W, Tanner A, et al. GeoSTAR-a microwave sounder for geostationary satellites. in IEEE International Geoscience and Remote Sensing Symposium,2004:777-780
    [96]Le V D, Kao M, Swift C T, et al. Initial results in the development of a synthetic aperture microwave radiometer. IEEE Transactions on Geoscience and Remote Sensing.1990,28(4):614-619
    [97]Jackson T J. Soil moisture verification study of the ESTAR microwave radiometer: Walnut Gulch, Az 1991. in IEEE International Geoscience and Remote Sensing Symposium,1992:486-488
    [98]Jackson T J, Le V D, Griffis A J, et al. Soil moisture and rainfall estimation over a semiarid environment with the ESTAR microwave radiometer. IEEE Transactions on Geoscience and Remote Sensing.1993,31(4):836-841
    [99]Le V D, Jackson T, Kao M, et al. Status of ESTAR validation:results from Washita-92. in IEEE International Geoscience and Remote Sensing Symposium, 1994:1320-1322
    [100]Le V D, Jackson T J, Swift C T, et al. Passive microwave remote sensing with the synthetic aperture radiometer, ESTAR, during the Southern Great Plains experiment. in IEEE International Geoscience and Remote Sensing Symposium,1998: 2606-2608
    [101]0 N P, Hsu A Y, Jackson T J. Comparison between SLMR and ESTAR soil moisture retrieval in SGP97. in IEEE International Geoscience and Remote Sensing Symposium,1999:1908-1910
    [102]Bindlish R, Barros A P. Sub-pixel variability of remotely sensed soil moisture:an inter-comparison study of SAR and ESTAR. in IEEE International Geoscience and Remote Sensing Symposium,1999:1917-1920
    [103]Hsu A Y, Jackson T J, O N P. Comparison of ESTAR and SSM/I derived surface soil moisture. in IEEE International Geoscience and Remote Sensing Symposium,1999: 1911-1913
    [104]Le V D, Haken M, Bidwell S, et al. ESTAR measurements during SGP-99. in IEEE International Geoscience and Remote Sensing Symposium,2000:1063-1065
    [105]Le V D, Jackson T J, Swift C T, et al. ESTAR measurements during the Southern Great Plains experiment (SGP99). IEEE Transactions on Geoscience and Remote Sensing.2001,39(8):1680-1685
    [106]Peters-lidard C D, Pan F, Hsu A Y, et al. ESTAR and model-derived multiscaling characteristics of soil moisture during SGP'97, Washita'92 and Washita'94. in IEEE International Geoscience and Remote Sensing Symposium,2001:1297-1299
    [107]Bindlish R, Barros A P. Subpixel variability of remotely sensed soil moisture:an inter-comparison study of SAR and ESTAR. IEEE Transactions on Geoscience and Remote Sensing.2002,40(2):326-337
    [108]Guha A, Jacobs J M, Jackson T J, et al. Soil moisture mapping using ESTAR under dry conditions from the Southern Great Plains Experiment (SGP99). IEEE Transactions on Geoscience and Remote Sensing.2003,41(10):2392-2397
    [109]Le V D, Haken M, Swift C T. Development of the synthetic aperture radiometer ESTAR and the next generation. in IEEE International Geoscience and Remote Sensing Symposium,2004:1260-1263
    [110]Le V D, Jackson T J, Haken M. Initial images of the synthetic aperture radiometer 2D-STAR. IEEE Transactions on Geoscience and Remote Sensing.2007,45(11): 3623-3632
    [111]Dongryeol R, Jackson T J, Bindlish R, et al. Two-dimensional synthetic aperture radiometry over land surface during soil moisture experiment in 2003 (SMEX03). in IEEE International Geoscience and Remote Sensing Symposium,2007:1842-1845
    [112]Laursen B, Skou N. Synthetic aperture radiometry evaluated by a two-channel demonstration model. IEEE Transactions on Geoscience and Remote Sensing.1998, 36(3):822-832
    [113]Martin-neira M, Goutoule J M, Knight A, et al. Integration of MIRAS breadboard and future activities. in IEEE International Geoscience and Remote Sensing Symposium,1996:869-871
    [114]Bayle F, Wigneron J-, Kerr Y H, et al. Two-dimensional synthetic aperture images over a land surface scene. IEEE Transactions on Geoscience and Remote Sensing. 2002,40(3):710-714
    [115]S R, M M N, I C, et al. MIRAS Airborne Demonstrator. in IEEE MicroRad,2006: 45-49
    [116]Martin-neira M, Cabeza I, Perez C, et al. AMIRAS-An Airborne MIRAS Demonstrator. IEEE Transactions on Geoscience and Remote Sensing.2008,46(3): 705-716
    [117]Borges A. Design and technical implementation of MIRAS payload. in IEEE International Geoscience and Remote Sensing Symposium,2007:3618-3621
    [118]Colliander A, Tauriainen S, Auer T I, et al. MIRAS reference radiometer:a fully polarimetric noise injection radiometer. IEEE Transactions on Geoscience and Remote Sensing.2005,43(5):1135-1143
    [119]Borges A. SMOS mission & MIRAS instrument. Synthetic apperture radiometer in space, in European Microwave Conference,2004:317-319
    [120]Martin-neira M, Menard Y, Goutoule J M, et al. MIRAS, a two-dimensional aperture synthesis radiometer. in IEEE International Geoscience and Remote Sensing Symposium,1994:1323-1325
    [121]Torres F, Camps A, Bara J, et al. Impact of receiver errors on the radiometric resolution of large 2D aperture synthesis radiometers:study applied to MIRAS. Radio Science.1997,32(2):629-642
    [122]Camps A, Bara J, Torres F, et al. Impact of antenna errors on the radiometric resolution of large 2D aperture synthesis radiometers:study applied to MIRAS. Radio Science.1997,32(2):657-668
    [123]Brown M A, Torres F, Corbella I, et al. SMOS calibration. IEEE Transactions on Geoscience and Remote Sensing.2008,46(3):646-658
    [124]Corbella I, Torres F, Duffo N, et al. MIRAS in-orbit calibration. in IEEE International Geoscience and Remote Sensing Symposium,2007:3622-3625
    [125]Colliander A, Ruokokoski L, Suomela J, et al. Development and Calibration of SMOS Reference Radiometer. IEEE Transactions on Geoscience and Remote Sensing.2007,45(7):1967-1977
    [126]Lemmetyinen J, Uusitalo J, Kainulainen J, et al. SMOS calibration subsystem. IEEE Transactions on Geoscience and Remote Sensing.2007,45(11):3691-3700
    [127]Colliander A, Lemmetyinen J, Uusitalo J, et al. Ground calibration of SMOS:NIR and CAS. in IEEE International Geoscience and Remote Sensing Symposium,2007: 3631-3634
    [128]Corbella I, Torres F, Camps A, et al. MIRAS end-to-end calibration:application to SMOS L1 processor. IEEE Transactions on Geoscience and Remote Sensing.2005, 43(5):1126-1134
    [129]Ruf C S, Jikang L. A correlated noise calibration standard for interferometric, polarimetric, and autocorrelation microwave radiometers. IEEE Transactions on Geoscience and Remote Sensing.2003,41(10):2187-2196
    [130]Torres F, Camps A, Bara J, et al. On-board phase and modulus calibration of large aperture synthesis radiometers:study applied to MIRAS. IEEE Transactions on Geoscience and Remote Sensing.1996,34(4):1000-1009
    [131]Le V D, Weissman D E. Calibration of synthetic aperture radiometers in space: antenna effects. in IEEE International Geoscience and Remote Sensing Symposium, 1996:878-880
    [132]Camps A; Vall-Ilossera M; Batres L, et al. External calibration in L-Band 2D synthetic aperture radiometers:application to sea surface salinity retrieval. IEEE International Geoscience and Remote Sensing Symposium.2004:1350-1353
    [133]Piles M, Camps A, Vall-llossera M, et al. Deconvolution algorithms in image reconstruction for aperture synthesis radiometers. in IEEE International Geoscience and Remote Sensing Symposium,2007:1460-1463
    [134]Camps A, Vall-llossera M, Corbella I, et al. Improved image reconstruction algorithms for aperture synthesis radiometers. in IEEE International Geoscience and Remote Sensing Symposium,2006:1168-1171
    [135]Anterrieu E, Picard B, Martin-neira M, et al. A strip adaptive processing approach for the SMOS space mission. in IEEE International Geoscience and Remote Sensing Symposium,2004:1922-1925
    [136]Camps A, Bara J, Torres F, et al. Extension of the CLEAN technique to the microwave imaging of continuous thermal sources by means of aperture synthesis radiometers. in Progress In Electromagnetics Research Symposium,1998:67-83
    [137]Camps A, Bara J, Sanahuja I C, et al. The processing of hexagonally sampled signals with standard rectangular techniques:application to 2-D large aperture synthesis interferometric radiometers. IEEE Transactions on Geoscience and Remote Sensing.1997,35(1):183-190
    [138]Lannes A, Anterrieu E. Image reconstruction methods for remote sensing by aperture synthesis. in IEEE International Geoscience and Remote Sensing Symposium,1994:2228-2230
    [139]Tanner A B, Gaier T C, Lambrigtsen B H. GeoSTAR Performance Demonstration. in IEEE Aerospace Conference,2008:1-6
    [140]Tanner A B, Brown S T, Gaier T C, et al. Field tests of the GeoSTAR demonstrator instrument. in IEEE International Geoscience and Remote Sensing Symposium, 2007:2427-2430
    [141]Tanner A, Lambrigsten B, Gaier T, et al. Near field characterization of the GeoSTAR Demonstrator. in IEEE International Geoscience and Remote Sensing Symposium, 2006:2529-2532
    [142]Rautiainen K, Kainulainen J, Auer T, et al. Helsinki University of Technology Synthetic Aperture Radiometer-HUT-2D. in IEEE International Geoscience and Remote Sensing Symposium,2007:3635-3638
    [143]Kainulainen J, Rautiainen K, Hallikainen M, et al. Radiometric performance of interferometric synthetic aperture radiometer HUT-2D. in IEEE International Geoscience and Remote Sensing Symposium,2007:243-246
    [144]Kainulainen J, Rautiainen K, Tauriainen S, et al. First 2-D Interferometric radiometer imaging of the earth from an aircraft. IEEE Geoscience and Remote Sensing Letters.2007,4(2):241-245
    [145]Rautiainen K, Butora R, Auer T, et al. Development of airborne aperture synthetic radiometer (HUT-2D). in IEEE International Geoscience and Remote Sensing Symposium,2003:1232-1234
    [146]Rautiainen K, Butora R, Hallikainen M, et al. Measurement of the HUT-2D aperture synthesis radiometer four-element subassembly. in IEEE International Geoscience and Remote Sensing Symposium,2001:3074-3076
    [147]Butora R, Auer T, Mononen N, et al. The Helsinki university of technology/Ylinen electronics airborne L-band interferometric radiometer. in IEEE International Geoscience and Remote Sensing Symposium,2000:2978-2980
    [148]England A W, Pham H, De R R, et al. Performance of STAR-Light receivers during CLPX. in IEEE International Geoscience and Remote Sensing Symposium,2003: 1235-1237
    [149]Fishman M A, England A W. Sensitivity of a direct sampling digital correlation receiver for aperture synthesis radiometry. in IEEE International Geoscience and Remote Sensing Symposium,2000:2727-2729
    [150]Wilson W J, Tanner A B, Lambrigtsen B H, et al. STAR concept for passive microwave temperature sounding from middle Earth orbit (MeoSTAR). in IEEE International Geoscience and Remote Sensing Symposium,2004:789-790
    [151]Hilliard L M, Phelps N L, Riley J T, et al. Prototype cryospheric experimental synthetic aperture radiometer (CESAR). in Proc. IEEE International Geoscience and Remote Sensing Symposium,2005:4925-4928
    [152]Gum-sil K, Yong-hoon K. Spatial and temperature resolution of sub-Y type antenna array configuration for high resolution interferometric synthetic aperture radiometer. in Proc. IEEE International Geoscience and Remote Sensing Symposium,2002: 844-846
    [153]章勇,李兴国,王华力.毫米波合成孔径成像辐射计.系统工程与电子技术.1998:11-14
    [154]Dong X, Wu J, Sun Z, et al. The design and implementation of CAS C-band interferometric synthetic aperture radiometer. in Proc. IEEE International Geoscience and Remote Sensing Symposium,2000:866-868
    [155]Liu H, W. J, Bao S, et al. The CAS airborne X-band synthetic aperture radiometer: system configuration and experimental results. in Proc. IEEE International Geoscience and Remote Sensing Symposium,2004:2230-2233
    [156]Jian H, Tiguo G. A novel millimeter wave synthetic aperture radiometer passive imaging system. in ICMMT,2004:414-417
    [157]Zhou X, Sun H, He J, et al. NUFFT-based iterative reconstruction algorithm for synthetic aperture imaging radiometers. IEEE Trans. GeoSci. Remote Sensing Letters.2009,6(2):273-276
    [158]薛永,苗俊刚,万国龙.8mm波段二维综合空径微波辐射计(BHU-2D).北京航空航天大学学报.2008,34(9):1020-1023
    [159]Xue Y, Miao J, E A. Development of the disk antenna array aperture synthesis millimeter wave radiometer. in International Conference on Microwave and Millimeter Wave Technology,2008:806-809
    [160]Thornbury A. The Multifrequency Imaging Microwave Radiometer(MIMR). in IEEE International Geoscience and Remote Sensing Symposium,1990:1597-1600
    [161]Jansky K G. Electrical disturbances apparently of extraterrestrial origin. in IRE., 1933:1387-1398
    [162]Lambrigtsen B, Wilson W, Tanner A, et al. GeoSTAR-a synthetic aperture approach for a geostationary microwave sounder. in IEEE Aerospace Conference,2004: 1008-1014
    [163]Camps A. Applicaiton of interferometric radiometry for earth observation.1996
    [164]Bara J, Camps A, Torres F, et al. The correlation of visibility noise and its impact on the radiometric resolution of an aperture synthesis radiometer. IEEE Transactions on Geoscience and Remote Sensing.2000,38(5):2423-2426
    [165]Butora R, A C. Noise maps in aperture synthesis radiometric images due to cross-correlation of visibility noise. Radio Science.2003,38(4)
    [166]张贤达.矩阵分析及应用.北京:清华大学出版社,2004
    [167]Hadamard J. Lectures on Cauchy's Problem in Linear Partial Differential Equations. Courier Dover Publications,2003
    [168]刘继军.不适定问题的正则化方法及应用.北京:科学出版社,2005
    [169]Tikhonov A N, Goncharsky A V, Stepanov V V, et al. Numerical methods for the solution of ill-posed problems. Dordrecht:Kluwer Academic publishers,1995
    [170]Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review.1992,34(4):561-580

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700