综合孔径微波辐射成像系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型干涉式阵列微波辐射成像系统,综合孔径辐射计采用稀疏的小口径天线阵列合成一个大的物理观测口径,降低了天线的体积与重量,且无需扫描即可实现对整个视场的瞬时成像,能够更好的满足实际应用的需求,具有很强的应用前景。
     然而越强的能力带来的限制也就越多。要实现良好的成像性能,综合孔径微波辐射计在实际工作中需要解决以下三个关键问题:①各种硬件非理想性因素引入的系统误差如何校正?②如何实现解决综合孔径亮温图像重建问题的高性能反演数值算法?③如何定量评估图像反演算法性能乃至系统整体成像性能?这三个问题的解决是层次递进的:综合孔径微波辐射成像系统的最终目的是得到高质量的亮温图像,因此对系统整体成像性能的判断,就需要依靠对亮温图像质量的定量评估来解决;而要从测量数据中重建高质量的亮温图像,就需要实现高性能的图像反演数值算法;而高性能的反演算法又需要准确的数据,这就必须以深入了解系统误差特性、实现对系统误差的校正为前提。本文针对综合孔径微波辐射成像系统以上三个关键问题的解决方法和关键理论开展研究,主要内容如下:
     首先本文以可见度函数为对象,根据系统误差作用于可见度函数的性质不同,将其分为系统加性误差、方位无关乘性误差和方位有关乘性误差三类,对前两者分别提出了利用外部参考场景和外部单辅助源的系统整体校正方法,并通过试验进行了验证。这种误差分析和校正思路的最大特点就是从系统整体出发,化繁为简,在不增加硬件复杂度的情况下实现对系统误差的整体校正。
     方位有关乘性误差导致综合孔径辐射成像系统的图像重建在数学上是一个病态的反问题,对其求解需要两大要素:①合适的图像反演数值算法;②获得系统响应G矩阵。在辐射计的低信噪比条件下,最常用的广义解会被噪声严重污染从而偏离所求解问题的真值。为解决这一问题,数学上提出了利用正则化参数在真值和噪声之间寻求平衡的正则化求解思想。本文在建立综合孔径系统图像重建问题的数学模型基础上,将数学上的正则化方法应用于综合孔径亮温图像重建问题的求解中,实现正则化的图像反演数值算法,再利用外部点源测量实际系统响应G矩阵,最后将两者结合,成功的应用于综合孔径亮温图像重建,实现了高质量的反演亮温图像。
     灵敏度是传统上衡量微波辐射计测量精度的主要指标,但并不适合对单帧亮温图像的质量进行评估。本文提出用图像信噪比作为图像评估指标,设定在均匀背景下存在单个目标的参考场景,图像信号强度定义为目标与背景的亮温差,图像噪声强度定义为均匀背景的波动,用背景的空间标准差来计算。这样定义的图像信噪比表征了单帧亮温图像的空间统计特性,因而能更好的实现对单帧图像的定量评估。本文将图像信噪比成功应用于综合孔径试验图像的评估中,对几种反演算法性能进行了比较,并反过来应用于正则化参数的后验判定,促进了正则化反演数值算法的研究。
     本文对综合孔径微波辐射成像系统及其关键理论和技术进行了较全面的描述,对其三个关键问题提出了自己的解决方法,并且对所有的理论和解决方法都给出了试验验证结果,这也是本文的特点之一。本文希望在综合孔径微波辐射成像系统的理论和实际应用之间搭起一座桥梁,促进该技术在各领域的广泛应用。
As a new array interferometric microwave radiometric imaging systems, aperture synthesis radiometer (ASR) formed a large physical observation aperture by a thinned array of single small-aperture antennas, which reduced the antenna size and weight, and can instantaneously image for the entire field of view (FOV) without scanning, so it can better meet the needs of practical application and has a strong application prospects.
     However, more power associated with more restrictions. To achieve good imaging performance in practice, ASR need to address the following three key problems:①How to calibrate systematic errors introduced by various non-ideal factors of the hardware system?②How to realize image inversion numerical algorithm of high performance that solve the problem of aperture synthesis brightness temperature image reconstruction?③How to quantitative evaluation of the performance of image inversion algorithm as well as overall system imaging performance? These three problems are the progressive levels. The high-quality brightness temperature images is the final destination of aperture synthesis microwave radiometric imaging system, so it is necessary to realize quantitative evaluation of the inversion brightness temperature image for estimation of the performance of overall system imaging performance; and it is necessary to realize image inversion numerical algorithm of high performance for high-quality brightness temperature images; finally the image inversion algorithm requires the measured data of as accuracy as possible, which must be based on in-depth understanding of systematic errors characteristics and proper calibration of systematic errors. The research on the solutions and theory of three key problems of aperture synthesis microwave radiometric imaging system is the subject of this paper, the main contents are as follows:
     Firstly from the point of visibility function, in the paper the systematic errors were classified into three types by the roles in the visibility function:additive error、multiplicative errors of being independent of orientation、multiplicative errors of being dependent on orientation. The overall system calibration method for the first two errors is presented, which respectively made use of external reference scene and external single noise source, and has be verified by experiments. The most prominent feature of the error analysis and calibration is the idea of overall system that simplified the complicated problem, which achieve overall errors calibration without increasing system complexity.
     The inverse problem of aperture synthesis image reconstruction is ill-posed, which caused by the multiplicative errors of being dependent on orientation. Two major elements required for its solution are:①proper image inversion numerical algorithm;②system response G matrix. In the low SNR condition of radiometer, the usual generalized solution of the inverse problem may be completely corrupted by noise and therefore completely deprived of the exact solution. So the mathematical regularization methods were proposed to solve this problem, which made use of regularization parameter to achieve a balance between the noise and the true solution. In this paper, firstly the mathematical model of the inverse problem of aperture synthesis image reconstruction was establishment, secondly the mathematical regularization methods were applied to the solution of the problem of aperture synthesis image reconstruction and regularization image inversion numerical algorithm was realized, then system response G matrix was measured by using an external point source, finally the combination of both was successfully applied to ASR brightness temperature images reconstruction to get the high-quality inversion brightness temperature images.
     Traditionally, sensitivity is major performance parameter of microwave radiometer measurement precision, but it is not appropriate to quality assessment of single brightness temperature image. In the paper, the image signal to noise ratio (SNR) was present as a performance parameter of image assessment. A scene of single target against the uniform background was set the reference one, the difference of brightness temperature between the target and the background was defined as the signal intensity of image, the fluctuation in the background was defined as the noise intensity of image which was calculated by the standard deviation of the background. The image SNR defined a better performance parameter of quality assessment of single image based on its spatial statistical properties. In the paper, the image SNR was successfully applied to the assessment of the ASR images of imaging experiment, the performance of various image inversion algorithms were compared; contrariwise the assessment of images was also applied to the choice of regularization parameter and promoted the research of regularized inversion numerical algorithm.
     In a word, aperture synthesis microwave radiometric imaging system and its key technologies were comprehensively described, and the unique solutions of three key problems of ASR were present in the paper. One of the features of the paper is that experiment results were given for all the main theory and solution methods in the paper. The paper was expected to be a bridge between the theory and the practical application of aperture synthesis microwave radiometric imaging system, and can promote the wide application of the technology in various fields.
引文
[1]. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing Fundamentals and Radiometry vol.1. Massachusetts:Addison-Wesley,1981.
    [2]. M. Peichl, S. Dill, M. Jirousek. Microwave Radiometry-Imaging technologies and Application. Proceedings of IEEE WFMN,2007:75-83.
    [3]. Thomann. G. C. Experimental results of the remote sensing of sea-surface salinity at 21-cm wavelength. IEEE Trans. Geosci. Electron.1976,14(3):198-214.
    [4]. Swift. C. T, Mcintosh. R. E. Consideration for microwave remote sensing of ocean-salinity. IEEE Trans. Geosci. Remote Sensing,1983,21(4):480-491.
    [5]. Wang. J. R, et al. Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughtness. IEEE Trans. Geosci. Remote Sensing,1983,12(1): 44-51.
    [6]. Schmugge. T. J, O'Neill. P. E, Wang. J. R. Passive microwave soil moisture research. IEEE Trans. Geosci. Remote Sensing,1986,24(1):12-22.
    [7]. Arai. K. A preliminary assessment of radiometric accuracies for MOS-1 sensors. Int. J. Remote Sensing,1988,9(1):5-21.
    [8]. 周长宝.欧洲空间局的地球观测活动.遥感信息,1990,3:40-42.
    [9]. Carrer. K. R, Elachi. C, Ulaby. F. T. Microwave remote sensing from space. Proceedings of IEEE,1985,73(6):970-996.
    [10]. Notel. D, Huck. J, Neubert, S. A compact mmw imaging radiometer for concealed weapon detection. Proceedings of IEEE IRMMW-THz,2007:269-270.
    [11]. Sinclair. G. N. Outdoor passive millimetre wave security screening. Security Technology Proceedings of IEEE,2001:172-179.
    [12]. Larry Yujiri. Passive millimeter wave imaging. IEEE Microwave Magazine,2003, 4(3):39-50.
    [13]. Stewart. W. L. Passive millimeter wave imaging considerations for tactical aircraft. Proceedings of IEEE DASC,2001,1:2B2/1-2B2/8.
    [14]. Martin, C. Real time passive millimeter-wave imaging from a helicopter platform. Proceedings of IEEE DASC,2000,1:2B1/1-2B1/8.
    [15].李辉,王子滨.国外毫米波制导技术的研究.制导与引信,1991,4:43-55.
    [16].张俊荣.毫米波辐射计制导.微波学报,1997,13(4):296-306.
    [17].吴冰,蔡晖.末修子弹敏感器试验结果及精度分析.现代防御技术,1999,1:11-17.
    [18].张祖荫,郭伟,林士杰.无源毫米波末敏弹.华中理工大学学报.1994,22(5):20-25.
    [19].严金海,李兴国,汪敏.毫米波辐射计探测直升机研究.探测与控制学报.2001,23(4):37-40.
    [20]. Markus. P, Helmut. S, Stephan. D. High resolution passive millimetre wave imaging technologies for reconnaissance and surveillance. Proceedings of SPIE,2003, V5077:77-86.
    [21].董晓龙,吴季,姜景山.微波辐射计用于隐身目标探测的性能分析.系统工程与电子技术,2001,23(3):54-57.
    [22].彭树生,李兴国.毫米波辐射计反空中涂层隐身飞机的分析.红外与毫米波学报,1998,17(6):454-458.
    [23].谢寿生,徐永进.微波遥感技术与应用.北京:电子工业出版社,1987.
    [24].张祖荫,林世杰.微波辐射测量技术及应用.北京:电子工业出版社,1995.
    [25]. A. B. Tanner, Aperture synthesis for passive microwave remote sensing:The electronically steered thinned array radiometer. Ph.D. dissertation, Dept. of Electical and Computer Eng., Univ. of Mass. at Amherst, Feb.1990.
    [26]. P. F. Goldsmith, C. T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, Focal plane imaging systems for millimeter wavelengths. IEEE Trans. Microw. Theory Tech.,1993,41 (10):1664-1675.
    [27]. Roger. T, Kuroda. Large-scale W-band focal plane array developments for passive millimeter-wave imaging. Proceedings of SPIE,1998, V3378:57-62.
    [28]. Pawsey. J. L, Bracewell. R. N. Radio Astronomy. London:Oxford,1955.
    [29]. Ryle. M, Hewish. A. The new Cambridge radio telescope. Nature,1962,194: 517-518.
    [30].王绶琯,吴盛殷,崔振兴,阎元宜等,射电天文方法.北京:科学出版社,1988.
    [31].向德琳.射电天文观测.北京:科学出版社,1990.
    [32]. C. T. Swift, D. M. Le Vine, and C. S. Ruf. Aperture synthesis concept in microwave remote sensing of the earth. IEEE Trans. Microw. Theory Tech.1991,39(12): 1931-1935.
    [33]. C. S. Ruf, C. T. Swift, A. B. Tanner, D. M. Le Vine. Interferometric synthetic aperture microwave radiometry for remote sensing of the earth. IEEE Trans. Geosci. Remote Sensing,1988,26(5):597-611.
    [34].董晓龙,吴季,姜景山.被动微波遥感技术的新发展——综合孔径微波辐射计和全极化参量微波辐射计.现代雷达,2001,4:73-78.
    [35]. Napier. P. J, Thompson. A. R, Bkers. R. D. The Very Large Array:design and performance of a modern synthesis radio telescope. Proceedings of IEEE,1983, 71(11):1295-1320.
    [36]. A.R. Thompson, J.M. Moran, and G.W. Swenson. Interferometry and Synthesis in Radio Astronomy. John Wiley & Sons,2001.
    [37]. Schanda. E. High ground resolution in passive microwave earth observation from space by multiple wavelength aperture synthesis. Internat. Astronautical Fed. Cong., Anaheim, CA, Oct.,1976.
    [38]. Schanda. E. Multiple wavelength aperture synthesis for passive sensing of the earth's surface. Proceedings of IEEE Antennas and Propagation Society,1979, 762-763.
    [39]. D. M. Le Vine. Synthetic aperture radiometer systems. IEEE Trans. Microw. Theory Tech.1999,47(12):2228-2236.
    [40]. B. Laursen and N. Skou. Calibration of the TUD Ku-band Synthetic Aperture Radiometer. Proceedings of IGARSS,1995,1:812-814.
    [41]. K. Gum-Sil, K. Yong-Hoon. Spatial and temperature resolution of sub-Y type antenna array configuration for high resolution interferometric synthetic aperture radiometer. Proceedings of IGARSS,2002,844-846.
    [42].卢军,张祖荫,林士杰.合成孔径微波辐射计灵敏度与分辨率关系的优化设计.通信学报,1996,17(2):131-136.
    [43].卢军,张祖荫,林士杰,黄铁侠.利用合成孔径微波辐射计输出反演地物亮温分布.电子学报,1997,25(3):91-93.
    [44].吴季,刘浩,孙伟英,姜景山.综合孔径微波辐射计的技术发展及其应用展望,遥感技术与应用,2005,20(1):24-29.
    [45].王华力, 李兴国, 彭树生, 王一丁.被动毫米波成像技术.红外与毫米波学报,1997,16(4):297-302.
    [46]. Jian. H, Tiguo. G. Image reconstruction of uiform circular array synthetic aperture radiometer. Proceedings of IEEE MAPE,2007,1481-1484.
    [47]. Xiong Zubiao, Hu Fei, Chen Liangbing, Zhu Yaoting. Statistical distribution of visibilities in digital aperture synthesis radiometry. IEEE Geoscience and Remote Sensing Letters.2009,6(3):428-432.
    [48]. D. M. Le Vine. Initial results in the development of a synthetic aperture microwave radiometer. IEEE Trans. Geosci. Remote Sensing,1990,28(4):614-619.
    [49]. D. M. Le Vine, A. J. Griffis, C. T. Swift, T. J. Jackson. ESTAR:a synthetic aperture microwave radiometer for remote sensing applications. Proceedings of the IGARSS, 1994,1787-1801.
    [50]. Thomas. J. J, D. M. Le Vine, Ann Y. H. Soil moisture mapping at regional scales using microwave radiometry the Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sensing,1999,37(5):2136-2151.
    [51]. D. M. Le Vine, Thomas. J. J, C. T. Swift. ESTAR measurements during the Southern Great Plains experiment. IEEE Trans. Geosci. Remote Sensing,2001, 39(8):1680-1685.
    [52]. D. M. Le Vine, C. T. Swift, Haken. M. Development of the synthetic aperture microwave radiometer ESTAR. IEEE Trans. Geosci. Remote Sensing,2001, 39(1):199-202.
    [53]. D. M. Le Vine, M. Haken. RFI at L-band in synthetic aperture radiometers. Proceedings of IGARSS,2003,1742-1744.
    [54]. D. M. Le Vine, M. Haken, C. T. Swift. Development of the synthetic aperture radiometer ESTAR and the next generation. Proceedings of IGARSS,2004, 1260-1263.
    [55]. D. M. Le Vine, M. Haken, D. Ryu. Two-dimensional synthetic aperture radiometry over land surface during soil moisture experiment in 2003 (SMEX03). Proceedings of IGARSS,2007,1842-1845.
    [56]. D. M. Le Vine, T. J. Jackson, M. Haken. Initial images of the SyntheticAperture Radiomter 2D-STAR. IEEE Trans. Geosci. Remote Sensing,2007,45(11): 3623-3632.
    [57]. M. Martin-Neira, Y. Menard, J. M. Goutoule, U. Kraft. MIRAS, a two-dimensional aperture synthesis radiometer. Proceedings of IGARSS,1994,1323-1325.
    [58]. Y. Kerr, J. Font, P. Waldteufel, A. Camps, J. Bara, et al. New radiometers:SMOS-a dual pol L-band 2D aperture synthesis radiometer. Proceedings of IEEE Aerospace, 2000,5:119-128.
    [59]. M. Martin-Neira, et al. Polarimetric mode of MIRAS. IEEE Trans. Geosci. Remote Sensing,2002,40(8):1755-1768.
    [60]. O. Batz, U. Kraft, W. Lindemer, H. Reichel. Design and implementation of the MIRAS digital correlator. Proceedings of IGARSS,1996,2:872-874.
    [61]. N. Duffo, I. Corbella, M. Vall-llossera, A. Camps, F. Torres, M. Zapata, J.Benito. MIRAS imaging validation. Proceedings of IGARSS,2003,2:1226-1228.
    [62]. B. Laursen, N. Skou. A spaceborne synthetic aperture radiometer simulated by the TUD demonstration model. Proceedings of IGARSS,1994,1314-1316.
    [63]. B. Laursen, N. Skou. Synthetic aperture radiometry evaluated by a two-channel demonstration model. IEEE Trans. Geosci. Remote Sensing,1998,36(3):822-832.
    [64]. M. Martin-Neira, J. M. Goutoule,et al. Integration of MIRAS breadboard and future activities. Proceedings of IGARSS,1996,2:869-871.
    [65]. F. Torres, I. Corbella, A. Camps, et al. Receiver specifications of the MIRAS demonstrator. Proceedings of SPIE,2001, V4169:291-298.
    [66]. F. Bayle, J. Wigneron, Y. H. Kerr, et al. Two-dimensional synthetic aperture images over a land surface scene. IEEE Trans. Geosci. Remote Sensing,2002,40(3): 710-714.
    [67]. S. Ribo, M. Martin-Neira, I. Cabeza, S. Tauriainen, and N. Duffo. MIRAS Airborne Demonstrator. Proceedings of IEEE MicroRad,2006,45-49.
    [68]. N. Duffo, F. Torres, I. Corbella, et al. Some results of the MIRAS-SMOS demonstrator campaigns. Proceedings of IGARSS,2007,3639-3642.
    [69]. M. Martin-Neira, I. Cabeza, et al. AMIRAS—An Airborne MIRAS Demonstrator. IEEE Trans. Geosci. Remote Sensing,2002,46(3):705-716.
    [70]. M. Martin-Neira, I. Corbella, et al. MIRAS Functional Test Results for the SMOS Mission. Proceedings of IEEE MicroRad,2006,29-34.
    [71]. S. Beraza, V. Gonzalez, F. Torres, N. Duffo, I. Corbella, et al. MIRAS-SMOS Demonstrator Test Campaigns at Polytechnic University of Catalonia. Proceedings of IGARSS,2006,1776-1779.
    [72]. H. M. J. P. Barre, B. Duesmann, Y. H. Kerr. SMOS:The Mission and the System. IEEE Trans. Geosci. Remote Sensing,2002,46(3):587-593.
    [73]. K. D. McMullan, M. A. Brown, M. Martin-Neira, et al. SMOS:The Payload. IEEE Trans. Geosci. Remote Sensing,2002,46(3):594-605.
    [74]. H. Valmu, I. Mononen, M. Hallikainen. The Helsinki University of Technology synthetic aperture radiometer. Proceedings of IGARSS,1998,2:553-555.
    [75]. K. Rautiainen, R. Butora, T. Auer, et al. The Helsinki University of Technology Ylinen electronics airborne L-band interferometric radiometer. Proceedings of IGARSS,2000,7:2978-2980.
    [76]. K. Rautiainen, R. Butora, T. Auer, J. Kettunen, et al. Development of airborne aperture synthetic radiometer (HUT-2D). Proceedings of IGARSS,2003,2: 1232-1234.
    [77]. K. Rautiainen, J. Kainulainen, T. Auer, et al. Helsinki University of Technology Synthetic Aperture Radiometer — HUT-2D. Proceedings of IGARSS,2007,2: 3635-3638.
    [78]. K. Rautiainen, R. Butora, M. Hallikainen, J. Uusitalo. Measurement of the HUT-2D aperture synthesis radiometer four-element subassembly. Proceedings of IGARSS, 2001,3074-3076.
    [79]. J. Kainulainen, K. Rautiainen, S. Tauriainen, et al. First 2-D interferometric radiometer imaging of the earth from an aircraft. IEEE Trans. Geosci. Remote Sensing Letters,2007,4(2):241-245.
    [80]. K. Rautiainen, J. Kainulainen, T Auer, et al. Helsinki University of Technology L-Band Airborne Synthetic Aperture Radiometer. IEEE Trans. Geosci. Remote Sensing,2008,46(3):717-726.
    [81]. B. Lambrigtsen, W. Wilson, A. Tanner, et al. GeoSTAR-a microwave sounder for geostationary satellites. Proceedings of IGARSS,2004,777-780.
    [82]. B. Lambrigtsen, W. Wilson, A. Tanner, T. Gaier. GeoSTAR-a synthetic aperture approach for a geostationary microwave sounder. Proceedings of IEEE Aerospace Conference,2004,2:1008-1014.
    [83]. A. B. Tanner, W. J. Wilson, P. P. Kangaslahti, B. H. Lambrigsten, et al. Prototype development of a geostationary synthetic thinned aperture radiometer, GeoSTAR. Proceedings of IGARSS,2004,1256-1259.
    [84]. B. H. Lambrigsten, W. Wilson, A. B. Tanner, P. Kangaslahti. GeoSTAR a synthetic aperture microwave sounder for geostationary missions. Proceedings of SPIE,2005, V5659:185-194.
    [85]. B. Lambrigtsen, "GeoSTAR:Developing A New Payload for GOES Satellites," in IEEE Aerospace Conference,2006, pp.1-10.
    [86]. A. B. Tanner, S. T. Brown, T. C. Gaier, B. H. Lambrigsten. Field tests of the GeoSTAR demonstrator instrument. Proceedings of IGARSS,2007,2427-2430.
    [87]. A.B.Tanner, T. C. Gaier, B. H. Lambrigtsen. GeoSTAR Performance Demonstration. Proceedings of IEEE Aerospace Conference,2008,1-6.
    [88]. A. B. Tanner, S. T. Brown, S. J. Dinardo, et al. Initial results of the GeoSTAR prototype. Proceedings of IEEE Aerospace Conference,2006,1-9.
    [89]. A. B. Tanner, W. J. Wilson, B. H. Lambrigsten, et al. Initial Results of the Geosynchronous Synthetic Thinned Array Radiometer. Proceedings of IGARSS, 2006,3968-3971.
    [90]. M. A. Fischman, A. W. England. An L-band direct-sampling digital radiometer design and performance evaluation. Proceedings of IGARSS,1999,1:237-239.
    [91]. L. Nieuwstadt, R. De Roo, D. Boprie, et al. A compact direct detection receiver for L-band STAR radiometry. Proceedings of IEEE MTT-S,2003,1:563-566.
    [92]. R. De Roo, A. W. England, J. Munn. Circular polarization for L-band radiometric soil moisture retrieval. Proceedings of IEEE Aerospace Conference,2004,2: 1015-1023.
    [93]. M. A. Fischman, A. W. England. A direct-sampling receiver for synthetic thinned array radiometry. Proceedings of IGARSS,1998,3:1711-1713.
    [94]. M. A. Fischman, A. W. England. An L-band direct sampling digital radiometer for STAR technology sensors. Proceedings of IGARSS,2000,5:129-139.
    [95]. A. W. England, H. Pham, R. De Roo, et al. Performance of STAR-Light receivers during CLPX. Proceedings of IGARSS,2003,2:1235-1237.
    [96]. Xiaolong Dong, Ji Wu, Jingshan Jiang. The signal analysis and imaging of synthetic aperture radiometer. Proceedings of IGARSS,1998,5:2650-2652.
    [97].张升伟,董晓龙,吴季.L波段合成孔径微波辐射计机理及原理性实验.遥感技术与应用,2000,15(2):95-99.
    [98]. Xiaolong Dong, Ji Wu, et al. The design and implementation of CAS C-band interferometric synthetic aperture radiometer. Proceedings of IGARSS,2000,2: 866-868.
    [99]. Shengwei Zhang, Ji Wu. Experimental results of synthetic aperture microwave radiometer. Proceedings of IGARSS,2002,6:3635-3637.
    [100]. Jie Lu, Souzheng Ban, Ji Wu, Jingshan Jiang. Receiver designing of the x-band high-spatial-resolution radiometer. Proceedings of SPIE,2003, V4894:240-250.
    [101]. Hao Liu, Ji Wu, et al. The CAS airborne X-band synthetic aperture radiometer: system configuration and experimental results. Proceedings of IGARSS,2004,3: 2230-2233.
    [102].Jian Huang, Tiguo Gan. A novel millimeter wave synthetic aperture radiometer passive imaging system. Proceedings of IEEE ICMMT,2004,414-417.
    [103].卢军,林士杰,张祖荫.星载合成孔径微波辐射计的反演公式.微波学报,1994,39(4):20-27.
    [104].Qingxia Li, Ke Chen, Wei Guo, et al. An Aperture Synthesis Radiometer at Millimeter Wave Band, in Proc. Proceedings of IEEE ICMMT,2008,4:1699-1701.
    [105].Qingxia Li, Fei Hu, Wei Guo, Ke Chen, et al. A General Platform for Millimeter Wave Synthetic Aperture Radiometers. Proceedings of IGARSS,2008, 1156-1159.
    [106].薛永,苗俊刚,万国龙.8mm波段二维综合孔径微波辐射计(BHU-2D).北京航 空航天大学学报,2008,34(9):1020-1023.
    [107].Yong Xue, Jungang Miao, et al. Development of the disk antenna array aperture synthesis millimeter wave radiometer. Proceedings of IEEE ICMMT,2008,2: 806-809.
    [108].章勇,李兴国,王华力.毫米波合成孔径成像辐射计.系统工程与电子技术,1998,12:11-14.
    [109]. Xi Zhou, Houjun Sun, Jiwei He, Xin Lu. NUFFT-based iterative reconstruction algorithm for synthetic aperture imaging radiometers. IEEE Trans. Geosci. Remote Sensing Letters,2009,6(2):273-276.
    [110]. A. Camps. Application of interferometric radiometry to Earth observation. Ph.D. dissertation, Dept Telecommun. Eng., Univ. Politecnica de Catalunya, Barcelona, Spain,1996.
    [111].F. Torres, A. Camps, J. Bara, I. Corbella. On-board phase and modulus calibration of large aperture synthesis radiometers study applied to MIRAS. IEEE Trans. Geosci. Remote Sensing,1996,34(4):1000-1009.
    [112]. I. Corbella, F. Torres, A. Camps,et al. Baseline calibration of interferometric radiometers experimental results. Proceedings of IGARSS,2008,8:5547-5550.
    [113].董晓龙,吴季,姜景山.信道互耦和不平衡度对综合孔径微波辐射计复相关干涉测量的影响分析及其校准.电子学报,2001,29(7):947-949.
    [114].董晓龙,张升伟,吴季.综合孔径微波辐射计天线单元互耦的影响及其校正.电子学报,2001,29(9):1280-1282.
    [115].刘浩,吴季,吴琼.综合孔径微波辐射计信道误差分析与标定.电子学报,2005,33(3):402-406.
    [116].杨姗,苗俊刚,李俊洁.本振相位噪声对干涉式综合孔径辐射计性能的影响.遥感技术与应用,2007,22(2):251-254.
    [117].赵锋,苗俊刚,胡岸勇,薛永.二维综合孔径微波辐射计误差分析.微波学报,2008,24(10): 197-201.
    [118].N. Skou. Aspects of the SMOS pre-launch calibration. Proceedings of IGARSS, 2003,2:1222-1225.
    [119]. I Corbella, A. J. Gasiewski, M. Klein, et al. On board accurate calibration of dual-channel radiometers using internal and external references. IEEE Trans. Microw. Theory Tech.,2002,50(7):1816-1820.
    [120]. I Corbella, F. Torres, A. Camps, et al. MIRAS end-to-end calibration application to SMOS L1 processor. IEEE Trans. Geosci. Remote Sensing,2005,43(5): 1126-1134.
    [121]. J. Lemmetyinen, J. Uusitalo, J. Kainulainen, SMOS Calibration Subsystem. IEEE Trans. Geosci. Remote Sensing,2007,45(11):3691-3700.
    [122]. I Corbella, A. Camps, F. Torres, J. Bara. Analysis of noise-injection networks for interferometric-radiometer calibration. IEEE Trans. Microw. Theory Tech.,2000, 48(4):545-552.
    [123]. B. H. Lambrigtsen, S. T. Brown, S. J. Dinardo, et al. Progress in developing GeoSTAR a microwave sounder for GOES-R. Proceedings of SPIE,2005, V5882: 0L1-0L9.
    [124]. Ke Chen, Wei Guo, Qingxia Li, Fangmin He, Rong Ji. Phase and amplitude Calibration of HUST Ku-band Aperture Synthesis Radiometer Using External Source. Proceedings of IEEE International Symposium on MAPE,2009, V1:356~359.
    [125]. M. A. Fischman, A. W. England. A technique for reducing fringe washing effects in L-band aperturesynthesis radiometry. Proceedings of IGARSS,2000,7:3154-3156.
    [126]. B. Picard, Eric Anterrieu, et al. Impact of the fringe washing function on the spatial resolution and on the radiometric sensitivity of the SMOS instrument. Proceedings of IGARSS,2003,5:3067-3069.
    [127]. J. Kainulainen, K. Rautiainen, M. Hallikainen. Experimental Verification of Fringe-washing Calibration Techniques in Large Aperture Synthesis Radiometers. Proceedings of IEEE MicroRad,2006,13-17.
    [128].黄永辉.综合孔径成像微波辐射计反演算法及实验研究:[硕士thesis].空间飞行器设计,中国科学院空间科学与应用研究中心,2001.
    [129]. A. Camps, J. Bara, I. C. Sanahuja, F. Torres. The processing of hexagonally sampled signals with standard rectangular techniques:application to 2-D large aperture synthesis interferometric radiometers. IEEE Trans. Geosci. Remote Sensing,1997,35(1):183-190.
    [130]. Tanner, A. B., Calvin T. Swift. Calibration of a synthetic aperture radiometer. IEEE Trans. Geosci. Remote Sens.1993,31(1):257-256.
    [131]. Eric Anterrieu. A resolving matrix approach for synthetic aperture imaging radiometers. IEEE Trans. Geosci. Remote Sensing,2004,42(8):1649-1656.
    [132]. M. A. Goodberlet. Improved image reconstruction techniques for synthetic aperture radiometers. IEEE Trans. Geosci. Remote Sensing,2000,38(3):1362-1366.
    [133]. Backus, G., Gilbert, F. Uniqueness in the inversion of inaccurate gross earth data. Philos. Trans. R. Soc..1970,266:123-129.
    [134].卢军.合成孔径微波辐射成像技术的研究:[博士thesis].通信与电子系统,华中理工大学,1996.
    [135]. B. Picard, E. Anterrieu. Comparison of regularized inversion methods in synthetic aperture imaging radiometry. IEEE Trans. Geosci. Remote Sensing,2005,43(2): 218-222.
    [136]. E. Anterrieu, B. Picard, M. Martin-Neira, et al. A strip adaptive processing approach for the SMOS space mission. Proceedings of IGARSS,2004,3:1922-1925.
    [137]. Camps, A., Bara, J., Torres, F., et al. Extension of the CLEAN technique to the microwave imaging of continuous thermal sources by means of aperture synthesis radiometers. in:Progress In Electromagnetics Research Symposium:vol.18,1998. 67-83.
    [138]. Fangmin He, Qingxia Li, Yaoting Zhu, Ke Chen, Zubiao Xiong. A Statical Inversion Algorithm for Aperture Synthesis Radiometers. Proceedings of IEEE International Symposium on MAPE,2009, V1:342~345.
    [139]. M. Born and E. Wolf. Principles of Optics:Cambridge University Press,1999.
    [140]. D. M. Le Vine. The sensitivity of synthetic aperture radiometers for remote sensing applications from space. Radio Science,1990,25(4):441-453.
    [141]. C. S. Ruf. Error analysis of image reconstruction by a synthetic aperture interferometric radiometer. Radio Science,1991,26(6):1419-1434.
    [142]. A. Camps, F. Torres, et al. Mutual coupling effects on antenna radiation pattern:an experimental study applied to interferometric radiometers. Radio Science,1998, 33(9):1543-1552.
    [143].邹谋炎.反卷积和信号复原.国防工业出版社,2001.
    [144].胡适耕.应用泛函分析.科学出版社,2003.
    [145]. J.Hadamard. Lectures on Cauchy's Problem in Linear Partial Differential Equations. Courier Dover Publications,2003.
    [146]. R. Courant, D. Hilbert. Methods of mathematical physics Vol Ⅱ. New York: Interscience,1962.
    [147]. L. E. Franks. Signal Theory. Stroudsburg, PA:Dowden and Culver,1981.
    [148].张贤达.矩阵分析与应用.清华大学出版社,2004.
    [149]. Mario Bertero, Patrizia Boccacci. Introduction to inverse problems in imaging. Institute of Physics,1998.
    [150]. R. N. Bracewell. The fourier transform and its applications. New York: McGraw-Hill,1965.
    [151]. A. N. Tikhonov, V. Y. Arsenin. Solutions of ill-posed problems. Washington: Winston/Wiley,1977.
    [152]. A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, et al. Numerical methods for the solution of ill-posed problems. Dordrecht:Kluwer Academic publishers,1995.
    [153]. M. A. Brown, F. Torres, I. Corbella, A. Colliander. SMOS Calibration. IEEE Trans. Geosci. Remote Sensing,2008,46(3):646-658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700