细胞刺激因素对小窝蛋白在人晶状体上皮细胞中分布与表达的影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白内障的发病机制较为复杂,与多种因素相关。活性氧簇(reactive oxygen species,ROS),包括过氧化氢(hydrogen peroxide,H_2O_2)、超氧阴离子等都可参与这一致病过程。ROS可以引起很多生物学变化,使晶状体的水不溶性蛋白增加而形成白内障。
     晶状体纤维细胞的质膜含有丰富的胆固醇。高胆固醇有利于晶状体膜结构维持于生理状态。胆固醇的消耗可以破坏细胞内的质膜微区—脂筏(lipid raft)。甲基-β-环糊精(methyl-β-cyclodextrin,MβCD)可以与胆固醇结合,从而消耗细胞质膜上的胆固醇。
     小窝(caveolae)是一种由非笼型蛋白包被的细胞质膜微区,含有丰富的胆固醇、鞘糖脂和蛋白质。Caveolae存在于多种细胞中,可在细胞质膜上向内凹陷,形成50~100nm大小的囊泡。小窝蛋白(caveolin)是caveolae的标记蛋白。Caveolae及caveolin具有重要的功能,可以参与细胞的物质转运和信号转导过程。哺乳动物细胞的caveolin家族成员包括三种亚型:caveolin-1,caveolin-2和caveolin-3。
     一些研究观察到人和动物的晶状体有caveolae及cavcolin的存在;并且通过离心发现在人的白内障晶状体中,缺乏含有膜成分的非沉淀条带。但是目前对于人晶状体上皮细胞(human lens epithelial cells,HLECs)系的caveolae及caveolin的研究甚少,国内尚未见有报道。我们知道H_2O_2所造成的氧化损伤是一种比较成熟的研究白内障发病机制的模型,因此我们选用这一模型来研究氧化损伤和caveolae/caveolin的关系,以进一步探讨白内障的发病机制。
     目的:通过H_2O_2刺激HLECs,观察H_2O_2对HLECs增殖活性的影响、caveolin分布与表达的变化,以及caveolin-1的磷酸化;同时用MβCD消耗HLECs的胆固醇后,观察caveolin表达的变化;从而评估caveolin及caveolin-1的磷酸化对于HLECs内的细胞信号转导及胆固醇运输的作用,并探讨caveolin与白内障发生的可能关系。
     方法:用不同浓度的H_2O_2及10mM MβCD刺激SRA01/04 HLECs,刺激时间分别为0、5、10、15、30和60分钟。用MTT法观察H_2O_2对HLECs增殖活性的影响。用荧光显微镜和激光共聚焦显微镜观察H_2O_2和MβCD刺激细胞以后,caveolin的分布改变和磷酸化caveolin-1的分布。通过western blot免疫印迹实验观察caveolin表达的变化,并观察磷酸化caveolin-1的表达。用透射电子显微镜观察正常HLECs内caveolae的分布。
     结果:0.1mM H_2O_2刺激HLECs时间达10分钟以上时,或1.0mM H_2O_2刺激时间达5分钟以上时,MTT法即发现对细胞的增殖活性有影响。与对照组相比,存在显著性差异(p<0.05,F=11.63;或p<0.05,F=185.984)。1.0mM H_2O_2刺激HLECs 5分钟以后,在激光共聚焦显微镜下,可以观察到细胞浆内caveolin的分布增多。当用10mM MβCD刺激细胞5分钟以后,在荧光显微镜下,观察到细胞形态变小,发生皱缩。通过western blot免疫印迹实验,可以观察到0.1、0.2、0.5和1.0mM H_2O_2刺激HLECs 30分钟以后,与对照组相比,细胞膜蛋白和总蛋白的caveolin表达都下调(p<0.05,F=6.149;或p<0.05,F=14.489)。此外,0.1mM H_2O_2(p<0.05,F=6.843;或p<0.05,F=7.944)和1.0mM H_2O_2(p<0.05,F=6.242;或p<0.05,F=5.457)刺激达到不同时间以后,细胞膜蛋白和总蛋白的caveolin表达也下调。当用10mM MβCD刺激细胞达到不同时间后,细胞膜蛋白和总蛋白的caveolin表达也表现为下调,但是膜蛋白在刺激时间达15分钟以后,与对照组相比,存在统计学显著性意义(p<0.05,F=9.890),而总蛋白没有统计学显著性意义(p>0.05,F=1.480)。用1.0mM H_2O_2刺激HLECs达60分钟时,western blot免疫印迹实验显示,caveolin-1的酪氨酸14位点发生了磷酸化。通过透射电子显微镜,观察到呈Ω样或瓶颈样外观的caveolae的分布,但数量并不丰富。
     结论:HLECs对H_2O_2的刺激反应包括细胞增殖活性的降低、细胞内caveolin的重新分布、caveolin表达的下调,以及caveolin-1的磷酸化。当用MβCD消耗细胞的胆固醇后,细胞形态变化,caveolin的表达也下调。以上结果提示我们:HLECs内有caveolae的存在,并有caveolin/caveolin-1的分布;高水平的胆固醇对于维持caveolae的结构和功能是必须的。在H_2O_2的刺激下,caveolin可能参与细胞信号的转导过程,而caveolin-1的磷酸化是其参与H_2O_2诱导的信号转导过程的一个关键因素;氧化损伤可能通过下调caveolin的表达而参与白内障的发生。
The mechanisms of cataract formation are very complicated. Oxidative stress is believed to be an important contributing factor in maturity onset of cataract formation. Reactive oxygen species (ROS), such as hydrogen peroxide (H_2O_2), superoxide anion are postulated to contribute to this process. ROS causes a number of biochemical changes, which lead to an increase in water-insoluble lens proteins and the appearance of lens opacity.
    The plasma membrane of the lens is extremely rich in cholesterol. This high level of cholesterol is proposed to preserve lens membrane
    structure in the physiological state. Disruption of cholesterol has been shown to destroy subdomains of lipid rafts, and methyl-β-cyclodextrin (MpCD) is known to deplete cholesterol from cell membranes.
    Caveolae are non-clathrin-coated plasma membrane microdomains rich in cholesterol and glycosphingolipid. They invaginate to form 50-100 nm vesicles in the plasma membrane that have been found in many cell types. Caveolae contain the signature marker proteins termed caveolins, which have been implicated in vesicular trafficking and signal transduction. The mammalian caveolin family members include three isoforms: caveolin-1, caveolin-2 and caveolin-3.
    Some studies showed that caveolin and caveolae exits in lens and lens epithelial cells, and samples from cataract lens were not exhibited nonsedimenting bands which included abundant caveolin after sucrose linear density gradient centrifiigation. But the reports on study of human lens epithelial cells line are very rare, and no paper in China at present. Oxidative stress induced by H_2O_2 is a good model for study on cataract, so we select this model for our study on caveolin and cell stress and to further explore the mechanism of cataract.
    Purpose: Oxidative stimulation induced by hydrogen peroxide on human lens epithelial cells (HLECs) was performed to observe the effects on cell proliferation, caveolin expression, caveolin-1 phosphorylation, and cholesterol depletion in HLECs caused by MβCD was also studied. The expression and distribution of caveolin in HLECs under H_2O_2 stimulation and cholesterol depletion were determined to assess the possible roles of caveolin in cell signal transduction and cholesterol trafficking. And the possible relationship between the caveolin and cataract formation are also explored.
    Methods: SRA01/04 HLECs were exposed to H_2O_2 or MβCD of various concentrations and durations. We used a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrozolium bromide (MTT) assay to measure the effect of H_2O_2 on the proliferation of SRA01/04 HLECs. The distributions of caveolin after oxidative stimulation were probed by fluorescence microscopy and laser scanning confocal microscopy. Western blot was performed to analyze the alterations of caveolin expression and caveolin-1 phosphorylation. And also, we observed the caveolae distribution in HLECs by electron microscopy.
    Results: We observed that the proliferation of SRA01/04 HLECs under 0.1 mM H_2O_2 for 10 min or longer, or 1.0 mM for 5 min or longer was significantly reduced (p<0.05, F=11.63; or p<0.05,F=185.984, respectively). Laser scanning microscopy showed immunofluorescent caveolin in SRA01/04 HLECs under 1.0 mM H_2O_2 for 10 min or longer, caveolin were largely confined to intracellular domains. SRA01/04 HLECs under 10 mM MβCD for 5 min or longer became remarkably smaller in size under fluorescence microscopy. Western blot showed both membrane and total caveolin protein (22 kDa) levels in SRA01/04 HLECs treated with 0.1, 0.2, 0.5 or 1.0 mM H_2O_2 for 30 min were significantly reduced, compared with the untreated (p<0.05, F=6.149; or p<0.05, F=14.489, respectively). In addition, the membrane and total caveolin protein level after treated with 0.1mM (p<0.05, F=6.843; or p<0.05, F=7.944, respectively) and 1.0 mM (p<0.05, F=6.242; p<0.05, F=5.457, respectively) H_2O_2 for different durations also down regulated. Western blot showed that the membrane and total caveolin protein level down regulated when treated with 10mM MβCD. The membrane caveolin under 10mM M(3CD for 15min or longer showed significant down regulation (p<0.05, F=9.890), whereas the total caveolin showed no significant down regulation (p>0.05, F=1.480). Western blot also showed
    caveolin-1 was phosphorylated on tyrosine 14 in SRA01/04 HLECs after stimulated with 1.0 mM H_2O_2 for 60 min. Fluorescence microscopy also showed that phosphorylated caveolin-1 was distributed near the focal adhesions of the cells. On electron microscopy, the surface of untreated HLECs exhibited plasma membrane invaginated to form omega- or flask-shaped caveolae in a small amount.
    Conclusions: This study concludes that the responses of HLECs to oxidative stress may include the suppression of the proliferation of HLECs, down regulation of caveolin and tyrosine 14 phosphorylation of caveolin-Land MβCD also down regulates caveolin while depleting cholesterol in HLECs. These results show that HLECs contain caveolae and caveolin/caveolin-1. Abundant cholesterols are necessary for maintenance the function of caveolae. Caveolin might involve in the signal transduction of HLECs. And tyrosine 14 phosphorylation of caveolin-1 is a key factor that caveolin participate in the signal transduction. Oxidative stress down regulating caveolin might be one of the many mechanisms, which result in the formation of cataract.
引文
1 Spector A, Garner H. Hydrogen peroxide and human cataract. Exp Eye Res, 1981,33:673-681.
    2 Carper DA, Sun JK, Iwata T, et al. Oxidative stress induces differential gene expression in a human lens epithelial cell line. Invest Ophthalmol Vis Sci, 1999, 40: 400-406.
    3 Ottonello S, Foroni C, Carta A, et al. Oxidative stress and age-related cataract. Ophthalmologica, 2000, 214: 78-85.
    4 Spector A. Oxidative stress-induced cataract: mechanism of action. Faseb J, 1995,9:1173-1182.
    5 Spector A, Ma W, Wang RR. The aqueous humor is capable of generating and degrading H_2O_2. Invest Ophthalmol Vis Sci, 1998, 39: 1188-1197.
    6 Spector A, Wang GM, Wang RR, et al. A brief photochemically induced oxidative insult causes irreversible lens damage and cataract. I. Transparency and epithelial cell layer. Exp Eye Res, 1995, 60:471-481.
    7 Tang D, Borchman D, Yappert MC, et al. Influence of cholesterol on the interaction of alpha-crystallin with phospholipids. Exp Eye Res, 1998, 66: 559-567.
    8 Chang WJ, Rothberg KG, Kamen BA, et al. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol, 1992,118:63-69.
    9 Silvius JR. Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta, 2003,1610: 174-183.
    10 Lo WK, Zhou CJ, Reddan J. Identification of caveolae and their signature proteins caveolin 1 and 2 in the lens. Exp Eye Res, 2004, 79: 487-498.
    11 Rodal SK, Skretting G, Garred O, et al. Extraction of Cholesterol with Methyl-beta-Cyclodextrin Perturbs Formation of Clathrin-coated Endocytic Vesicles. Mol Biol Cell, 1999,10: 961-974.
    12 Hailstones D, Sleer LS, Parton RG, et al. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res, 1998, 39: 369-379.
    13 Thomsen P, Roepstorff K, Stahlhut M, et al. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell, 2002, 13: 238-250.
    14 Mori M, Li G, Abe I, et al. Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat. J Clin Invest, 2006, 116:395-404.
    15 Graham DR, Chertova E, Hilbum JM, et al. Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. J Virol, 2003, 77: 8237-8248.
    16 Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae Mol Membr Biol, 1999, 16: 145-156.
    17 Aussenac F, Tavares M,Dufourc EJ. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR. Biochemistry, 2003,42: 1383-1390.
    18 Ikonen E, Parton RG Caveolins and cellular cholesterol balance. Traffic, 2000, 1:212-217.
    19 Galbiati F, Razani B, Lisanti MR Emerging themes in lipid rafts and caveolae. Cell, 2001,106: 403-411.
    20 Simons K, Ikonen E. Functional rafts in cell membranes. Nature, 1997, 387: 569-572.
    21 van Deurs B, Roepstorff K, Hommelgaard AM, et al. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol, 2003, 13: 92-100.
    22 Williams TM, Lisanti MP. The caveolin proteins. Genome Biol, 2004, 5:214.
    23 Minshall RD, Sessa WC, Stan RV, et al. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol, 2003,285: L1179-1183.
    24 Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol, 2003, 161: 673-677.
    25 Kurzchalia TV, Dupree P, Parton RG, et al. VIP21, a 21 -KD membrane protein is an integral component of trans-Glogi-network-derived transport vesicles. J. Cell Biol, 1992,118: 1003-1014.
    26 Lisanti MP, Tang Z, Scherer PE, et al. Caveolae, transmembrane signalling and cellular transformation. Mol Membr Biol, 1995,12: 121-124.
    27 Razani B, Schlegel A,Lisanti MP. Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. J Cell Sci, 2000,113 2103-2109.
    28 Bender F, Montoya M, Monardes V, et al. Caveolae and caveolae-like membrane domains in cellular signaling and disease: identification of downstream targets for the tumor suppressor protein caveolin-1. Biol Res, 2002,35:151-167.
    29 Lisanti MP, Scherer PE, Tang Z, et al. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol, 1994, 4: 231-235.
    30 Krajewska WM, Maslowska I. Caveolins: structure and function in signal transduction. Cell Mol Biol Lett, 2004, 9: 195-220.
    31 Volonte D, Zhang K, Lisanti MP, et al. Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine ribroblasts. Mol Biol Cell, 2002,13:2502-2517.
    32 Smart EJ, Foster DC, Ying YS, et al. Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J Cell Biol, 1994,124:307-313.
    33 Segal SS, Brett SE, Sessa WC. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. Am J Physiol, 1999, 277:1167-1177.
    34 Feron O, Belhassen L, Kobzik L, et al. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem, 1996, 271: 22810-22814.
    35 Li S, Couet J, Lisanti MR Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem, 1996, 271: 29182-29190.
    36 Kiss AL, Turi A, Muller N, et al. Caveolae and caveolin isoforms in rat peritoneal macrophages. Micron, 2002,33: 75-93.
    37 Scherer PE, Lewis RY, Volonte D, et al. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem, 1997,272: 29337-29346.
    38 Way M, Parton RG. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett, 1996, 378: 108-112.
    39 Tang Z, Okamoto T, Boontrakulpoontawee P, et al. Identification, sequence, and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans. Implications for the molecular evolution of mammalian caveolin genes. J Biol Chem, 1997,272: 2437-2445.
    40 Sexton PS, Neely AR, Cenedella RJ. Distribution of caveolin-1 in bovine lens and redistribution in cultured bovine lens epithelial cells upon confluence. Exp Eye Res, 2004,78: 75-82.
    41 Lin D, Boyle DL, Takemoto DJ. IGF-I-induced phosphorylation of connexin 43 by PKCgamma: regulation of gap junctions in rabbit lens epithelial cells. Invest Ophthalmol Vis Sci, 2003,44: 1160-1168.
    42 Lin D, Lobell S, Jewell A, et al. Differential phosphorylation of connexin46 and connexin50 by H_2O_2 activation of protein kinase Cgamma. Mol Vis, 2004, 10: 688-695.
    43 Lin D, Zhou J, Zelenka PS, et al. Protein kinase Cgamma regulation of gap junction activity through caveolin-1-containing lipid rafts. Invest Ophthalmol Vis Sci, 2003,44: 5259-5268.
    44 Rujoi M, Jin J, Borchman D, et al. Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers. Invest Ophthalmol Vis Sci, 2003,44: 1634-1642.
    45 Volonte D, Galbiati F, Pestell RG, et al. Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr(14)) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J Biol Chem, 2001,276: 8094-8103.
    46 Li WP, Liu PS, Pilcher BK, et al. Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci, 2001, 114: 1397-1408.
    47 Mikol DD, Hong HL, Cheng HL, et al. Caveolin-1 expression in Schwann cells. Glia, 1999, 27:39-52.
    48 Gargalovic P, Dory L. Caveolin-1 and caveolin-2 expression in mouse macro-phages. J Biol Chem, 2001,276: 26164-26170.
    49 Schubert AL, Schubert W, Spray DC, et al. Connexin family members target to lipid raft domains and interact with caveolin-1. Biochemistry, 2002, 41: 5754-5764.
    50 Glenney JR, Jr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem, 1989, 264: 20163-20166.
    51 Chen DB, Li SM, Qian XX, et al. Tyrosine phosphorylation of caveolin 1 by oxidative stress is reversible and dependent on the c-src tyrosine kinase but not mitogen-activated protein kinase pathways in placental artery endothelial cells. Biol Reprod, 2005 73: 761-772.
    52 Lee H, Volonte D, Galbiati F, et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-l/Grb7 signaling cassette. Mol Endocrinol, 2000 14: 1750-1775.
    53 Nomura R, Fujimoto T. Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol Biol Cell, 1999, 10: 975-986.
    54 Ohguro N, Fukuda M, Sasabe T, et al. Concentration dependent effects of hydrogen peroxide on lens epithelial cells. Br J Ophthalmol, 1999, 83: 1064-1068.
    55 Boscia F, Grattagliano I, Vendemiale G, et al. Protein oxidation and lens opacity in humans. Invest Ophthalmol Vis Sci, 2000,41: 2461-2465.
    56 Ma W, Kleiman NJ, Sun F, et al. Peroxide toxicity in conditioned lens epithelial cells—evaluation of multi-defense systems. Exp Eye Res, 2003, 77: 711-720.
    57 Paron I, D'Elia A, D'Ambrosio C, et al. A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells. Biochem J, 2004, 378: 929-937.
    58 Li WC, Kuszak JR, Dunn K, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals. J Cell Biol, 1995, 130: 169-181.
    59 Marsili S, Salganik RI, Albright CD, et al. Cataract formation in a strain of rats selected for high oxidative stress. Exp Eye Res, 2004, 79: 595-612.
    60 Xing KY, Lou MR Effect of H_2O_2 on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase. Exp Eye Res, 2002, 74: 113-122.
    61 Choudhary S, Zhang W, Zhou F, et al. Cellular lipid peroxidation end-products induce apoptosis in human lens epithelial cells. Free Radic Biol Med, 2002, 32: 360-369.
    62 Long AC, Colitz CM, Bomser JA. Apoptotic and necrotic mechanisms of stress-induced human lens epithelial cell death. Exp Biol Med, 2004, 229: 1072-1080.
    63 Goswami S, Sheets NL, Zavadil J, et al. Spectrum and range of oxidative stress responses of human lens epithelial cells to H_2O_2 insult. Invest Ophthalmol Vis Sci, 2003, 44: 2084-2093.
    64 Ramana KV, Chandra D, Wills NK, et al. Oxidative stress-induced up-regulation of the chloride channel and Na+/Ca2+ exchanger during cataractogenesis in diabetic rats. J Diabetes Complications, 2004,18: 177-182.
    65 Wheaton K, Sampsel K, Boisvert FM, et al. Loss of functional caveolae during senescence of human fibroblasts. J Cell Physiol, 2001,187: 226-235.
    66 Peterson TE, Poppa V, Ueba H, et al. Opposing effects of reactive oxygen species and cholesterol on endothelial nitric oxide synthase and endothelial cell caveolae. Circ Res, 1999, 85:29-37.
    67 Smart EJ, Ying YS, Conrad PA, et al. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol, 1994, 127: 1185-1197.
    68 Parton RG Caveolae and caveolins. Curr Opin Cell Biol, 1996, 8: 542-548.
    1 Singer S, Nicolson G. The fluid mosaic model of the structure of cell membrane. Science, 1972, 175: 720-731.
    2 Galbiati F, Razani B, Lisanti MP. Emerging themes in lipid rafts and caveolae. Cell, 2001, 106: 403-411.
    3 Simons K, Ikonen E. Functional rafts in cell membranes. Nature, 1997, 387: 569-572.
    4 王景雪,张兴堂,蒋晓红,等生物膜的生物物理观-从微区到脂筏.生物化学与生物物理进展,2004,31:969-974.
    5 Li WP, Liu PS, Pilcher BK, et al. Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci, 2001, 114: 1397-1408.
    6 Mikol DD, Hong HL, Cheng HL, et al. Caveolin-1 expression in Schwann cells. Glia, 1999, 27: 39-52.
    7 Gargalovic P, Dory L. Caveolin-1 and eaveolin-2 expression in mouse macro-phages. J Biol Chem, 2001, 276: 26164-26170.
    8 Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae Mol Membr Biol, 1999, 16: 145-156.
    9 Williams TM, Lisanti MP. The caveolin proteins. Genome Biol, 2004, 5: 214.
    10 Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol, 2003, 161: 673-677.
    11 van Deurs B, Roepstorff K, Hommelgaard AM, et al. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol, 2003, 13: 92-100.
    12 Minshall RD, Sessa WC, Stan RV, et al. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol, 2003, 285: L1179-1183.
    13 Anderson RG. The caveolae membrane system. Annu Rev Biochem, 1998, 67: 199-225.
    14 Kurzchalia TV, Dupree P, Parton RG, et al. VIP21, a 21-KD membrane protein is an integral component of trans-Glogi-network-derived transport vesicles. J. Cell Biol, 1992, 118: 1003-1014.
    15 陈岚,许彩明,袁建刚,等.脂筏的结构与功能.生物化学与生物物理进展,2003,30:54-59.
    16 Engelman JA, Zhang XL, Lisanti MP. Genes encoding human caveolin-1 and -2 are co-localized to D7S522 loeus(7q31.1), a known fragile site(FRA7G) that is frequently deleted in human cancers. FEBS Lett, 1998, 436: 403-410.
    17 Engleman JA, Zhang XL, Lisanti MP. Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus(7q31.1). Methylation of a CpG island in the 5' promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett, 1999, 488: 221-230.
    18 Engleman JA, Zhang XL, Galbiati F, et al. Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family(Cav-1,-2 and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31).. FEBS Lett, 1998, 429: 330-336.
    19 Hurlstone AF, Reid G, Reeves JR, et al. Analysis of the caveolin-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines. Oncogene, 1999, 18: 1881-1890.
    20 Sotgia F, Minetti C, Lisanti MP. Localization of the human caveolin-3 gene to the D3S18/D3S4163/D3S4539 locus (3p25), in close proximity to the human oxytocin receptor gene. Identification of the caveolin-3 gene as a candidate for deletion in 3p-syndrome. FEBS Lett, 1999, 452: 177-180.
    21 周镜然.Caveolin家族分子研究进展.细胞生物学杂志,2002,24:338-342.
    22 Fra AM, Pasqualetto E, Mancini M, et al. Genomic organization and transcriptional analysis of the human genes coding for caveolin-1 and caveolin-2. Gene, 2000,243: 75-83.
    23 Kogo H, Fujimoto T. Caveolin-1 isoforms are encoded by distinct mRNAs.Identification Of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett, 2000, 465: 119-123.
    24 Scherer PE, Tang Z, Chun M, et al. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem, 1995, 270 16395-16401.
    25 Fujimoto T, Kogo H, Nomura R, et al. Isoforms of caveolin-1 and caveolar structure. J Cell Sci, 2000,113: 3509-3517.
    26 Krajewska WM, Maslowska I. Caveolins: structure and function in signal transduction. Cell Mol Biol Lett, 2004, 9: 195-220.
    27 Dietzen DJ, Hastings WR,Lublin DM. Caveolin is palmitoylated on multiple cysteine residues.Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem, 1995, 270: 6838-6842.
    28 Monier S, Parton RG, Vogel F, et al. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell, 1995,6:911-927.
    29 Couet J, Li S, Okamoto T, et al. Identification of peptide and protein ligands for the caveolin-scaffolding domain.Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem, 1997, 272: 6525-6533.
    30 Woodman SE, Schlegel A, Cohen AW, et al. Mutational analysis identifies a short atypical membrane attachment sequence (KYWFYR) within caveolin-1. Biochemistry, 2002, 41: 3790-3795.
    31 Li S, Seitz R, Lisanti MP. Phosphorylation of caveolin by Src tyrosine kinases.The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem, 1996, 271: 3863-3868.
    32 Song KS, Tang Z, Li S, et al. Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions. J Biol Chem, 1997,272: 4398-4403.
    33 Monier S, Dietzen DJ, Hastings WR, et al. Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett, 1996, 388: 143-149.
    34 Parat MO, Fox PL. Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible. J Biol Chem, 2001, 276: 15776-15782.
    35 Galbiati F, Volonte D, Meani D, et al. The dually acylated NH2-terminal domain of Gi1α is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains.Palmitoylation of caveolin-1 is required for the recognition of dually acylated g-protein alpha subunits in vivo. J Biol Chem, 1999,274: 5843-5850.
    36 Lee H, Woodman SE, Engelman JA, et al. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase:targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem, 2001,276:35150-35158.
    37 Matveev S, Uittenbogaard A, van der Westhuyzen D, et al. Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester. Eur J Biochem, 2001,268: 5609-5616.
    38 Pol A, Luetterforst R, Lindsay M, et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol, 2001, 152: 1057-1070.
    39 Fielding CJ, Fielding PE. Caveolae and intracellular trafficking of cholesterol. Adv Drug Deliv Rev, 2001,49: 251-264.
    40 Uittenbogaard A, Smart EJ. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem, 2000,275: 25595-25599.
    41 Lee H, Volonte D, Galbiati F, et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-l/Grb7 signaling cassette. Mol Endocrinol, 2000 14: 1750-1775.
    42 Nomura R, Fujimoto T. Tyrosine-phosphorylated caveolin-1: Immunolocalization and molecular characterization. Mol Biol Cell, 1999, 10: 975-986.
    43 Scherer PE, Lisanti MP, Baldini G, et al. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol, 1994,127: 1233-1243.
    44 Schlegel A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem, 2001,276: 4398-4408.
    45 Scherer PE, Lewis RY, Volonte D, et al. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem, 1997,272: 29337-29346.
    46 Fujimoto T, Kogo H, Ishiguro K, et al. Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell. J Cell Biol, 2001,152: 1079-1085.
    47 Li S, Galbiati F, Volonte D, et al. Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett, 1998,434: 127-134.
    48 Scheiffele P, Verkade P, Fra AM, et al. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J Cell Biol, 1998,140: 795-806.
    49 Das K, Lewis RY, Scherer PE, et al. The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J Biol Chem, 1999,274:18721-18728.
    50 Razani B, Wang XB, Engelman JA, et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol, 2002,22: 2329-2344.
    51 Razani B, Engelman JA, Wang XB, et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem, 2001,276:38121-38138.
    52 Lee H, Park DS, Wang XB, et al. Src-induced phosphorylation of caveolin-2 on tyrosine 19.Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. J Biol Chem, 2002, 277: 34556-34567.
    53 Sowa G, Pypaert M, Fulton D, et al. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Proc Natl Acad Sci USA, 2003,100: 6511-6516.
    54 Way M, Parton RG. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett, 1996, 378: 108-112.
    55 Song KS, Scherer PE, Tang Z, et al. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem, 1996,271: 15160-15165.
    56 Tang Z, Scherer PE, Okamoto T, et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem, 1996,271: 2255-2261.
    57 Parton RG, Way M, Zorzi N, et al. Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol, 1997, 136: 137-154.
    58 Schwab W, Galbiati F, Volonte D, et al. Characterisation of caveolins from cartilage: expression of caveolin-1, -2 and -3 in chondrocytes and in alginate cell culture of the rat tibia. Histochem Cell Biol, 1999,112: 41-49.
    59 Sotgia F, Lee JK, Das K, et al. Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem, 2000, 275: 38048-38058.
    60 Hagiwara Y, Sasaoka T, Araishi K, et al. Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet, 2000, 9: 3047-3054.
    61 Schlegel A, Lisanti MP. The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine Growth Factor Rev, 2001, 12: 41-51.
    62 Schulte T, Paschke KA, Laessing U, et al. Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development, 1997,124: 577-587.
    63 Bickel PE, Scherer PE, Schnitzer JE, et al. Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem, 1997,272: 13793-13802.
    64 Rajendran L, Masilamani M, Solomon S, et al. Asymmetric localization of flotillins r reggies in preassembled platforms confers inherent polarity to hematopoietic cells. Proc Natl Acad Sci U S A, 2003,100: 8241-8246.
    65 Dermine JF, Duclos S, Garin J, et al. Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem, 2001, 276: 18507-18512.
    66 A. Hitt, Phinney BS, Reddan JR, et al. Identification of Lipid Raft Associated Proteins from Human Lens Epithelial Cells. ARVO, 2004: 4599.
    67 Cheong KH, Zacchetti D, Schneeberger EE, et al. VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc Natl Acad Sci USA, 1999, 96: 6241-6248.
    68 Lisanti MP, Tang Z, Scherer PE, et al. Caveolae, transmembrane signalling and cellular transformation. Mol Membr Biol, 1995, 12: 121-124.
    69 Nichols B. Caveosomes and endocytosis of lipid rafts. J Cell Sci, 2003, 116: 4707-4714.
    70 Ikonen E, Heino S, Lusa S. Caveolins and membrane cholesterol. Biochem Soc Trans, 2004, 32: 121-123.
    71 Robenek M J, Schlattmann K, Zimmer KP, et al. Cholesterol transporter caveolin-1 transits the lipid bilayer during intracellular cycling. Faseb J, 2003, 17: 1940-1942.
    72 Rothberg KG, Heuser JE, Donzell WC, et al. Caveolin, a protein component of caveolae membrane coats. Cell, 1992, 68: 673-682.
    73 冉胤威,杜俊蓉,白波,等高胆固醇上调caveolin-1的表达.生物医学工程学杂志,2004,21:276-279.
    74 Fielding C J, Bist A, Fielding PE. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci USA, 1997, 94: 3753-3758.
    75 Graf GA, Matveev SV,Smart EJ. Class B scavenger receptors, caveolae and cholesterol homeostasis. Trends Cardiovasc Med, 1999, 9: 221-225.
    76 Sarnataro D, Campana V, Paladino S, et al. PrP(C) association with lipid rafts in the early secretory pathway stabilizes its cellular conformation. Mol Biol Cell, 2004, 15: 4031-4042.
    77 von Ruhland CJ, Campbell L, Gumbleton M, et al. Immunolocalization of caveolin-1 in rat and human mesothelium. J Histochem Cytochem, 2004, 52: 1415-1425.
    78 Razani B, Schlegel A.Lisanti MP. Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. J Cell Sci, 2000, 113 2103-2109.
    79 Bouras T, Lisanti MP, Pestell RG. Caveolin-1 in Breast Cancer. Cancer Biol Ther, 2004, 3.
    80 Chao WT, Fan SS, Chen JK, et al. Visualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells. J Lipid Res, 2003,44: 1094-1099.
    81 Rujoi M, Jin J, Borchman D, et al. Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers. Invest Ophthalmol Vis Sci, 2003,44: 1634-1642.
    82 Lin D, Zhou J, Zelenka PS, et al. Protein kinase Cgamma regulation of gap junction activity through caveolin-1-containing lipid rafts. Invest Ophthalmol Vis Sci, 2003,44: 5259-5268.
    83 Lin D, Lobell S, Jewell A, et al. Differential phosphorylation of connexin46 and connexin50 by H_2O_2 activation of protein kinase Cgamma. Mol Vis, 2004, 10: 688-695.
    84 Sexton PS, Neely AR, Cenedella RJ. Distribution of caveolin-1 in bovine lens and redistribution in cultured bovine lens epithelial cells upon confluence. Exp Eye Res, 2004, 78: 75-82.
    85 Lo WK, Zhou CJ,Reddan J. Identification of caveolae and their signature proteins caveolin 1 and 2 in the lens. Exp Eye Res, 2004, 79: 487-498.
    86 Seno K, Kishimoto M, Abe M, et al. Light- and Guanosine 5'-3-O-(Thio)triphosphate-sensitive Localization of a G Protein and Its Effector on Detergentresistant Membrane Rafts in Rod Photoreceptor Outer Segments. J Biol Chem 2001,276: 20813-20816.
    87 Boesze-Battaglia K, Dispoto J,Kahoe MA. Association of a Photoreceptor-specific Tetraspanin Protein, ROM-1, with Triton X-100-resistant Membrane Rafts from Rod Outer Segment Disk Membranes. J. Biol. Chem., 2002,277: 41843-41849.
    88 Kachi S, Yamazaki A,Usukura J. Localization of Caveolin-1 in Photoreceptor Synaptic Ribbons. Invest Ophthalmol Vis Sci, 2001 42: 850-852.
    89 Mora RC, Bonilha VL, Shin BC, et al. Bi-polar assembly of caveolae in Retinal Pigment Epithelium. Am J Physiol Cell Physiol, 2005.
    90 Kim H, Lee T, Lee J, et al. Immunohistochemical study of caveolin-1 and -2 in the rat retina. J Vet Sci, 2006, 7: 101-104.
    91 Amino K, Honda Y, Ide C, et al. Distribution of plasmalemmal Ca~((2+))-pump and caveolin in the corneal epithelium during the wound healing process. Curr Eye Res, 1997, 16:1088-1095.
    92 Kogo H, Ito SY, Moritoki Y, et al. Differential expression of caveolin-3 in mouse smooth muscle cells in vivo. Cell Tissue Res, 2006, 324: 291-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700