水孔蛋白-4在脑出血后脑水肿形成中的作用及其调节机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分脑出血大鼠血肿周围组织水孔蛋白-4的表达分析
     目的:研究脑出血(intracerebra hemorrhage,ICH)后血肿周围组织水孔蛋白-4(aquaporin-4,AQP4)表达的变化,探讨AQP4在脑水肿形成过程中的作用。
     方法:运用立体定向技术,向大鼠尾壳核内注射自体尾动脉血建立脑出血模型。采用免疫组织化学技术对出血周围组织及皮质AQP4蛋白进行动态检测。
     结果:与正常组比较,脑出血6h后血肿周围组织AQP4蛋白表达开始增高(P<0.01),在出血第3天达高峰(P<0.01),以后逐渐下降,到第7天仍高于正常水平(P<0.01),与脑出血后脑水肿的变化规律相似。在大脑皮质AQP4蛋白表达亦相应增加,但不如血肿周围组织明显。单纯尾壳核内注射凝血酶后,注射部位邻近脑组织AQP4蛋白表达增高主要集中在注射后第1~3天。
     结论:脑出血时血肿周围AQP4蛋白表达增加,与水肿进程关系密切。AQP4蛋白表达可能主要由凝血酶所诱导,上调的AQP4蛋白可能参与脑出血后脑水肿的形成。
     第二部分凝血酶对大鼠原代星形胶质细胞水孔蛋白-4表达的影响
     目的:研究不同浓度凝血酶(thrombin,TB)对体外培养大鼠原代星形胶质细胞水孔蛋白-4(aquaporin-4,AQP4)表达的影响,探讨脑出血后星形胶质细胞水肿机制。
     方法:新生SD大鼠大脑皮质分离星形胶质细胞,传代培养纯化至98%以上。分别用0.5 U/ml,1 U/ml,100 U/ml,200 U/ml浓度的凝血酶对星形胶质细胞处理24 h后,采用RT-PCR及免疫组织化学技术检测星形胶质细胞AQP4 mRNA和AQP4蛋白表达,TUNEL方法检测细胞凋亡情况,并对星形胶质细胞进行形态学及细胞活性观察。
     结果:正常星形胶质细胞AQP4 mRNA和AQP4蛋白呈微弱表达,高浓度的凝血酶(100 U/ml,200 U/ml)处理后,AQP4 mRNA和AQP4蛋白表达明显升高(P<0.01),星形胶质细胞肿胀,TUNEL阳性细胞数显著增多。低浓度的凝血酶(0.5 U/ml,1 U/ml)处理后,AQP4 mRNA和AQP4蛋白表达出现下调(P<0.05),星形胶质细胞形态无明显变化,细胞凋亡数与对照组比较并没有显著增加。
     结论:高浓度凝血酶能诱导AQP4 mRNA及AQP4蛋白高表达,使星形胶质细胞胞体肿胀,细胞活性下降,并发生凋亡。
     第三部分水孔蛋白-4与血脑屏障通透性关系及其调节的实验研究
     目的:探讨精氨酸加压素及V_(1a)受体(V_(1a)R)拮抗剂对脑出血后水孔蛋白-4(aquaporin-4,AQP4)表达及血脑屏障(blood-brain barrier,BBB)通透性的影响。
     方法:运用立体定向技术,向大鼠尾壳核内注射自体尾动脉血建立脑出血模型。模型制作成功后,治疗组侧脑室注射V_(1a)R拮抗剂,ICH组仅注射等量人工脑脊液。采用免疫组织化学技术对血肿周围组织AQP4蛋白进行检测。通过检测渗出到脑血管外的伊文氏蓝(Evans Blue,EB)的含量来定量观察BBB的通透性。
     结果:脑出血6 h后尾壳核血肿周围组织AQP4蛋白表达开始增高,在脑出血第1天达高峰(P<0.01),持续到第3天以后逐渐下降,到第7天仍高于正常水平。而用V_(1a)R拮抗剂脑室注射后,AQP4蛋白表达在各时间点表达明显降低。BBB通透性在脑出血6h后开始升高,1d达高峰(P<0.01),3d后回落,AQP4蛋白表达与BBB通透性呈显著正相关。侧脑室注入V_(1a)R拮抗剂后,BBB通透性与对照组比较明显下降(P<0.05)。
     结论:脑出血时AQP4表达增加参与了BBB的破坏,V_(1a)R拮抗剂能抑制AQP4蛋白的表达,保护BBB,减轻脑出血后脑水肿。
     第四部分
     精氨酸加压素对原代培养星形胶质细胞水孔蛋白-4表达的影响
     目的:研究精氨酸加压素(arginine vasopressin,AVP)对体外培养星形胶质细胞水孔蛋白-4(aquaporin-4,AQP4)表达的影响,探讨精氨酸加压素对星形胶质细胞容积调节的机制。
     方法:新生SD大鼠大脑皮质分离星形胶质细胞,传代培养纯化至98%以上。星形胶质细胞经500 nM的AVP及其与V_(1a)受体(V_(1a)R)拮抗剂共同处理1、6、12、24 h后,采用免疫组织化学技术及RT-PCR对AQP4蛋白和AQP4 mRNA进行检测,并对星形胶质细胞进行形态学观察。并对脑微血管内皮细胞进行培养,AVP处理后倒置显微镜下动态观察形态变化。
     结果:500 nM的AVP处理6 h后,AQP4 mRNA表达开始升高(P<0.01),到12 h达高峰(P<0.01),24 h后仍维持在较高的水平(P<0.05)。AVP处理后AQP4蛋白表达亦出现相似的变化。V_(1a)R拮抗剂干预后,AQP4蛋白及AQP4 mRNA表达与对照组比较未出现升高(P>0.05)。此外,AVP干预24 h后星形胶质细胞出现胞体肿胀,突起回缩,加用V_(1a)R拮抗剂处理后该现象未出现。AVP干预对脑微血管内皮细胞形态没有影响。
     结论:高水平的AVP能通过激活V_(1a)R而诱导AQP4 mRNA和AQP4蛋白高表达,导致星形胶质细胞胞体肿胀,突起回宿,失去正常星形形态。AVP对AQP4表达有调控作用,借此可对星形胶质细胞体积进行调节,但对脑微血管内皮细胞无此作用。
     第五部分精氨酸加压素诱导水孔蛋白-4表达及细胞凋亡机制的研究目的:探讨在精氨酸加压素(arginine vasopressin,AVP)在上调AQP4(aquaporin-4,AQP4)表达过程中,p38 MAPK信号通路的作用及对星形胶质细胞凋亡的作用。方法:大鼠大脑皮质分离星形胶质细胞,传代培养纯化至98%以上。星形胶质细胞经分别用AVP、V_(1a)受体(V_(1a)R)拮抗剂和SB 203580进行处理,采用免疫组织化学技术及RT-PCR对AQP4 mRNA进行检测,Western blot检测p38 MAPK信号通路在AVP诱导AQP4表达中的活化程度,及Caspase-3 P20活性片段。同时对星形胶质细胞进行形态学和细胞活性观察。结果:500 nM的AVP处理6 h后,AQP4 mRNA表达开始升高(P<0.01),到12 h达高峰(P<0.01),24 h后仍维持在较高的水平(P<0.05)。加入p38 MAPK抑制剂SB 203580干预后,AQP4 mRNA表达水平与对照组比较差异不显著(P>0.05);AVP处理15 min后p38 MAPK磷酸化水平开始增加,30 min达高峰,持续到60 min开始下降。V_(1a)R拮抗剂处理后p38 MAPK磷酸化水平整个时间段均未出现明显变化;AVP作用后6h Caspase-3蛋白表达开始增加(P<0.01),12 h时表达达高峰(P<0.01),到24 h仍高于正常水平。此外,AVP干预后细胞活性下降,凋亡细胞增多,SB 203580及V_(1a)R拮抗剂对AVP诱导的细胞凋亡均有抑制作用。结论:AVP通过激活V_(1a)R引起p38 MAPK信号通路活化从而诱导AQP4 mRNA高表达,从基因水平对AQP4进行调节,并增加Caspase-3活性,使星形胶质细胞发生凋亡。p38 MAPK抑制剂及V_(1a)R拮抗剂抑制AQP4 mRNA的表达,对星形胶质细胞具有保护作用。
Part I
    Analysis of the expression of aquaporin-4 in experimental intracerebral
    hemorrhage rats
    Objective: To study the expression of AQP4(aquaporin-4) in order to find the pathologic effect of AQP4 protein on brain edema formation after hematoma formation.
    Methods: Intracerebral hemorrhage (ICH) models were established by infusing autologous caudate artery blood into caudate-putamen nucleus (CPu), in addition, 15 U thrombin was injected into CPu. the expression of AQP4 protein was detected by immunohistochemical technique.
    Results: 6 hour after ICH, the expression of AQP4 protein in astrocytic end-feet adjacent to capillaries around the hematoma obviously increased(P<0.01), especially on the 1th day and 3th days(P<0.01), and went down to the level which is above the norml level gently on the 7th day(P<0.01). In thrombin treated rats, AQP4 protein expression increased occurred at 6th hour, especially on 1th day and the 3th day (P<0.01). From the 5th day, AQP4 protein expression decreased to normal level (P>0.05).
    Conclusions: AQP4 protein played a very important role in the formation of brain edema after ICH, expression of AQP4 protein may be induced by thrombin.
    
    Part II Thrombin induced aquaporin-4 expression in rat primary astrocytes
    Objective: To study the biologic effects of various concentrations of thrombin on the aquaporin-4(AQP4) expression in rat primary cultured astrocytes, and explore the regulation mechanism of transmembrane water transportation in astrocytes after intracerebral hemorrhage (ICH).
    Methods: Primary cultured astrocytes were incubated in culture medium containing various concentrations of thrombin for 24 h and harvested for determination of AQP4 mRNA and AQP4 protein expression by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemical technique. Cell apoptosis was detected by TdT-mediated dUTP nick end labeling ( TUNEL ) technique. Cell morphology was observed by phase contrast microscope, and cell viability was assayed by MTT.
    Results: AQP4 mRNA and protein showed a weak expression in normal astrocytes. The expression of AQP4 mRNA and AQP4 protein significantly increased in astrocytes following the higher concentrations of thrombin (100 U/ml, 200 U/ml)treatment, which resulted in markedly astrocyte swelling. The number of TUNEL positive cells significantly increased. Otherwise, the downregulated AQP4 mRNA and AQP4 protein occurred in the low concentrations thrombin(0.5 U/ml, 1 U/ml) treated astrocytes, cell volume did not increase in astrocytes. Few TUNEL positive cells were observed.
    Conclusions: The AQP4 overexpression induced by high concentrations of thrombin causes a increase in astrocytic membrane permeability to water. On the contrary, the decreased AQP4 expression refers to the neuroprotective mechanism of low concentrations of thrombin, and avoids atrocyte volume increase and apoptosis in the cases of the brain insults. Part III
    aquaporin-4 expression and the permeability of blood-brain barrier
    Objective: To investigate the relationship between aquaporin-4(AQP4) expression and the permeability of blood-brain barrier (BBB), explore the possibility for V_(1a) receptor (V_(1a)R antagonist)antagonist in therapy of brain edema .
    Methods: Intracerebral hemorrhage (ICH)models were established by injection of autologous caudate atery blood into the caudate-putamen nucleus (CPu). After successful surgergy, in treated group 0.1μg V_(1a)R antagonist was injected into lateral cerebral ventricle. In ICH group, the rats received intracerebroventricular injection of the equivalent artificial CSF. Immunohistochemistry method was adopted to analyse the expression of AQP4 protein around the microvessels. The BBB permeability was evaluated quantitatively by measuring Evans blue dye extravasations.
    Results: After experimental intracerebral hemorrhage, the AQP4 protein performed significant enhanced level in the ICH group, especially at 1 d, 3 d after ICH(P<0.01). In addition, the expression of AQP4 was positively correlated with the permeability of BBB. When the rats received V_(1a)R antagonist treatment, AQP4 protein showed a lower expression than that in the control group(P<0.01). The BBB permeability showed a significant decrease at every time point in the treated group comparing with the control group(P<0.05).
    Conclusions: There is a close relationship between AQP4 expression and permeability of BBB. Furthermore V_(1a)R antagonists may protect the BBB and reduce brain edema in the perihematoma region after ICH by downregulating the expression of AQP4 protein. Part IV
    Effect of arginine vasopressin on aquaporin-4 expression in primary
    cultured astrocytes
    Objective: To investigate the effects of arginine vasopressin (AVP) on the aquaporin-4(AQP4) expression and cell volume in primary cultured astrocytes.
    Methods: Astrocytes were purified to >98% by passage from new-born rat cerebral cortex. Primary cultured astrocytes were incubated in culture medium containing 500 nM AVP or 500 nM V_(1a) receptor (V_(1a)R) antagonist for 1, 6, 12, 24 h, harvested for determination of AQP4 protein and AQP4 mRNA expression by immunohistochemical technique and reverse transcription polymerase chain reaction (RT-PCR). Brain microvascular endothelial cells were cultured in vitro and treated with AVP. Cell morphology was observed by a phase contrast microscope.
    Results: After astrocytes were treated with 500 nM AVP for 6 h, the expression of AQP4 mRNA began to increase(P<0.01), at 12 h reached expression peak(P<0.01), at 24 h the AQP4 mRNA still maintained the higher expression(P<0.01). The similar change was showed for AQP4 protein. AVP treatment resulted in significant astrocyte volume increase at 24 h, V_(1a)R antagonist inhibited upregulation of AQP4 expression and cell swelling. After AVP treatment, the morphology of endothelial cells remained as the normal.
    Conclusions: The results suggest high level of AVP may induce overexpression of AQP4 mRNA and AQP4 protein by activation of V_(1a)R, which increases water permeability of astrocyte membrane, and makes astrocyte swell. The morphology of endothelial cell was not affected by AVP. Part V
    arginine vasopressin induced expression of aquaporin-4 and astrocyte apoptosis by the way of p38 MAPK
    Objective: To determine the role of p38 MAPK in the aquaporin-4(AQP4) expression induced by arginine vasopressin(AVP), investigate the effect of p38 MAPK on apoptosis in cultured rat astrocytes.
    Methods: Primary cultured astrocytes were treated with AVP V_(1a)R antagonist and SB 203580, harvested for determination of AQP4 mRNA expression by reverse transcription polymerase chain reaction (RT-PCR). p38 MAPK phosphorylation and protein expression of Caspase-3 P20 were assessed by Western blot analysis. Cell viability was assayed by MTT, Cell apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL ) technique.
    Results: After astrocytes treated with 500 nM AVP for 6 h, the expression of AQP4 mRNA began to increase(P<0.01), at 12 h, reached expression peak(P<0.01), at 24 h, the AQP4 mRNA still maintained the higher expression(P<0.01). This course were not exhibited after SB 203580 treatment. p38 MAPK phosphorylation increased 15 min after AVP treatment, remained elevated level even at 120min. Protein expression of Caspase-3 were upregulated 6 h after AVP treatment(P<0.01), it reached the peak at 12 h(P<0.01). AVP treatment resulted in significantly apoptosis at 6 h、 12 h and 24 h (P<0.01). V_(1a)R antagonist and SB 203580 inhibited this change.
    Conclusions: AVP may induce higher expression of AQP4 mRNA and apopotosis through stimulation of p38 MAPK in astrocytes, SB 203580 and V_(1a)R antagonist could inhibit upregulation of AQP4 mRNA in the AVP environment, protect astrocyte from apoptosis.
引文
1 饶明俐.中国脑血管病防治指南.中华人民共和国卫生部及中华医学会神经病学分会,2005.
    2 Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg, 1998, 89(6): 991-996.
    3 Yang GY, Betz AL, Chenevert TL, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg, 1994, 81(1): 93-102.
    4 Enzmann DR, Britt RH, Lyons BE, et al. Natural history of experimental intracerebral hemorrhage: sonography, computed tomography and neuropathology. AJNR Am J Neuroradiol, 1981, 2(6): 517-526.
    5 Suzuki J, Ebina T. Sequential changes in tissue surrounding ICH. In Pia HW, Langmaid C, Zierski J (eds). Spontaneous Intracerebral Haematomas: Advances in Diagnosis and Therapy. Springer, 1980, 15(2): 121-128.
    6 Lee KR, Colon GP, Betz AL, et al. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg 1996, 84(1): 91-96.
    7 Lee KR, Kawai N, Kim S, et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg, 1997, 86(2): 272-278.
    8 Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg, 1998, 89(6): 991-996.
    9 Hoff JT, Xi G. Brain edema from intracerebral hemorrhage. Acta Neurochir Suppl, 2003, 86: 11-15.
    10 Dodson RF, Chu LW, Welch KM, et al. Acute tissue response to cerebral ischemia in the gerbil. An ultrastructural study.J Neurol Sci, 1977, 33(1-2): 161-170.
    11 Hasegawa H, Ma T, Skach W, et al. Molecular cloning of mercurial-insentive water channel expressed in selected water-transporting tissues. Biol Chem, 1994, 269(8): 5497-5500.
    12 Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res, 2000,78(1-2): 131-137.
    
    13 Saadoun S, Papadopoulos MC, Davies DC, et al. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry, 2002, 72(2): 262-265.
    
    14 LU Hong, SUN Shan-Quan. A correlative study between AQP4 expression and the manifestation of DWI after the acute ischemic brain edema in rats. Chin Med J, 2003, 116(7): 1063-1069.
    
    15 Vajda Z, Pedersen M, Doczi T, et al. Effects of centrally administered arginine vasopressin and atrial natriuretic peptide on the development of brain edema in hyponatremic rats. Neurosurgery, 2001, 49(3): 697-705.
    
    16 Dickinson LD, Betz AL. Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab, 1992,12(4): 681-690.
    
    17 Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci, 2001, 21(9): 3045-3051.
    
    18 Zelenina M, Zelenin S, Bondar AA, et al. Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Renal Physiol, 2002, 283(2): F309-318.
    1 Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci, 1997, 17(1): 171-180.
    2 Rash JE, Yasumura T. Direct immunogold labeling of connexins and aquaporin-4 in freeze-fracture replicas of liver, brain, and spinal cord: factors limiting quantitative analysis. Cell Tissue Res, 1999, 296(2): 307-321.
    3 包新民,舒斯云.大鼠脑立体定位图谱.北京:人民卫生出版社,1991,35-40.
    4 Berderson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 1986, 17(3): 472-476.
    5 Broderick JP, Brott TG, Duldner JE, et al. Volume of intracerebral hemorrhage: a powerful and easy-to-use predictor of 30-day mortality. Stroke, 1993, 24(7): 987-993.
    6 Donovan FM, Pike C J, Cotman CW, et al. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci, 1997, 17(14): 5316-5326.
    7 Lee KR, Betz AL, Kim S, et al.The role of the coagulation cascade in brain edema formation after intracerebral hemorrhage. Acta Neurochir (Wien), 1996, 138(4): 396-400.
    8 Lee KR, Kawai N, Kim S, et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg, 1997, 86(2): 272-278.
    9 Hasegawa H, Ma T, Skach W, et al. Molecular cloning of mercurial-insentive water channel expressed in selected water-transporting tissues. Biol Chem, 1994, 269(8): 5497-5500.
    
    10 Yang B, Verkman AS. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem,1997 ,272(26): 16140-16146.
    
    11 Ma T, Yang B, Gillespie A, et al. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest, 1997,100(5): 957-962.
    
    12 Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med, 2000, 6(2): 159-163.
    
    13 Vizuete ML, Venero JL, Vargas C, et al. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain oedema. Neurobiol Dis, 1999, 6(4): 245-258.
    
    14 Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res, 2000, 78(1-2): 131-137.
    
    15 Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg, 1998, 89(6): 991-996.
    
    16 Yang GY, Betz AL, Chenevert TL, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg, 1994, 81(1): 93-102.
    
    17 Enzmann DR, Britt RH, Lyons BE, et al. Natural history of experimental intracerebral hemorrhage: sonography, computed tomography and neuropathology. AJNR Am J Neuroradiol, 1981, 2(6): 517-526.
    
    18 Wagner KR, Xi G, Hua Y, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke, 1996, 27(3): 490-497.
    
    19 Weinstein JR, Gold SJ, Cunningham DD, et al. Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and codistribution with prothrombin mRNA. J Neurosci, 1995, 15(4): 2906-2919.
    20 Kanda Y, Nishio E, Kuroki Y, et al. Thrombin activates p38 mitogen-activated protein kinase in vascular smooth muscle cells. Life Sci, 2001, 68(17): 1989-2000.
    21 Arima H, Yamamoto N, Sobue K, et al. Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem, 2003, 278(45): 44525-44534.
    1 Moiler T, Hanisch UK, Ransom BR. Thrombin-induced activation of cultured rodent microglia. J Neurochem, 2000, 75(4): 1539-47.
    2 Grand RJ, Turnell AS, Grabham PW, et al. Cellular consequences of thrombin-receptor activation. Biochem J, 1996, 313(Pt 2): 353-68.
    3 Xi G, Wagner KR, Keep RF, et al. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke, 1998, 29(12): 2580-2586.
    4 Amiry-Moghaddam M, Williamson A, Palomba M, et al. Delayed K~+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A, 2003, 100(23): 13615-13620.
    5 Arima H, Yamamoto N, Sobue K, et al. Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem, 2003, 278(45): 44525-44534.
    6 Sinar EJ, Mendelow AD, Graham DI, et al. Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg, 1987, 66(4): 568-576.
    7 Lee KR, Colon GP, Betz AL, et al. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg, 1996, 84(1): 91-96.
    8 Donovan FM, Pike CJ, Cotman CW, et al. Thrombin induces apopto sis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci, 1997, 17(14): 5316-5326.
    9 Weinstein JR, Gold SJ, Cunningham DD, et al. Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and - codistribution with prothrombin mRNA. J Neurosci, 1995,15(4): 2906-2919.
    
    10 Kaufmann R, Patt S, Kraft R, et al. PAR 1-type thrombin receptors are involved in thrombin-induced calcium signaling in human meningioma cells. J Neurooncol, 1999, 42(2): 131-136.
    
    11 Wang H, Reiser G.Thrombin signaling in the brain: the role of protease-activated receptors. Biol Chem, 2003, 384(2): 193-202.
    
    12 Ayala Y, Cantwell A, Rose T, et al. Molecular mapping of thrombin-receptor interactions. Proteins, 2001, 45(2): 107-116.
    
    13 Donovan FM, Pike CJ, Cotman CW, et al. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci 1997,17(14): 5316-26.
    
    14 Gong C, Boulis N, Qian J, et al. Intracerebral hemorrhage-induced neuronal death. Neurosurgery, 2001, 48(4): 875-883.
    
    15 Vaughan PJ, Pike CJ, Cotman CW, et al. Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci, 1995, 15(7 Pt 2): 5389-5401.
    
    16 Striggow F, Riek M, Breder J, et al. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci U S A, 2000, 97(5): 2264-2269.
    
    17 Xi G, Keep RF,Hua Y, et al. Attenuation of Thrombin-induced Brain Edema by Cerebral Thrombin Preconditioning . Stroke, 1999, 30(6): 1247-1255.
    
    18 Jiang Y, Wu J, Hua Y, et al. Thrombin-receptor activation and thrombin-induced brain tolerance. J Cereb Blood Flow Metab, 2002, 22(4): 404-410.
    
    19 Lee KR, Kawai N, Kim S,et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg, 1997, 86(2): 272-278.
    
    20 Dodson RF, Chu LW, Welch KM, et al. Acute tissue response to cerebral ischemia in the gerbil: an ultrastructural study. J Neurol Sci, 1977, 33(1-2): 161-170.
    21 Su G, Kintner DB, Flagella M, et al. Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am J Physiol Cell Physiol, 2002, 282(5): C1147-1160.
    22 Nicchia GP, Frigeri A, Liuzzi GM, et al. Aquaporin-4-containing astrocytes sustain a temperature- and mercury-insensitive swelling in vitro. Glia, 2000, 31(1): 29-38.
    23 Vizuete ML, Venero JL, Vargas C, et al. Differential upregulation of aquaporin-4mRNA expression in reactive astrocytes after brain injury: potential role in brain edema[J]. Neu robiol Dis, 1999, 6(4): 245-258.
    1 Nicchia GP, Nico B, Camassa LM, et al. The role of aquaporin-4 in the blood-brain barrier development and integrity: studies in animal and cell culture models. Neuroscience, 2004, 129(4): 935-945.
    2 Noto T, Nakajima T, Saji Y, et al. Effect of vasopressin on intracranial pressure of rabbit. Endocrinol Jpn, 1978, 25(6): 591-596.
    3 Barreca T, Gandolfo C, Corsini G, et al. Evaluation of the secretory pattern of plasma arginine vasopressin in stroke patients. Cerebrovasc Dis, 2001, 11(2): 113-118.
    4 Rosenberg GA, Scremin O, Estrada E, et al. Arginine vasopressin Vl-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke, 1992, 23(12): 1767-1773.
    5 Bemana I, Nagao S. Treatment of brain edema with a nonpeptide arginine vasopressin V1 receptor antagonist OPC-21268 in rats. Neurosurgery, 1999, 44(1): 148-154.
    6 包新民,舒斯云.大鼠脑立体定位图谱.北京:人民卫生出版社,1991.35-40.
    7 Berderson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 1986, 17(3): 472-476.
    8 Hayashi Y, Nomura M, Yamagishi S,et al. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 1997, 19(1): 13-26.
    9 Nico B, Frigeri A, Nicchia GP, et al. Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci, 2001, 114(Pt 7): 1297-1307.
    10 Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med, 2000, 6(2): 159-163.
    11 Vizuete ML, Venero JL, Vargas C, et al. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain oedema. Neurobiol Dis, 1999, 6(4): 245-258.
    12 Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res, 2000, 78(1-2): 131-137.
    13 Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci, 2001, 21(9): 3045-3051.
    14 Vajda Z, Pedersen M, Doczi T, et al. Effects of centrally administered arginine vasopressin and atrial natriuretic peptide on the development of brain edema in hyponatremic rats. Neurosurgery, 2001, 49(3): 697-705.
    15 Dickinson LD, Betz AL. Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab, 1992, 12(4): 681-690.
    16 Szmydynger-Chodobska J, Chung I, Kozniewska E, et al. Increased expression of vasopressin vla receptors after traumatic brain injury. J Neurotrauma, 2004, 21(8): 1090-1102.
    17 Shuaib A, Xu Wang C, Yang T, et al. Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke, 2002, 33(12): 3033-3037.
    18 Trandafir CC, Nishihashi T, Wang A, et al. Participation of vasopressin in the development of cerebral vasospasm in a rat model of subarachnoid haemorrhage. Clin Exp Pharmacol Physiol, 2004, 31(4): 261-266.
    1 Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci, 2001, 21(9): 3045-3051.
    
    2 Zelenina M, Zelenin S, Bondar AA, et al. Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Renal Physiol, 2002, 283(2): F309-318.
    
    3 Arima H, Yamamoto N, Sobue K, et al. Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem, 2003 , 278(45): 44525-44534.
    
    4 Hosli L, Hosli E, Lefkovits M, et al. Electrophysiological evidence for the existence of receptors for endothelin and vasopressin on cultured astrocytes of rat spinal cord and brainstem. Neurosci Lett, 1991,131(2): 193-195.
    
    5 Raichle ME, Grubb RL. Regulation of brain water permeability by centrally-released vasopressin. Brain Res, 1978; 143(1): 191-194.
    
    6 Hertz L, Chen Y, Spatz M. Involvement of non-neuronal brain cells in AVP-mediated regulation of water space at the cellular, organ, and whole-body level. J Neurosci Res, 2000, 62(4): 480-490.
    
    7 Vajda Z, Pedersen M, Doczi T, et al. Effects of centrally administered arginine vasopressin and atrial natriuretic peptide on the development of brain edema in hyponatremic rats. Neurosurgery, 2001, 49(3): 697-705.
    
    8 Dickinson LD, Betz AL. Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab, 1992,12(4): 681-690.
    
    9 Szmydynger-Chodobska J, Chung I, Kozniewska E, et al. Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma, 2004, 21(8): 1090-1102.
    
    10 Latzkovits L, Cserr HF, Park JT, Effects of arginine vasopressin and atriopeptin on glial cell volume measured as 3-MG space. Am J Physiol, 1993, 264(3 Pt 1): C603-608.
    11 Sarfaraz D, Fraser CL. Effects of arginine vasopressin on cell volume regulation in brain astrocyte in culture. Am J Physiol, 1999 , 276(3 Pt 1): E596-601
    
    12 Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci, 1997,17(1): 171-180.
    
    13 Nicchia GP, Frigeri A, Liuzzi GM, et al. Aquaporin-4-containing astrocytes sustain a temperature- and mercury-insensitive swelling in vitro. Glia, 2000, 31(1): 29-38.
    
    14 Solenov E, Watanabe H, Manley GT, et al. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol, 2004, 286(2): C426-432.
    
    15 Amiry-Moghaddam M, Williamson A, Palomba M, et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A, 2003,100(23): 13615-13620.
    
    16 Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res, 2000, 78(1-2): 131-137.
    
    17 Saadoun S, Papadopoulos MC, Davies DC, et al. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry, 2002, 72(2): 262-265.
    
    18 Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 2000; 6(2): 159-163.
    
    19 Imaizumi Y, Muraki K, Takeda M. Measurement and stimulation of noniactivating Ca current in smooth muscle cells. AM J Physiol, 1989, 256 (4 Pt 1): C 880-885.
    20 Kandel ER. Nerve cell and behavior. In: Kandel ER, Schwartz JH, Jessel TM, eds .Principles of neural science .New York: Elsevier Science Publishing, 1991.18-32.
    
    21 Laterra J, Guerin C, Goldstein GW. Astrocytes induce neural microvascular endothelial cells to form capillary-like structures in vitro. J Cell Physiol, 1990, 144(2): 204-215.
    
    22 Ito T, Kozawa O, Tanabe K, p38 MAP kinase is required for vasopressin-stimulated HSP27 induction in aortic smooth muscle cells. Hypertension, 2000, 35(2): 673-678.
    1 Arima H, Yamamoto N, Sobue K, et al. Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem, 2003 , 278(45): 44525-44534.
    
    2 Amiry-Moghaddam M, Williamson A, Palomba M, et al.Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A, 2003 ,100(23): 13615-13620.
    
    3 Amiry-Moghaddam M, Otsuka T, Hum PD, et al.An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A, 2003,100(4): 2106-2111.
    
    4 Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 2000, 6(2): 159-163.
    
    5 Vizuete ML, Venero JL, Vargas C, et al. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain oedema. Neurobiol Dis, 1999,6(4): 245-258.
    
    6 Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res, 2000,78(1-2): 131-137.
    
    7 Sarfaraz D, Fraser CL. Effects of arginine vasopressin on cell volume regulation in brain astrocyte in culture. Am J Physiol, 1999, 276 (3 Pt 1): E596-601.
    
    8 Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci, 2001, 21(9): 3045-3051.
    
    9 Han Z, Wax MB, Patil RV. Regulation of aquaporin-4 water channels by phorbol ester-dependent protein phosphorylation. J Biol Chem, 1998, 273(11): 6001-6004.
    
    10 Ito T, Kozawa O, Tanabe K, p38 MAP kinase is required for vasopressin-stimulated HSP27 induction in aortic smooth muscle cells. Hypertension, 2000, 35(2): 673-678.
    11 Davis RJ. MAPKs: new JNK expands the group. Trends in Biochemical Sciences, 1994, 19(11): 470-473.
    12 Cobb MH, Goldsmith EJ. How MAP kinases are regulated. Journal of Biological Chemistry, 1995, 270(25): 14843-14846.
    
    13 Che Y, Yu YM, han PL, et al.Delayed induction of p38 MAPKs in reactive astrocytes in the brain of mice after KA-induced seizure. Brain Res Mol Brain Res, 2001, 94(1-2): 157-165.
    
    14 DohiK, MizushimaH, NakajoS, et al. Pituitary adenylate cyclase-activating polypeptide(PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways. Regul Pept, 2002, 109(1-3): 83-88.
    
    15 HirataY. Manganese-induced apoptosis in PC12 cells. Neurotoxicol Teratol, 2002, 24(5): 639-653.
    
    16 Berra E, Diaz-Meco MT, Moscat J. The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phophoinositide 3-kinase/Akt pathway. J Boil Chem, 1998, 273(17): 10792-10797.
    
    17 Irving EA, Barone FC, Reith AD, et al. Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischemia in the rat. Brain Res Mol Brain Res, 2000, 77(1): 65 -75.
    
    18 BaroneFC, IrvingEA, RayAM ,et al. SB239063, a second-generation p38 Mitogen -Activated Protein Kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. J Pharmacol Exp Ther, 2001, 296(2): 312-321.
    1 Preston GM, Carroll TP, Guggino WB, et al. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 1992, 256(5055): 385-387.
    2 Agre P, Kozono D. Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett, 2003, 555(1): 72-78.
    3 Pisano MM, Chepelinsky AB. Genomic cloning, complete nucleotide sequence, and structure of the human gene encoding the major intrinsic protein (MIP) of the lens. Genomics, 1991, 11(4): 981-990.
    4 Preston GM, Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A, 1991, 88(24): 11110-11114.
    5 Zhang R, Skach W, Hasegawa H, Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28. J Cell Biol, 1993, 120(2): 359-369.
    6 Moon C, Preston GM, Griffin CA,et al. The human aquaporin-CHIP gene. Structure, organization, and chromosomal localization. J Biol Chem, 1993, 268(21): 15772-15778.
    7 Endo M, Jain RK, Witwer B, et al. Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas. Microvasc Res, 1999, 58(2): 89-98.
    8 Vizuete ML, Venero JL, Vargas C, et al. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain oedema. Neurobiol Dis, 1999, 6(4): 245-258.
    9 Fushimi K, Uchida S, Hara Y, et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature, 1993, 361(6412): 549-552.
    
    10 Ishibashi K,Sasaki S,Fushimi K et al. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells.Proc Natl Acad Sci U S A, 1994, 91(14): 6269-6273.
    
    11 Raina S, Preston GM, Guggino WB, et al.Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem, 1995, 270(4): 1908-1912.
    
    12 Ma T,Yang B,Kuo WL et al. cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12ql3. Genomics,1996, 35(3): 543-550.
    
    13 Ishibashi K,Kuwahara M,Gu Y et al. Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol chem,1997, 272(33): 20782-20786.
    
    14 Koyama N, Ishibashi K, Kuwahara M et al. Cloning and functional expression of human aquaporin8 cDNA and analysis of its gene.Genomics, 1998, 54(1): 169-172.
    
    15 Ishibashi K,Kuwahara M,Gu Y et al. Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun, 1998, 244(1): 268-274.
    
    16 Hasegawa H, Ma T, Skach W, et al. Molecular cloning of mercurial-insentive water channel expressed in selected water-transporting tissues. Biol Chem, 1994, 269(8): 5497-5500.
    
    17 Yang B, Verkman AS. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem, 1997, 272(26): 16140-16146.
    
    18 Amiry-Moghaddam M, Williamson A, Palomba M, et al.Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A, 2003 ,100(23): 13615-13620.
    
    19 Borgnia M, Nielsen S, Engel A, et al Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem, 1999, 68: 425-458.
    
    20 Verkman AS. Water transport across mammalian membrances. Am Physiol, 1996, 48: C12-30.
    
    21 Lu M, Lee MD, Smith B. The human AQP4 gene: definition of the locus encoding two water channel polypeptide in brain. Proc Natl Acad Sci USA, 1996, 93(20): 10908-10912.
    
    22 Ma T, Yang B, Verkman AS. Gene structure, cDNA cloning and expression of a mouse mercurial-insensitive water channel. Genomics 33: 382-388.
    
    23 Neely JD, Christensen BM, Nielsen S, et al Heterotetrameric composition of aquaporin-4 water channels. Biochemistry, 1999, 38(34): 11156-11163.
    
    24 Neely JD, Amiry-Moghaddam M, Ottersen OP,et al. Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A, 2001,98(24): 14108-14113.
    
    25 Jung JS, Bhat RV, Preston GM,et al. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A,1994 ,91(26): 13052-13056.
    
    26 Furman CS, Gorelick-Feldman DA, Davidson KG,et al.Aquaporin-4 square array assembly: opposing actions of Ml and M23 isoforms. Proc Natl Acad Sci U S A, 2003 ,100(23): 13609-13614.
    
    27 De Groot BL, Grubmuller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science, 2001, 294: 2253-2357.
    
    28 Wen H, Nagelhus EA, Amiry-Moghaddam M, Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci. 1999,11(3): 935-945.
    
    29 Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci, 1997, 17(1): 171-180.
    
    30 Nicchia GP, Frigeri A, Liuzzi GM, et al. Aquaporin-4-containing astrocytes sustain a temperature- and mercury-insensitive swelling in vitro. Glia, 2000, 31(1): 29-38.
    31 Zelenina M, Zelenin S, Bondar AA, et al. Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Renal Physiol, 2002, 283(2): F309-318.
    
    32 Niermann H, Amiry-Moghaddam M, Holthoff K, et al.A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci, 2001, 21(9): 3045-3051.
    
    33 Hamada H, Takahashi H, Teramoto A, et al.Effect of arginine vasopressin (AVP) inhibitor in the inhibition of the peritumoral edema. No To Shinkei, 1997 ,49(11): 1001-1006.
    
    34 Dodson RF, Chu LW, Welch KM, et al. Acute tissue response to cerebral ischemia in the gerbil: an ultrastructural study. J Neurol Sci, 1977, 33(1-2): 161-170.
    
    35 Amiry-Moghaddam M, Williamson A, Palomba M, et al.Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A, 2003 ,100(23): 13615-13620.
    
    36 Ma T, Yang B, Gillespie A, et al. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest, 1997,100(5): 957-962.
    
    37 Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res, 2000 ,78(1-2): 131-137.
    
    38 Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic. stroke. Nat Med 2000, 6: 159-163.
    
    39 LU Hong, SUN Shan-Quan. A correlative study between AQP4 expression and the manifestation of DWI after the acute ischemic brain edema in rats. Chin Med J, 2003, 116(7): 1063-1069.
    
    40 Li YH, Sun SQ. Expression of aquaporin - 4 protein in brain from rats with hemorrhagic edema. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2003,15(9): 538-541.
    
    41 Saadoun S, Papadopoulos MC, Davies DC, et al. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry, 2002, 72(2): 262-265.
    
    42 Vizuete ML, Venero JL, Vargas C, et al. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema. Neurobiol Dis, 1999, 6(4): 245-258.
    1 Thibonnier M, Berti-Mattera LN, Dulin N, et al. Signal transduction pathways of the human V1-vascular, V2-renal, V3-pituitary AVP, and oxytocin receptors. Prog Brain Res, 1998, 119: 147-161.
    2 Hernando F, Schoots O, Lolait S J, et al. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology, 2001, 142(4): 1659-1668.
    3 Noto T, Nakajima T, Saji Y, et al. Effect of vasopressin on intracranial pressure of rabbit. Endocrinol Jpn, 1978, 25(6): 591-596.
    4 Barreca T, Gandolfo C, Corsini G, et al. Evaluation of the secretory pattern of plasma arginine vasopressin in stroke patients. Cerebrovasc Dis, 2001, 11(2): 113-118.
    5 Vajda Z, Pedersen M, Doczi T, et al. Effects of centrally administered arginine vasopressin and atrial natriuretic peptide on the development of brain edema in hyponatremic rats. Neurosurgery, 2001, 49(3): 697-705.
    6 Dickinson LD, Betz AL. Attenuated development of ischemic brain edema in vasopressin-deficient rats. J Cereb Blood Flow Metab, 1992, 12(4): 681-690.
    7 Sarfaraz D, Fraser CL. Effects of arginine vasopressin on cell volume regulation in brain astrocyte in culture. Am J Physiol, 1999, 276(3 Pt 1): E596-601.
    
    8 - Doczi T, Laszlo FA, Szerdahelyi F. Involvement of vasopressin in brain edema formatiomfurther evidence obtained from the Brattleboro diabetes insipidus rat with experimental subarachnoid hemorrhage. Neurosurgery, 1984,14(3): 436-441.
    
    9 Imaizumi Y, Muraki K, Takeda M. Measurement and stimulation of noniactivating Ca current in smooth muscle cells. AM J Physiol, 1989, 256 (4 Pt 1): C 880-885.
    
    10 Trandafir CC, Nishihashi T, Wang A, et al. Participation of vasopressin in the development of cerebral vasospasm in a rat model of subarachnoid haemorrhage. Clin Exp Pharmacol Physiol, 2004, 31: 261-266.
    
    11 Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res, 2000 , 78(1-2): 131-137.
    
    12 Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med , 2000, 6(2): 159-163.
    
    13 Niermann H, Amiry-Moghaddam M, Holthoff K, et al. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci, 2001, 21(9): 3045-3051.
    
    14 Szmydynger-Chodobska J, Chung I, Kozniewska E, et al. Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma, 2004, 21(8): 1090-1102.
    
    15 Fernandez N, Martinez MA, Garcia-Villalon AL, et al. Cerebral vasoconstriction produced by vasopressin in conscious goats: role of vasopressin V(1) and V(2) receptors and nitric oxide. Br J Pharmacol, 2001,132: 1837-1844.
    
    16 Ikeda Y, Teramoto A, Nakagawa Y, et al. Attenuation of cryogenic induced brain oedema by arginine vasopressin release inhibitor RU51599. Acta Neurochir (Wien), 1997, 139(12): 1173-1179.
    
    17 Hamada H, Takahashi H, Teramoto A, et al.Effect of arginine vasopressin (AVP) inhibitor in the inhibition of the peritumoral edema. No To Shinkei, 1997,49(11): 1001-1006.
    18 Laszlo FA, Varga C, Nakamura S. Vasopressin receptor antagonist OPC-31260 prevents cerebral oedema after subarachnoid haemorrhage. Eur J Pharmacol, 1999, 364(2-3):115-122.
    
    19 Shuaib A, Xu Wang C, Yang T, et al. Effects of nonpeptide V(l) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke, 2002, 33(12): 3033-3037.
    
    20 Bemana I, Nagao S. Treatment of brain edema with a nonpeptide arginine vasopressin V1 receptor antagonist OPC-21268 in rats. Neurosurgery, 1999, 44(1): 148-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700